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Types and sets existed since antiquity

Euclid’s Elements (circa 325 B.C.) begins with:
1 A point is that which has no part;
2 A line is breadthless length.

...
15 A circle is a plane figure contained by one line such that all the straight

lines falling upon it from one point among those lying within the figure
are equal to one another.

1..15 define points, lines, and circles which Euclid distinguished.

Euclid always mentioned to which class (points, lines, etc.) an object
belonged.

In Euclid’s Elements (Book IX, Proposition 20):
Consider any finite list of prime numbers p1, p2, ..., pn. At least one
additional prime number not in this list exists.
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Paradoxes in the 20th century

Paradoxes in the 20th century led to the creation of explicit theories
of sets and types (and this was in parallel).

Researchers in set theory and type theory don’t collaborate often
despite the huge overlap and complementarity of their work.

However, an impressive body of work exists to explain the strengths
and weaknesses of theories and this work is a promissing avenue in
both areas.
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The calculus and the paradoxes of motion

Zeno of Elea, C. 590-525 B.C.E., devised some paradoxical arguments
against the possibility of motion.

Since the calculus was developed partly to deal with motion, these
paradoxical arguments are important for the foundations of analysis.

Three of the most important of these are in Aristotle in his Physics.

Dichotomy. There is no motion, because what moves must arrive at
the middle of its course before it reaches the end. In other words, to
leave the room, you first have to get halfway to the door, then you
have to get halfway from that point to the door, etc. No matter how
close you are to the door, you have to go half the remaining distance
before proceeding.
Arrow. The flying arrow is at rest, because a thing is at rest when
occupying its own space at a given time, as the arrow does at every
instant of its alleged flight.
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A short history of numbers

natural numbers like 0, 1, 2, which were used to count (sheep for
example);

integers like 0, 1, -1, 2, -2, etc. which were also used to count;

rational numbers which are the quotients or fractions of integers like
2/3 and which were used to measure (the ancients used
anthyphairesis/Alternated substitution to evaluate Ratios);

2/3 = 0.6666666... where 6 repeats over and over
41/333 = 0.123123123123... where 123 repeats over and over.

irrational numbers like
√

2,
√

3, π;

π = 3.14159265358979323846264338...√
2 = 1.41421356237309504880168872420969807856967187537694...
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It started with incommensurability

According to Webster’s dictionary, commensurability is divisibility
without remainder by a common unit.

Hence 6 and 9 are commensurable (since they are both divisible by 3).

Attempts to find the unit which measures exactly the side and
diagonal of a square led to the proof of the incommensurability of the
side and diagonal of a square.

This result on incommensurability implies that
√

2 is not a rational
number. That is, it cannot be represented as the quotient of two
integers.
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With incommensurability, number was no longer everything

The discovery of the incommensurability of the side and diagonal of a
square showed that the Pythagorean idea that number is everything
would not work.

The Pythagoreans needed to treat quantities which are not numbers.

For them, numbers are rationals and quantities are the
incommensurable (which we call real numbers).

The Greeks constructed geometric figures (recall Euclid), but took
numbers as given. They separated numbers, which are discrete, from
continuous magnitudes (quantities/real numbers).

They did not use fractions to approximate continuous magnitudes.

They did not construct the reals, nor multiply them nor divide them,
etc.
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Euclid used anthyphairesis to find the greatest common
divisor of two numbers

r1

r1 r1 r1 r1

... :

r1 r2

r0

Figure 1: Anthyphairesis
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Ratio of 12 to 5 = [2,2,2]=2 + 1

2 +
1

2

5

5 5 1 1

1

2

2

212

Figure 2: Ratio of 12 to 5
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Ratio of 22 to 6 = [3,1,2]=3 + 1

1 +
1

2

6

6 6 6 2 2

2

4

422

Figure 3: Ratio of 22 to 6
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Ratio of
√

2 to 1 is [1, 2, 2, 2, . . . ]
√

2 = 1 + 1

2 +
1

2 +
1

2 +
1

2 +
.. .

etc.

..
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1

3− 2
√

2

√
2− 1

√
2− 1

√
2− 1

√
2
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The ratio of 15 to 4 is [3, 1, 3] = 3 + 1

1 +
1

3

4

4 4 4 1 1 1

1

3

315/4

Kamareddine Pure Type Systems: Extensions and RestrictionsBrasilia, Brasil, 24 May 2017 12 / 71



The ratio of 20 to 7 is [2, 1, 6] = 2 + 1

1 +
1

6

7

7 7

1 1 1 1 1 1

1

6

6

20/7

Kamareddine Pure Type Systems: Extensions and RestrictionsBrasilia, Brasil, 24 May 2017 13 / 71



The ratio of 15 to 10 is [1, 2] = 1 + 1
2

10

10

5

5

5

515/10
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The ratio of
√

3 to 1 is characterised by
[1, 1, 2, 1, 2, 1, 2, ...] = [1, 1, 2]

... 2−
√

3

√
3− 1

√
3− 1

1

1

√
3
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Real numbers need to be constructed (using
approximations like Dedekind cuts, Cauchy sequences, etc.)

