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Arguments and Proofs

A proof plays two roles [Geuvers|

® A proof convinces the reader that the statement is correct.

® A proof explains why the statement is correct.




An informal proof in math
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A more formal proof in math

There are infinite prime numbers:
® Let P;, i=1,n, be prime numbers;
® Observe that M = (P; x P, X ... x P,) + 1 has remainder 1
when divided by any P;, for (M P;)Pi +1 = M;
® Either M is prime or there is a prime P different from any P;,
i=1,...,m

® The set of primes is infinite.




The naive question

Are formal proofs for people or for
machines?

Has not been adequately answered in any way.




Automatic Theorem Proving: The 60's

Mechanical Theorem Proving for FOL

A Machine-Oriented Logic Based on the Resolution Principle.
J.A.Robinson (JACM, 1965)
Resolution + Unification = Al tasks base on Rule Systems

Variant Usage

SAT Solvers, Davis-Putnam (1960), DPLL or
Davis-Putnam-Logemann-Loveland (1961).
Pressburger Arithmetic Solvers, Arithmetic with '+ only (1929).

Mathematical arguments are proofs ?




Proofs and Computers

ATP: proving of mathematical theorems by a computer program.

ITP: developing formal proofs by man-machine collaboration.

Different activities with different problems and specialized research
groups




The pigeonhole principle: Logical or Mathematical ?

THE PIGEONHOLE PRINCIPLE
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Theorem: If one assigns n

pigeons to m pigeonholes and n > m then there is at least one hole
with more than one pigeon




Computational problems: It is easier to check that something is a solution

than to find one?

[Haken1985]
n r m . Any refutation
'DH’Dm = /\ \/ pij 2 \/ \/(pif A pkj) of —PHP"
i=1j=1 lsjsksnj=1 has size an’é
n 22n Time to read the proof least 2(n*/2m)
5 1024 insignificant clauses in res-
10 1048576 1.048 sec olution. There
15 1 billion 17 min are at  least
20 | 1.099x10'2 30 hours on .
25 | 1.1252x10%° 35 years 27" clauses in

any refutation

Obs:Computer reads 10° characters per sec.
of =PHP2".
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Is mathematics more objective than natural sciences?

Thierry Coquand, 2008

The history of mathematics has stories about false results that
went undetected for long periods of time. However, it is generally
believed that if a published mathematical argument is not valid, it
will be eventually detected as such. While the process of finding a
proof may require creative insight, the activity of checking a given
mathematical argument is an objective activity; mathematical
correctness should not be decided by a social process.

INIVERSITAT
TUBINGEN 3



Dealing with huge proofs

Compression and efficient proof verification

Part of the computational complexity of theoremn proving and
SAT is in the (Classical) Propositional Logic
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Propositional proofs (1)

Natural Deduction

[A ADB
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A convenient representation of M~ in graphs
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Using dependency sets to eliminate the need! for red (discharge) edges

ADB

{A}\ /{ADB}
B> C
{AADB}\ /{BDC}

l{A,ADB,BDC}

ADC

l{ADB,BDC}
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Using bitstrings to eliminate? the red (discharge) edges

Considering a total order on formulas (any)
A<B<C<ADB=<BDC=<ADC

ADB

100000\ /)00100
B> C
100100\ /oooom

‘ 100110

ADC

‘ 000110

Given the total order and the labeled tree, verifying that the
conclusion is a M~ tautology is polytime on the number of ngd
in the tree. 4

2]t has the same limitations of using dependency sets



Compressing proofs for easy proof-checking

(4] AD4; (A A D043 [A4] AD4A (4] A1D4  [4]  A1D(4204)
Ay Ay DA Ay Az D (A3 D Ay) Ay Az D Aj
Az A3 DAy Az A3 D (A4D As)
Ay AgD As
As
Ay D A

Figure 1: Deriving A; D As from A D Az, A1 D (A2 D A3z), Ay D (A3 D Ag) and A3 D (Ag D As)
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Compressing proofs for easy proof-checking

A Ay = Ay < Ay = As 4 Ay D Ay £ A2 D Ay = Ay D As = A1 D As < A1 D (A2 D A3) = Az D (A3 D Ag) % A3 D (Ag D As)