The idea of using fractions to approximate continuous magnitudes
developed first in the Arab world during the middle ages, and only
came to Europe in the 16th and 17th centuries.

This idea would have been assumed by both Newton and Leibniz.

Although the Greeks did not construct magnitudes (real numbers),
they still studied them after discovery of incommensurability.
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In 18th and 19th century, irrational numbers were divided
into two categories: Algebraic and transcendental

A number is algebraic if it is the root of a non-zero polynomial with
rational coefficients. For example,

√
2 is algebraic since it is the

solution to x2 − 2 = 0.

An irrational number that is not algebraic is called transcendental
(i.e. cannot be made of algebraic equations). For example, π is
transcendental.

Transcendental was coined by Leibniz in 17th cenetury who showed
that sin(x) is not an algebraic function of x .

Until the discovery of irrationals like
√

2, the pythagorean expected all
numbers to be rational.
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The discovery of transcendental numbers

Until the 17th century it was expected that numbers should fit the
algebraic mould.

In the 18th century it was shown that π is irrational and conjectured
that π is transcendental.

In the 19th century, proofs were given of the existence of transcendtal
numbers and that π is transcendental.

Once π was shown transcendtal meant that the old problem of
squaring the circle became impossible.
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Researchers in the 19th century continued to go deeper
into numbers

1821: Many controversies in analysis were solved by Cauchy. E.g., he
gave a precise definition of convergence in his Cours d’Analyse.

1872: Due to the more exact definition of real numbers given by
Dedekind, the rules for reasoning with real numbers became even
more precise.

1895-1897: Cantor began formalizing set theory and made
contributions to number theory.

1889: Peano formalized arithmetic, but did not seriously treat logic or
quantification.

Cantor’s diagnolisation argument and the size of the natural numbers
versus the size of the real numbers will impact the size of what can
be computable versus what cannot.
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Cantor proved that algebraic numbers are countable.

Hence there are only as many algebraic numbers as there are natural
numbers.

Cantor proved that the transcendental numbers are uncountable.

Cantor proved that the size of the algebraic numbers is infinite, but is
the smallest infinite that exists.

The size of the transcendental numbers is a much much larger infinite.
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Depressing implication for computation

Later on it was shown that:

The size of the computable functions is the size of the algebraic
numbers, the smallest infinite ℵ0.

The size of the non-computable functions is the size of the
transcendental numbers (the monster infinite), which according to
Cantor’s Continuum hypothesis is the infinite ℵ1 which is the next
one up after ℵ0.

This means that there are a lot more functions that are impossible to
compute than there are computable functions.
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From Cantor to Frege, Russell and Type Theory

General definition of function 1879 [8] is key to Frege’s formalisation
of logic.
1892-1903 Frege’s Grundgesetze der Arithmetik, could handle
elementary arithmetic, set theory, logic, and quantification.
Self-application of functions was at the heart of Russell’s paradox
1902 [29].
To avoid paradox Russell controled function application via type
theory.
Russell [30] 1903 gives the first type theory: the Ramified Type
Theory (rtt).
rtt is used in Russell and Whitehead’s Principia Mathematica [32]
1910–1912.
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Hilbert

Simple theory of types (stt): Ramsey [25] 1926, Hilbert and
Ackermann [12] 1928.
Following from Leibniz and Frege, researchers started calling for
logical methods that could decisively answer questions at hand.
Hilbert believed that every mathematical problem should either have
a solution or we should definitely know that no such solution exists.

We must Know. We will know.

Back in 1928, Hilbert posed the the Entscheidung/Decision Problem.
This problem dates back to Leibniz and asks for an algorithm that
takes as input a statement of first order logic and returns as output
one of two possible answers: yes when the statement is always valid,
or no otherwise.
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Hilbert advocated the idea (which became known as Hilbert’s program)
that there should be an axiomatization of all of mathematics that is

a complete (i.e., every true formula can be derived) and

consistent (i.e., does not contain a contradiction)

such that every mathematical problem should either have a solution or we
should definitely know that no such solution exist.
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The results of the 1930s would establish the limitations of computers
even before computers were built.

No matter how fast and advanced computers get (and they are
advancing at an amzing speed, considering that they did not exist in
1930s).

Before we knew what computers could do, we had results telling us
what computers could never do.

These results of the limitations of the computer, will never change.

They are set in stone just like the impossibility of squaring a circle.
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Can we solve/compute everything?

Turing answered the question via a machine for running/computing
programs.
a function f is computable iff f can be computed on a Turing
machine.

Church invented the λ-calculus, a language for describing programs.
a function f is computable iff f can be described in the λ-calculus.

Note that Church’s λ-calculus was initially intended as a language of
programs and logic, but it turned out to be inconsistent (Kleene and
Rosser) and Church restricted the λ-calculus to programs.

Goedel’s result meant that no absolute guarantee can be given that
many significant branches of mathematics are entirely free of
contradictions.

This means: we can compute a very small (∞ly countable, size of IN)
amount compared to what we will never be able to compute
(uncountable, size of IR).
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Church, Turing, Goedel

Church’s simply typed λ-calculus λ→ [4] 1940 = λ-calculus + stt.

The hierarchies of types/orders in rtt and stt are unsatisfactory.

Hence, birth of different systems of functions and types, each with
different functional power.
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Simply typed λ-calculus was adopted in theorem provers like HOL and
was used to make sense of other programming languages (e.g.,
pascal).

Then, simple types were independently extended to polymorphic logic
and programming languages.

Dependent types (necessary for reasoning about proofs inside the
system) were also introduced in Automath by de Bruijn.

Types continue to play an influential role in the design and
implementation of programming languages and theorem provers.

Kamareddine Pure Type Systems: Extensions and RestrictionsBrasilia, Brasil, 24 May 2017 28 / 71



Syntax of λ-calculus

Type Free

A ::= x | AB | λx .B
(λx .B)C →β B[x := C ].

With simple types:

σ ::= T | σ → τ

A ::= x | AB | λx :σ.B

(λx : σ.B)C →β B[x := C ].

With dependent types:

A ::= x | ∗ |2 | AB | λx :A.B | Πx :A.B

(λx : A.B)C →β B[x := C ].

Sometimes also with (Πx : A.B)C →Π B[x := C ].
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Church’s Simply Typed λ-calculus in modern notation

Terms A ::= x | AB | λx :σ.B

Types ::= T | |σ → τ

Γ is an environment (set of declaration).

Rules:

(start)
x : σ ∈ Γ

Γ ` x : σ

(λ)
Γ, x :σ ` A : τ

Γ ` λx :σ.A : σ → τ

(appΠ)
Γ ` A : σ → τ Γ ` B : σ

Γ ` AB : τ
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Common features of modern types and functions

We can construct a type by abstraction. (Write A : ∗ for A is a type)

λy :A.y , the identity over A has type A→ A
λA:∗.λy :A.y , the polymorphic identity has type ΠA:∗.A→ A

We can instantiate types. E.g., if A = N, then the identity over N
(λy :A.y)[A := N] has type (A→ A)[A := N] or N→ N.
(λA:∗.λy :A.y)N has type (ΠA:∗.A→ A)N = (A→ A)[A := N] or
N→ N.

(λx :α.A)B →β A[x := B] (Πx :α.A)B →Π A[x := B]

Write A→ A as Πy :A.A when y not free in A.
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Special Pure Type Systems

Syntax: s ::= ∗ |2i where i ≥ 1.
We assume S set of sorts s.
A ::= x s | s | AB | λx s :A.B | Πx s :A.B

A ~Fω
= A ~CC

= {(∗,21), (2i ,2i+1)}
AZ = {(∗,21), (21,22), (22,23)}
R ~CC

= {(∗, ∗, ∗), (2i , ∗, ∗), (∗,2i ,2j), (2i ,2j ,2max{i ,j})}
R ~Fω

= {(∗, ∗, ∗), (2i , ∗, ∗), (2i ,2j ,2max{i ,j})}
RZ = {(∗, ∗, ∗)} ∪ {(2i , ∗, ∗)|1 ≤ i ≤ 3} ∪ {(2i ,2j ,2max{i ,j})|1 ≤
i , j ≤ 2}
AZ ⊂ A ~Fω

= A ~CC
and RZ ⊂ R ~Fω

⊂ R ~CC
.

Formation rule:
Γ ` A : s1 Γ, x s :A ` B : s2

Γ ` Πx s :A.B : s3
if (s1, s2, s3) ∈ R
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The PTS rules

(axiom) 〈〉 ` s1 : s2 if (s1, s2) ∈ A

(start)
Γ ` A : s x s 6∈ dom (Γ)

Γ, x s :A ` x s : A

(weak)
Γ ` A : B Γ ` C : s x s 6∈ dom (Γ)

Γ, x s :C ` A : B

(Π)
Γ ` A : s1 Γ, x s :A ` B : s2 (s1, s2, s3) ∈ R

Γ ` Πxs :A.B : s2

(λ)
Γ, x s :A ` b : B Γ ` Πxs :A.B : s ′

Γ ` λxs :A.b : Πxs :A.B

(convβ)
Γ ` A : B Γ ` B ′ : s B =β B ′

Γ ` A : B ′

(appΠ)
Γ ` F : Πxs :A.B Γ ` a : A

Γ ` Fa : B[x s :=a]
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Desirable properties of a type system with reduction r

r is Church Rosser (CR)
If A→→r A

′ and A→→r A
′′ then there is a B such that A′ →→r B and

A′′ →→r B.