‘With the sake of a better understanding, we remember that to any subset of formulas in the deriva-

tion there is a unique bitstring, see again definition 5. For example, the set { A1, A1 D Ay, A1 D (A, D
(A2 O As)

A3z) } is represented by the bitstring 100001000100
&) Gl
[455 (4> 45)]
e

Ar (A1 0 Az Ao (Ao A9 (A [A10 4a]
oo ooy 000100 oo Ny phmorooomo
(e22]
J— am JE— P L e
-

A
Ao
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00000000100
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A — 00001000101
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‘

Figure 2: Labelled graph representation of derivation 1
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Compressing a proof with easy proof-checking

_ i
u v
c=0Va) V=Fvd
[} [ ]

Figure 3: (a)u and v collapse

HCom(u,z)
=

ROEE

(b) After collapse HCorm(u,v)
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Compressing proofs for easy proof-checking

[A04]

[aoa4] [A][a>(A:049)] [4 (415 4]
oo oo g mmm

p: e pl: pZ: 3

@ :100001000001

F [41][412 (420 49)
y 000000000100

A3 D (A4 D As)

1V & :100001000100

100000000100 by Vv dy 1100001000100

@ 100001000101
| e—

Figure 4: Matching of the HC-compression rule ROEE with the derivation-tree in ﬁgure
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Compressing proofs for easy proof-checking

100000000100 oonaoroooonn

[42][42 (A5 A9)] 2 (42
00

Tonoomonno

(A4 [4][410 (420 49)] [4104;] [404;] [Ar][415 (420 49)]
N JrA— / L N A
A oo

A3 D (AgD As)

Figure 5: Result of the HC-compression rule ROEE application according the matching shown in

ﬁgure
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Compressing proofs for easy proof-checking

[415 (420 45)]

[A5 4] [A][415 (420 4)] [A> 4] [A54,]
o000 /

100000000000 100000000000

0001000000 00000100 o001000000 0000000100

"

00T \
Joo0o10000g
Goomeoooto

[455 (44 45)|

Figure 6: Defocused result of the HC-compression rule ROEE application appearing focused in fig-

ure E]
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O
Compressing proofs for easy proof-checking

to the initial derivation in[1]
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Compressing a proof with easy proof-checking: MUE-rules

2 ootmion

Rsi] )
!

e

Figure 18: Defocused dag-like derivation after application of rule Re2EE as in figure|
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Compressing a proof with easy proof-checking: MDE-rules

u
1(y / 3 I(u
(GO i) ()}
[ ] [ ]
: ! [0;52)] ey :
O]} R.2HH '
(] ‘j\ S1 [ ]
il ' o
[ ] [ ]
[ ] [ ]
Figure 19: (a)u and v collapse (b) After collapse HCom(u,v) 19
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Compressing a proof with easy proof-checking: MDE-Rules

Figure 29: Summary of MDE applications to the initial derivation in|[1]
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An upper-bound for the size of the compressed proof

If his the height of the initial derivation and m the number of
formulas in it, then

Figure 27: Defocused dag-like derivation after application of Re2HH and threetimes Re2XH to
collapse all occurrences of Aj in the dag-like in ﬁgurc

&
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Collapsing equal ancestor edges
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The Patch Natural Deduction derivation
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A glimpse into the technical details

Definition (Dag-like derivability structures DLDS)

Let I be a set of M~ formulas and Or an arbitrary linear ordering on I' and o = Or u {0, )\}3. A dag-like
derivability structure, DLDS for short, is a tuple (V/, (Eb) Ep,r, 1, L, P), where:

icof’
1. Vis a non-empty set of nodes;
2. Foreachi € OP, E[) C V x Vs the family of sets of edges of deduction;
3. Ep C V X Vs the set of edges of ancestrality;
4. r € Vis the root of the DLDS;
5. 1:V — T is a function, such that, for every v € V, I(v) is the (formula) label of v;
6. L: U E[i‘) — B(Og) is a function, such that, for every (u, v) € El"), L({u, v)) is a bitstring.
icop
7. P:Ep— {1,...,]| T ||}”, such that, for every e € Ep, P(e) is a string of the form oy; . . . ; 05, where
each 0;, i = 1, n'is an ordinal in Or;