Typing is preserved under reduction
If Γ ` A : B and (A→→r A

′ or B →→r B
′ or Γ→→r Γ′) then

Γ′ ` A′ : B ′.

Strong Normalisation (SN)
If Γ ` A : B then SN→r (A) and SN→r (B).
SN properties for CC and Fω have the same proof-theoretic strength
as higher-order arithmetic (HAω).
CC and Fω can be proven consistent within Heyting arithmetic.
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What about???

Do we always need CR to hold For example, in Krivine’s λc (the
language of realisers in classical realisability which is λ-calculus plus
the control operator cc), CR does not hold. Instead we have
determinism.

Subject Expansion
If Γ ` A : B and A′ →→r A then Γ ` A′ : B.

The Type System Characterizes Strong Normalisation
If M is a type free term such that SN→r (M) then there are Γ,A,B,
such that Γ ` A : B and TE (A) = M.

Decidability of Type checking and typability
Given A, B, and Γ do we have Γ ` A : B??.
Given A are there Γ,B such that Γ ` A : B??.
Given A and Γ is there B such that Γ ` A : B??.
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Assume only ∗,2. Let A = {(∗,2)}. Write (s1, s2, s2) as (s1, s2) and let
R ⊆ {(∗, ∗), (∗,2), (2, ∗), (2,2)}.

Simple Poly-
morphic

Depend-
ent

Constr-
uctors

Related
system

Refs.

λ→ (∗, ∗) λτ [4, 2, 13]
λ2 (∗, ∗) (2, ∗) F [10, 28]
λP (∗, ∗) (∗,2) aut-QE, LF [6, 11]
λω (∗, ∗) (2,2) POLYREC [27]
λP2 (∗, ∗) (2, ∗) (∗,2) [22]
λω (∗, ∗) (2, ∗) (2,2) Fω [10]
λPω (∗, ∗) (∗,2) (2,2)
λC (∗, ∗) (2, ∗) (∗,2) (2,2) CC [5]
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The 8 Systems of the Barendregt Cube
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Typing Polymorphic identity needs (2, ∗)

y : ∗ ` y : ∗ y : ∗, x :y ` y : ∗
y : ∗ ` Πx :y .y : ∗

by (Π) (∗, ∗)

y : ∗, x : y ` x : y y : ∗ ` Πx :y .y : ∗
y : ∗ ` λx : y .x : Πx :y .y

by (λ)

` ∗ : 2 y : ∗ ` Πx :y .y : ∗
` Πy : ∗.Πx :y .y : ∗

by (Π) by (2, ∗)

y : ∗ ` λx : y .x : Πx :y .y ` Πy : ∗.Πx :y .y : ∗
` λy : ∗.λx : y .x : Πy : ∗.Πx :y .y

by (λ)
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The Cube with parametric constants

Let (∗, ∗) ⊆ R,P ⊆ {(∗, ∗), (∗,2), (2, ∗), (2,2)}.

λRP = λR and the two rules (
→
C-weak) and (

→
C-app):

Γ ` b : B Γ,∆i ` Bi : si Γ,∆ ` A : s
Γ, c(∆) : A ` b : B

(si , s) ∈ P, c is Γ-fresh

Γ1, c(∆):A, Γ2 ` bi :Bi [xj :=bj ]
i−1
j=1 (i = 1, . . . , n)

Γ1, c(∆):A, Γ2 ` A : s (if n = 0)
Γ1, c(∆):A, Γ2 ` c(b1, . . . , bn) : A[xj :=bj ]

n
j=1

∆ ≡ x1:B1, . . . , xn:Bn.
∆i ≡ x1:B1, . . . , xi−1:Bi−1

Kamareddine Pure Type Systems: Extensions and RestrictionsBrasilia, Brasil, 24 May 2017 39 / 71



Kamareddine Pure Type Systems: Extensions and RestrictionsBrasilia, Brasil, 24 May 2017 40 / 71



The π-cube: Rπ = Rβ\ (convβ) ∪ (convβΠ), →βΠ

(λx :α.A)B →β A[x := B]

(Πx :α.A)B →Π A[x := B]

(axiom) (start) (weak) (Π) (λ) (appΠ)

(convβΠ)
Γ ` A : B Γ ` B ′ : s B =βΠ B ′

Γ ` A : B ′

Lemma: Γ `β A : B iff Γ `π A : B

Lemma: The β-cube and the π-cube satisfy the desirable for type systems.
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The πi -cube: Rπi = Rπ\ (appΠ) ∪ (i-appΠ), →βΠ

(appΠ)
Γ ` F : Πx :A.B Γ ` a : A

Γ ` Fa : B[x :=a]

(axiom) (start) (weak) (Π) (λ)

(convβΠ)
Γ ` A : B Γ ` B ′ : s B =βΠ B ′

Γ ` A : B ′

(i-appΠ)
Γ ` F : Πx :A.B Γ ` a : A

Γ ` Fa : (Πx :A.B)a

Lemma:

If Γ `β A : B then Γ `πi A : B.

If Γ `πi A : B then Γ `β A : [B]Π
where [B]Π is the Π-normal form of B.
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The πi -cube

The πi -cube loses TC and SR properties
Let Γ = z : ∗, x : z . We have that Γ `πi (λy :z .y)x : (Πy :z .z)x .

We do not have TC (Πy :z .z)x 6≡ 2 and Γ 6`πi (Πy :z .z)x : s.
We do not have SR (λy :z .y)x →βΠ x but Γ 6`πi x : (Πy :z .z)x .

But we have:

We have STT
We have PT
We have SN
We have a weak form of TC If Γ `πi A : B and B does not have a
Π-redex then either B ≡ 2 or Γ `πi B : s.
We have a weak form of SR If Γ `πi A : B, B is not a Π-redex and
A→→βΠ A′ then Γ `πi A

′ : B.
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The problem can be solved by re-incorporating Frege and
Russell’s notions of low level functions (which was lost in
Church’s notion of function)

(start-a)
Γ ` A : s Γ ` B : A

Γ, x = B:A ` x : A
x 6∈ dom (Γ)

(weak-a)
Γ ` A : B Γ ` C : s Γ ` D : C

Γ, x = D:C ` A : B
x 6∈ dom (Γ)

Figure 4: Basic abbreviation rules BA

(let\)
Γ, x = B:A ` C : D

Γ ` (\x :A.C )B : D[x := B]

Figure 5: (let\) where \ = λ or \ = Π
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The βa-cube: Rβa = Rβ + BA + letβ, →β

(axiom) (start) (weak) (Π) (λ) (appΠ) (convβ)

(start-a)
Γ ` A : s Γ ` B : A

Γ, x = B:A ` x : A
x 6∈ dom (Γ)

(weak-a)
Γ ` A : B Γ ` C : s Γ ` D : C

Γ, x = D:C ` A : B
x 6∈ dom (Γ)

(letβ)
Γ, x = B:A ` C : D

Γ ` (λx :A.C )B : D[x := B]

Lemma: The βa-cube satisfies the desirable properties except for typability
of subterms.
If A is `-legal and B is a subterm of A such that every bachelor λx :D in B
is also bachelor in A, then B is `-legal.
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The πa-cube: Rπa = Rπ + BA + letβ + letΠ, →βΠ

(axiom) (start) (weak) (Π) (λ) (appΠ) (convβΠ)

(start-a)
Γ ` A : s Γ ` B : A

Γ, x = B:A ` x : A
x 6∈ dom (Γ)

(weak-a)
Γ ` A : B Γ ` C : s Γ ` D : C

Γ, x = D:C ` A : B
x 6∈ dom (Γ)

(letβ)
Γ, x = B:A ` C : D

Γ ` (λx :A.C )B : D[x := B]

(letΠ)
Γ, x = B:A ` C : D

Γ ` (Πx :A.C )B : D[x := B]

Lemma: The πa-cube satisfies the same properties as the βa.
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The πai -cube: Rπai = Rπa\ appΠ + i-appΠ, →βΠ

Let Γ = z : ∗, x : z . We have that Γ `πai (λy :z .y)x : (Πy :z .z)x .

We NOW have TC although Γ 6`πi (Πy :z .z)x : s, we have
Γ `πai (Πy :z .z)x : s
By (weak-a) z : ∗, x : z , y = x : z `πai z : ∗.
Hence by (letΠ) z : ∗, x : z `πai (Πy :z .z)x : ∗[y := x ] ≡ ∗.
We NOW have SR (λy :z .y)x →βΠ x .
Although Γ 6`πi x : (Πy :z .z)x , we have Γ `πai x : (Πy :z .z)x
Since z : ∗, x : z `πai x : z , and z : ∗, x : z `πai (Πy :z .z)x : ∗ and
z : ∗, x : z 
 z =βΠ (Πy :z .z)x , we use (convβΠ) to get:
z : ∗, x : z `πai x : (Πy :z .z)x .
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Degrees of terms

We define ] : Λ→ {0, 1, 2, 3} by ](2) = 3, ](∗) = 2, ](x ς) = ](ς)− 2,
](πδ.A) = ](AB) = ](A).

For A ∈ Λ, ](A) is called the degree of A.

A : B is OK iff ](A) = ](B)− 1.

If Γ ` A : B then for any C : D in either Γ or A or B we have C : D is
OK.

A is kind iff ](A) = 2,
A is constructor or A is type iff ](A) = 1,
A is object iff ](A) = 0.
](A) = 3 iff A = 2.

Kamareddine Pure Type Systems: Extensions and RestrictionsBrasilia, Brasil, 24 May 2017 48 / 71



Guy Steele’s discussion of most popular programming
language in computer science

Computer Science Metanotation (CSM)

Data Types:
Built-in: numbers, arrays, lists, etc.
User-defined: Records, Abstract Data Types or Symbolic Expressions
(written in BNF).