1 UNIVERSITAT
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A glimpse into the technical details (cont)

Definition 23. Given a structure D = {V,(Ep);cop . Ea,r.1,L, P}, we say that it is a valid DLDS, iff;
the following conditions hold on it:

® Color-Acyclicity For each i € O}, Ej, does not have cycles;
e Leveled-Colored The rooted sub-dag {V, (Eb)iéoi.' ¥y is leveled;
® Ancestor-Edges For each {vy,v2) € Ea, the level of v1 is smaller than the level of U2
* Ancestor-Backway-Information For each {(v1,02) € Ea, P({vq,©2)) is the relative address of
w1 from va;
* Simplicity The rooted sub-dag (V,(EL)cop. 1) is a simple graph, i.e, for each pair of nodes o
and vz, there is at mostan i € O}, such that {v1,v2) € Ef;
* Ancestor-Simplicity The sub-dag {(V,E ) is a simple graph:
® Non-Nested-Ancestor-Edges For each {(v1,02) € Ea, there is no w in the path from va to U1,
determined by P({u,v) € Ea), such that {w,z) € E, for somez € E .
® CorrectRuleApp For eachw € V, Flow(D,w)(v) is well-defined for each v € Pre(w). More-
over, for each w and v, Flow(D,w)(v), with v € Pre(w), we have:
= If Flow(D,w)(v) = { (B, p)} then OUT (v) = {{v,o') } and the color of {v,v") is head(p).
ie., (0,0 € EE™Y and b= L({v,v')), and;
e If Flow(D,w)(v) # @ and it is not a singleton either then for each
PD; = { (b, p) € Flow(D,w)(v) : head(p) = i}:
1. If ©; # @ then there is only one v {v,0'y € Ep, and if &; = {(b,p) } then L({v,v"}) = b
else L({v,v")) = A, and:
2. If ®; = D then there is no v' € V, such that, {v,v') € E},




Main results

Theorem |: The 28 HC rules preserve the validity of the derivation.
(Proved by R. Callou Filho using LIVN)

Theorem Il: The 28 rules cover all possible cases of Horizontal
Compression. (Proved by R. Callou Filho using L3VN)

Proposition I: The 28 HC rules stops returning a fully compressed
Dag-like derivation when applied on a tree-like valid derivation. (A
mathematical consequence of Theorem Il above and finite
induction).




Empirical evaluation |
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Empirical evaluation |l
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Figure 60: Compression rate comparison between Huffman and HC compression for big tautologies
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Empirical evaluation Il
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Main Theoretical Result

The HC compression proves that CoNP = NP (this presentation)

The HC compression proves that PSPACE = NP (this presentation
also, but need additional details)



Proof-theory can be used to prove that CoNP = NP

Theorem If 1 is a normal proof of a then HC outputs a
compressed DLDS of size O(h?>.m*).

Fact For any graph G with v nodes there is a formula a, of size
O(v?), that is SAT, iff, G is hamiltonian.

Proposition For any non-Hamiltonian graph G with v nodes there
is a normal proof of ~ag* with height O(v?).

Theorem CoNP C NP, so CoNP = NP.

UNIVERSITAT
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*This the propositional formula that states that G is:not Hamiltonian



A useful notation:

Qo
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Moreover:

Op
Op—1
DA
QaQ
is the same of
Op
p—1
D (g D A)

ag
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Natural Deduction Proofs and Derivations: Usual
Terminology [Prawitz1965]

Derivations and proofs are represented as labeled trees, the root is
the conclusion and the leaves are assumptions , either closed or
open.




Normal Proofs and Derivations in M5 ND

A detour, or maximal formula, in a derivation 1 is a formula
occurrence p that is, at the same time, conclusion of a D-I rule
and major premiss of a D-E rule.