Code: Inference rules (written in Gentzen notation)

Conditionals: rule dispatch via nondeterministic pattern-matching

Repetition: overlines and/or ellipsis notations, and sometimes
iterators

Primitive expressions: logic and mathematics

Special operation: capture-free substitution within a symbolic
expression

Guy Steele, Its Time for a New Old Language
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According to Steele

Early contributors include

Gentzen

Bakus

Naur

Church

Steel focuses around difficulties of use of BNF notation:

Substitution

Overline and Ellipsis

Formalisation and Mechanisation of CSM.
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Gentzen

Gerhard Gentzen with his rule metanotation for natural deduction:
“3.1. Eine Schluβfigur läβt sich in der Form Screiben:

N1 . . .Nν

B
(ν ≥ 1),

wobei N1, . . . ,Nν Formeln sind. N1, . . . ,Nν heiβen dann
die Oberformlen, B heiβt die Unterformel der Scluβfigur.”

(Gerhard Gentzen, 1934 [9])
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Backus/Naur

John Backus influenced by Emil Post’s productions gives a syntax to
write production rules with multiple alternatives
for a context-free grammar for the International Algorithmic Language:

“< digit >:≡ 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9
< integer >:≡< digit > or < integer >< digit >”

(John Backus, 1959 )

Peter Naur uses Backus notation where • :≡ =⇒ ::= and
• or =⇒ | and gave nonterminals the same names used in the text.

“ < unsigned integer >::=< digit > | < unsigned integer >< digit >
< integer >::=< unsigned integer > |+ < unsigned integer > |− <
unsigned integer > ”

(Naur, report on Algol 60, CACM)

Kamareddine Pure Type Systems: Extensions and RestrictionsBrasilia, Brasil, 24 May 2017 52 / 71



Data Declaration à la Alonzo Church

Type Free

A ::= x | AB | λx .B
(λx .B)C →β B[x := C ].

With simple types:

σ ::= T | σ → τ

A ::= x | AB | λx :σ.B

(λx : σ.B)C →β B[x := C ].

With dependent types:

A ::= x | ∗ |2 | AB | λx :A.B | Πx :A.B

(λx : A.B)C →β B[x := C ].

Sometimes also with (Πx : A.B)C →Π B[x := C ].
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Code à la Alonzo Church

With dependent/polymorphic types

(λ)
Γ, x :A ` b : B Γ ` Πx :A.B : s

Γ ` λx :A.b : Πx :A.B

(appΠ)
Γ ` F : Πx :A.B Γ ` a : A

Γ ` Fa : B[x :=a]

(N-appΠ)
Γ ` F : Πx :A.B Γ ` a : A

Γ ` Fa : (Πx :A.B)a

With simple types:

(λ→)
Γ, x :σ ` b : τ

Γ ` λx :A.b : σ → τ
(Γ ` σ → τ : ∗)

(app)
Γ ` F : τ → σ Γ ` a : τ

Γ ` Fa : σ
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In this talk we concentrate on the development of calculi
rather than the development of the notation

The challenge is to develop expressive calculi that have clear syntax,
semantics, and the desirable properties (Church-Rosser, correctness,
termination).

Nonetheless, notation is important.

For example, simply changing the order of functions and arguments,
and restructuring parenthesis, enable us to:

Express things that would be hard to do in the old notation.
Reduce proofs of strong normalisation to proofs of weak normalisation.
Make computations more efficient.
Avoid unnecessary/redundant computations and allow for free lazy,
local, or global reductions.
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Lambda Calculus à la de Bruijn

A := x | AB | λx .B A := x | < B > A | [x ]B

I(x) = x , I(λx .B) = [x ]I(B), I(AB) = 〈I(B)〉I(A)

(λx .λy .xy)z translates to 〈z〉[x ][y ]〈y〉x .

The applicator wagon 〈z〉 and abstractor wagon [x ] occur NEXT to
each other.

(λx .A)B→β A[x := B] becomes 〈B〉[x ] A→β [x := B]A

The “bracketing structure” of (( λx .(λy .λz .–)c)ba)
is ‘[1 [2 [3 ]2 ]1 ]3’, where ‘[i ’ and ‘]i ’ match.

The bracketing structure of 〈a〉〈b〉[x ]〈c〉[y ][z ] 〈d〉 is simpler: [ [ ][ ]].

〈b〉[x ] and 〈c〉[y ] are AT-pairs whereas 〈a〉[z ] is an AT-couple.
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Redexes in de Bruijn’s notation

Classical Notation de Bruijn’s Notation

((λx .(λy .λz .zd)c)b)a 〈a〉〈b〉[x ]〈c〉[y ][z ]〈d〉z
↓β ↓β

((λy .λz .zd)c)a 〈a〉〈c〉[y ][z ]〈d〉z
↓β ↓β

(λz .zd)a 〈a〉[z ]〈d〉z
↓β ↓β
ad 〈d〉a

〈a〉 〈b〉 [x ] 〈c〉 [y ] [z ] 〈d〉 z
This maks it easy to study local/global/mini reductions into the
λ-calculus, Kamareddine etal [16, 17]
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Some notions of reduction studied in the literature

Name In Classical Notation In de Bruijn′s notation

((λx .N)P)Q 〈Q〉〈P〉[x ]N
(θ) ↓ ↓

(λx .NQ)P 〈P〉[x ]〈Q〉N
(λx .λy .N)P 〈P〉[x ][y ]N

(γ) ↓ ↓
λy .(λx .N)P [y ]〈P〉[x ]N

((λx .λy .N)P)Q 〈Q〉〈P〉[x ][y ]N
(γC ) ↓ ↓

(λy .(λx .N)P)Q 〈Q〉[y ]〈P〉[x ]N

((λx .λy .N)P)Q 〈Q〉〈P〉[x ][y ]N
(g) ↓ ↓

(λx .N[y := Q])P 〈P〉[x ][y := Q]N

? 〈Q〉s[y ]N
(βe) ↓ ↓

? s[y := Q]N
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A Few Uses of these reductions/term reshuffling

Regnier [26] uses θ and γ in analyzing perpetual reduction strategies.

Term reshuffling is used by Kfoury, Tiuryn, Urzyczyn, Wells in
[21, 19] in analyzing typability problems.

Nederpelt [23], de Groote [7], Kfoury+ Wells [20], and
Kamareddine [15] use generalised reduction and/or term reshuffling in
relating SN to WN.

Ariola etal [1] uses a form of term-reshuffling in obtaining a calculus
that corresponds to lazy functional evaluation.

Kamareddine etal [16, 14, 18, 3] show that they could reduce
space/time needs in computation.
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Even more: de Bruijn’s generalised reduction has better
properties

(β) (λx .M)N → M[x := N]
(βI ) (λx .M)N → M[x := N] if x ∈ FV (M)
(βK ) (λx .M)N → M if x 6∈ FV (M)
(θ) (λx .N)PQ → (λx .NQ)P
(βe) (M)s[x ]N → s{N[x := M] for s well-balanced.

Kamareddine [15] shows that βe satisfies Church Rosser, PSN,
postponment of K -contraction and conservation (latter 2 properties
fail for β-reduction).

Conservation of βe : If A is βe I -normalisable then A is βe-strongly
normalisable.

Postponment of K -contraction : Hence, discard arguments of
K -redexes after I-reduction. This gives flexibility in implementation:
unnecessary work can be delayed, or even completely avoided.
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Attempts have been made at establishing some reduction relations for
which postponement of K -contractions and conservation hold.

The picture is as follows (-N stands for normalising and r ∈ {βI , θK}).

(βK -postponement for r) If M →βK
N →r O then

∃P such that M →→+
βI θK

P →→βK
O

(Conservation for βI ) If M is βI -N then M is βI -SN
Barendregt’s book

(Conservation for β + θ) If M is βI θK -N then M is β-SN [7]

De Groote does not produce these results for a single reduction
relation, but for β + θ (this is more restrictive than βe).

βe is the first single relation to satisfy βK -postponement and
conservation.

Kamareddine [15] shows that:

(βeK -postponement for βe) If M →βeK
N →βeI

O then
∃P such that M →βeI

P →→+
βeK

O

(Conservation for βe) If M is βeI -N then M is βe-SN
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Canonical typing

There are reasons why separating the questions “what is the type of a
term” (via τ) and “is the term typable” (via `), is advantageous:

The canonical type of A is easy to calculate.

τ(A) plays the role of a preference type for A. If A ≡ λx :∗.(λy :∗.y)x
then τ(<>,A) ≡ Πx :∗.(Πy :∗.∗)x →→βΠ Πy :∗.∗, the type of A.

The conversion rule is no longer needed as a separate rule in the
definition of `. It is accommodated in our application rule:

Γ ` A Γ ` B

Γ ` AB
if τ(Γ,A) =βΠ Πx :C .D and τ(Γ,B) =βΠ C
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Higher degrees:If we use λ1 for Π and λ2 for λ then we can aim for a
possible generalization. In fact, we can extend our system by
incorporating more different λ’s. For example, with an infinity of λ’s,
viz. λ0, λ1, λ2, λ3 . . ., we replace τ(Γ, λx :A.B) ≡ Πx :A.τ(Γ.λx :A,B)
and τ(Γ,Πx :A.B) ≡ τ(Γ.λx :A,B) by the following:

τ(Γ, λi+1
x :A .B) ≡ λix :A.τ(Γ.λx :A,B), for i = 0, 1, 2, . . . where λ0

x :A.B ≡ B

There may be circumstances in which one desires to have more
“layers” of λ’s (see de Bruijn 1974).
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This notion enables one to separate the judgement Γ ` A : B in two:
Γ ` A and τ(Γ,A) = B.