[A]*
T
T2 1 B
A ADB
B

RS
Mo 3

25



Maximal Formula or Detour

A branch in a derivation I1 is any sequence ag, ..., q;,...,qk of
formula occurrences in 1 that starts in a top-formula ag ,ends in
the conclusion of 1 or some major premise of a D-E rules
application. Moreover «; is a premise of the rule application that
has a1 as conclusion, or vice-versa, for i =0,..., k — 1.

Any branch has a formula y that is the conclusion of an elimination
rule, or it is an assumption, and premiss of an D-introduction rule,
or the last rule in the branch. y is called Minimal Formula.

UNIVERSITAT
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Normal Natural Deduction Proofs and Derivations: Usual

Terminology [Prawitz1965]

A derivation 7 is normal, iff, it does not have any maximal

formula.

Theorem Any derivation of o from A = {do, ..

a normal derivation of a from A’ C A

Apply the reduction below repeatedly.

[Al*

T
m B
A ADB

B

2

1

., 0k} gives rise to




Normal Atomically Expanded Proofs (NAEP)

A normal Natural Deduction derivation is Atomically Expanded, iff,
all minimal formulas are atomic.

Theorem. If A F « then there is an atomically expanded
derivation 7 of o from A’ C A.

Proof. Apply the expansion below to each non-atomic minimal
formula A D B, repeatedly until every minimal formula is atomic.

[A]® ADB
B
Ao B

ADB




NAEPs and Abstract Syntax Trees patchings

(A" [A D BP (A" [AD>(BD )P
B B>OC
C
! ADC

(ADB)D(ADCQ)
(AD(BDC)D(ADB)D(ADC)

R
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NAEPs and Abstract Syntax Trees patchings

A
w oposp W (F)oe
B B> C
1 —< AD(BDO)
) ADC ADB ocC
ADB A
( a )DC
3
A (BD Q)
< A B )DC (’; 5S¢ (Ais)jc
A
PN
A BOC AD{}DC
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The formal relationship between NAEPs and the ST of their conclusion

Proposition. Let T, be the ST of o and 7 an AENP of «. For each branch P in m:

® There is a maximal path o in T, starting in a leaf A and finishing at a r-child or the root of T,,, and, the

reserve of o (o) is the I-part of P

® The E-part of P consists of the path from some even r-child of some formula in oR toits corresponding
leftmost descendency, i.e. leaf.

Corollary. Given a NAEP 7 of «, a branch P in 7, of height h and, any branch in the sub-derivation determined by
P; its minimal formula is some leaf in the r-child descendency of P in T,. Consequently there are at most

h.size( T ) sub-derivations determined by P.
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Redundancy in Huge NAEPs

Fact. The number of leaf nodes in a binary tree is one more than
the number of nodes with 2 children

Proposition. If a NAEP 7 of a is such that size(r) > a%?¢(®) then
there is a sub-derivation 7’ of 7 that repeats at least a¥2¢(®) in 7.




The HC compression method

Why the compression method is effective 7 The most is the size of
an exponetial proof the easiest is to compress it to a
sub-exponential size, polynomial indeed.
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Thank You



A very influential book on mathematics

SOURCES AND STUDIES
IN THE HISTORY OF
MATHEMATICS AND PHYSICAL SCIENCES

Robert E. Bradley - C. Edward Sandifer

——em——

Cauchy’s Cours d’analyse

An Annotated Translation
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An example of a mathematical argument, CoursD'Analyse,
Cauchy, Section 6.2, 1821

Suppose the terms of series (1) involve some variable x. If the series is conver-
gent and its various terms are continuous functions of x in a neighborhood of some
particular value of this variable, then

Sn, Tpand s

are also three functions of the variable x, the first of which is obviously continu-
ous with repect to x in a neighborhood of the particular value in question. Given
this, let us consider the increments in these three functions when we increase x by
an infinitely small quantity a. For all possible values of n, the increment in s, is
an infinitely small quantity. The increment of r,, as well as r, itself, becomes in-
finitely small for very large values of n. Consequently, the increment in the function
s must be infinitely small.® From this remark, we immediately deduce the following
proposition:

Theorem 1. — When the various terms of series (1) are functions of the same
variable x, continuous with respect to this variable in the neighborhood of a partic-
ular value for which the series converges, the sum s of the series is also a continuous
function of x in the neighborhood of this particular value.”

s
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Cauchy's proof in modern math language

Continuous Function: f is continuous at x, iff,
Vedd(] b |< d D] f(x+ b) — f(x) [< €)

(%) sp is continuous at x :
3OVb(| b |< & D sa(x + b) — sp(x) |< €)

(¢) The series converges at x:
dKVk > K(] ra(x) |< €)

(OJ) The series converge at x + b:
dKVk > K(| ra(x + b) |< €)

| s(x+ ) — 5(x) |=| salx + B) + ra(x + b) = sn(x) — () | <]
sn(x+ b) —sp(x) | + | ra(x+ b) | + | ra(x) |< 3e



An example of a mathematical argument

sin2z  sin 32

=sin T — -,
z_uy 5 =t 3




Maurice Lecat initiative in 1935

Harrison et ali. 2007

“Maurice Lecat published in 1935 a book with 130 pages of errors
(500 approx) made by major mathematicians up to 1900".
Nowadays would this initiative be possible ? The profusion of
theorems is very higher than up to 1900.



Some remarkable achievements in ITP

® Proof of the prime number theorem (J.Avigad et. al., 2005)
using Isabelle formalizes Selberg's proof. 30000 lines, 43 files.

n

nll—>ngo7T(n) - In(n)
® Proof of the four colors theorem (G.Gonthier et al., 2008)
using Coqg. 60000 lines, 132 files.
® Proof of the Jordan curve theorem (Tom Hales, 2005) using
HOL light. 75000 lines,15 files. Proved using Mizar later. The
first correct proof is due to Veblen, 1904.
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Main goals of an ITP

Andrea Asperti, 2010

The machine must be aware of the mathematical content (the
logic) of expressions (passing from a machine readable to a
machine understandable representation of mathematics).
Remarks on de Bruijn factor [see Freek Wiedijk & J. Harrison]




I'TP tools or assistant proofs

Automath [Eindhoven] (De Brujin)
the HOL family [Cambridge] - deriving from LCF (R.Milner)
® HOL4, HOL88 (M.Gordon), HOL90 (K.Slind)
® HOL lite (J.Harrison)
® Proof Power (ICL Ltd)
Isabelle/lsar (L.Paulson, T.Nipkow) [Cambridge,Munich]
NuPRL (Constable), MetaPearl [Cornelle]
The COQ family

® Coq (Huet,Coquand,Paulin-Mohring) [INRIA-France]
® Agda (Coquand) [Chalmers]

® Lego (Pollack) [Edinburgh]

® Matita (Asperti,Sacerdoti Coen) [Bologna]

PVS (N.Shankar) [Stanford)]
IMPS (W.Farmer) [McMaster|
Mizar (A.Trybulec) [Bialystok]

Lean (Leonardo Moura) [deMoura]
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Famous uses of ITP in theorems relevant to CS

1. Needham-Schroeder authentication public key protocol
breaking (1995 Lowe) and fixing (1996) correctness using CSP.

2. After Ariane V catastrophe (1996), Harrison proved (2006)
that Ariane V catatrophe was caused by a programmer’s
diregarding the default exception-handling of IEEE 754 specs.
He also proved correctness of IEEE 754 specs.

3. A proof attempt using Temporal Logic of the ARPANET TCP
three-way hand-shake protocol revealed a very unliked but
severe bug, afterwards corrected in Internet TCP/IP (1982).
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There is nothing wrong with Jordan’s proof o Jordan curve
theorem

Studies in Logic, Grammar and Rhetoric, Tom Hales, 2007

My initial purpose in reading Jordan was to locate the error. I had completed a
formal proof of the Jordan curve theorem in January 2005 and wanted to mention
Jordan’s error in the introduction to that paper [3]. In view of the heavy criticism
of Jordan’s proof, I was surprised when I sat down to read his proof to find nothing
objectionable about it. Since then, I have contacted a number of the authors who
have criticized Jordan, and each case the author has admitted to having no direct
knowledge of an error in Jordan’s proof. It seems that there is no one still alive
with a direct knowledge of the error.
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