τ(Γ, ∗) ≡ 2

τ(Γ, x) ≡ A if (Aλx) ∈ Γ
τ(Γ, (aδ)F ) ≡ (aδ)τ(Γ,F )
τ(Γ, (Aλx)B) ≡ (AΠx)τ(Γ(Aλx),B) if x 6∈ dom(Γ)
τ(Γ, (AΠx)B) ≡ τ(Γ(Aλx),B) if x 6∈ dom(Γ)
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In usual type theory:

the type of (∗λx)(xλy )y is (∗Πx)(xΠy )x and
the type of (∗Πx)(xΠy )x is ∗.

With our τ , we get the same result:

τ(<>, (∗λx)(xλy )y) ≡ (∗Πx)τ((∗λx), (xλy )y) ≡
(∗Πx)(xΠy )τ((∗λx)(xλy ), y) ≡ (∗Πx)(xΠy )x and
τ(<>, (∗Πx)(xΠy )x) ≡ τ((∗λx), (xΠy )x) ≡ τ((∗λx)(xλy ), x) ≡ ∗
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Let Γ0 ≡<>, Γ1 ≡ (∗λz), Γ2 ≡ (∗λz)(∗λy ), Γ3 ≡ Γ2(∗λx). We want to
find the canonical type of (∗Πz)(Bδ)(∗λy )(yδ)(∗λx)x in Γ0.

(Γ0τ) (∗Πz) (Bδ) (∗λy ) (yδ) (∗λx) x →τ

(Γ1τ) (Bδ) (∗λy ) (yδ) (∗λx) x →τ

(Bδ) (Γ1τ) (∗λy ) (yδ) (∗λx) x →τ

(Bδ) (∗Πy ) (Γ2τ) (yδ) (∗λx) x →τ

(Bδ) (∗Πy ) (yδ) (Γ2τ) (∗λx) x →τ

(Bδ) (∗Πy ) (yδ) (∗Πx) (Γ3τ) x →τ

(Bδ) (∗Πy ) (yδ) (∗Πx) ∗
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New Typability

(`-axiom) <> ` ∗

(`-start rule) Γ ` A
Γ(Aλx) ` x

if vc

(`-weakening rule) Γ ` A Γ ` D
Γ(Aλx) ` D

if vc

(`-application rule) Γ ` F Γ ` a
Γ ` (aδ)F

if ap

(`-abstraction rule)
Γ(Aλx) ` b Γ ` (AΠx)B

Γ ` (Aλx)b
if ab

(`-formation)
Γ ` A Γ(Aλx) ` B

Γ ` (AΠx)B
if fc
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vc (variable condition): x 6∈ Γ and τ(Γ,A)→→βΠ S for some S

ap (application condition): τ(Γ,F ) =βΠ (AΠx)B and τ(Γ, a) =βΠ A
for some A,B.

ab (abstraction condition): τ(Γ(Aλx), b) =βΠ B and
τ(Γ, (AΠx)B)→→βΠ S for some S .

fc (formation condition): τ(Γ,A)→→βΠ S1 and
τ(Γ(Aλx),B)→→βΠ S2 for some rule (S1, S2).
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Properties of `
Define A to be the βΠ-normal form of A.

Lemma

If Γ ` A then ↓ τ(Γ,A) and Γ `β A : τ(Γ,A)

Lemma

(Subject Reduction for ` and τ)
Γ ` A ∧ A→→βΠ A′ ⇒ [Γ ` A′ ∧ τ(Γ,A) =βΠ τ(Γ,A′)]

Theorem

(Strong Normalisation for `)
If A is Γ`-legal, then SN→→β

(A).

Lemma

Γ `β A : B ⇐⇒ Γ ` A and τ(Γ,A) =βΠ B and B is `β-legal type.
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From Frege’s low level functions to PTSs that capture
strong normalisation

Kamareddine and Wells 2017, has incorporated Frege’s low level of
functions to create PTSs with intersection types which contain all the
ordinary PTSs (including the β-cube given above and its extensions
with parameters/Frege’s functions.

The f -cube is the β-cube extended with finite set declarations in the
form of ordinary mathematical notion of function.

Theorem: If Γ `f A : B then A and B are strongly normalising.

Theorem: If a type free term of the λ-calculus M is strongly
Normalising then M is typable in the f -cube.

Urzyczyn proved U = (λr . h(r(λf λs. f s))(r(λq.λg . g q)))(λo. o o o)
is untypable in Fω. Hence U is untypable in any system of the cube.

But U is strongly normalising.

Kamareddine and Wells 2017 prove that U is typable in the f -cube:
There are Γ,A such that Γ `f U : A.
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Conclusion

A hierarchy of systems that classify important properties of CR, SN,
SR.

Not only types are used to derive important properties and avoid
paradoxes and non termination, but also types classify non
termination.
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