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Motivation

I Unification is a basic operation extensively used in
Mathematics and Computer Science: it is of general use to
describe computation as well as deduction.

I The unification problem can be state as follows:
I Given two terms t and s, there exists a substitution σ such

that sσ = tσ?
I Higher-Order Unification (HOU) is unification in the simply

typed λ-calculus:
I Given two λ-terms u and v of the same type, there exists a

substitution γ such that uγ =βη vγ?
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Motivation

I Higher-Order Matching (HOM) is a particular case of HOU:
It consists in determining whether a term is an instance of
another term in the simply typed λ-calculus:

I Given two λ-terms u and v of the same type, there exists a
substitution γ such that uγ =βη v?

I Decidability of HOM was conjectured for more than 30
years . . . and it was proved decidable recently (2006) by C.
Stirling from University of Edinburgh!

I The proof of Stirling uses game-theoretic arguments.
I Applications of HOM include proof-checking,

semi-automated theorem proving and program
transformation among others.
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Motivation

I The adequate formalism to reason about systems based
on the λ-calculus is known as explicit substitutions.

I In fact, the λ-calculus cannot be implemented directly
because its substitution operation is a meta-operation:

I

(λx .M) N →β M[N/x ]

I Explicit substitutions calculi extend the language of the
λ-calculus with new operators that simulate the substitution
operation.
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The λσ-calculus

The λσ-calculus was developed by [ACCL91], and its grammar
is given by:

Terms and Substitutions
a ::= 1 | λ.a | (a a) | a[s].
s ::= id |↑| a · s | s ◦ s.

I Main properties of the typed λσ-calculus:
I Confluent;
I Weak normalising.
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is given by:
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a ::= 1 | λ.a | (a a) | a[s].
s ::= id |↑| a · s | s ◦ s.

I Main properties of the typed λσ-calculus:
I Confluent;
I Weak normalising.

Shortcuts:
I n = 1[↑n−1].
I ↑n= ↑ ◦(↑ ◦ . . . ◦ ↑)︸ ︷︷ ︸

n times

= n + 1 · n + 2 · . . .
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The λσ-calculus

(Beta) (λA.a) b −→ a[b · id ]

(App) (a b)[s] −→ a[s] b[s]

(Abs) (λA.a)[s] −→ λA.a[1 · (s◦ ↑)]
(Clos) (a[s])[t] −→ a[s ◦ t]

(VarCons) 1[a · s] −→ a

(Id) a[id ] −→ a

(Assoc) (s ◦ t) ◦ u −→ s ◦ (t ◦ u)

(Map) (a · s) ◦ t −→ a[t] · (s ◦ t)

(IdL) id ◦ s −→ s

(IdR) s ◦ id −→ s

(ShiftCons) ↑ ◦(a · s) −→ s

(VarShift) 1· ↑ −→ id

(SCons) 1[s] · (↑ ◦s) −→ s
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Introduction

I In this work we show how Dowek’s third-order matching
procedure can be adapted to achieve decidability of the
third-order matching problem in the language of the
λσ-calculus.
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General Scheme

λσ-calculus

Matching problem

Interpolation problem Φ
(X[a1 · . . . · ap· ↑n] b1 . . . bq) ¿?

λσ b′

a ¿?
λσ b

λ-calculus

Matching problem

a ¿? b

(X a1 . . . ap) ¿? b′

There exists a solution to Φ whose

depth depends on the depth

of the Böhm tree of b.

There exists a solution to Φ whose

depth depends on the depth

of the λσ-Böhm tree of b.

Interpolation problem Φ

1
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λσ-Böhm Tree

Definition
A λσ-Böhm tree is a tree whose nodes are labelled with pairs
〈l , v〉 such that l is a positive integer and v is a well typed
λσ-term.

Definition (λσ-Böhm tree of a λσ-nf)
Let a = λA1 . . . λAk .(h b1 . . . bm) be a term in λσ-nf. The
λσ-Böhm tree of a is recursively defined as the tree whose root
is labelled with the pair 〈k , h〉 and whose sons are the λσ-Böhm
trees of:

1. b1, . . . , bm, if h is a de Bruijn index;
2. a1, . . . , ap, b1, . . . , bm, if h is a meta-variable of the form

X [a1·. . .·ap·↑n], where a1·. . .·ap·↑n is a substitution in λσ-nf.
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Example

I We write |a| to denote the depth of the λσ-Böhm tree of the
λσ-nf of the term a.

Example
a = λAλAλA.(4 (X [(λA.1) · 1· ↑2] 2) 1). 〈3, 4〉

FFFFFFFF

〈0, (X [(λA.1) · 1· ↑2] 2)〉

nnnnnnnnnnnn
〈0, 1〉

〈1, 1〉

nnnnnnnnnnnn
〈0, 1〉 〈0, 2〉

PPPPPPPPPPPP
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Interpolation Equation

Definition
An interpolation equation in the λσ-calculus is an equation of
the form (X [a1 · . . . · ap· ↑n] b1 . . . bq) �?

λσ b, where:
• X is a meta-variable;
• the terms a1, . . . , ap, b1, . . . , bq, b are ground.
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Interpolation Equation

Definition
Let a �?

λσ b be a matching equation and σ be a ground solution
to this equation, i.e., the λσ-normal form of aσ is βη-equivalent
to b. We define the interpolation problem Φ(a �?

λσ b, σ)
inductively over the number of occurrences of a as follows:
• If a = λA.c then b is also an abstraction of the form λA.d

and then σ is also a solution to c �?
λσ d and we let

Φ(a �?
λσ b, σ) = Φ(c �?

λσ d , σ).
• If a = (k c1 . . . cm) then b is also of the form (k d1 . . . dm)

because a �?
λσ b is solvable and we let

Φ(a �?
λσ b, σ) =

⋃
i

Φ(ci �?
λσ di , σ).
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Interpolation Equation

Definition (cont.)

• If a = (X [a1 · . . . · ap· ↑n] b1 . . . bq) then we let

Φ(a �?
λσ b, σ) = {(X [a1 · (�) · ap· ↑n] b1 (�) bq) �?

λσ b}
⋃

i

Hi

Hi



Φ(ai �?
λσ aiσ, σ) if ai is a flexible term and

� occurs in the λσ-normal form of
(X [a1 ·. . .· ai−1 · � · ai+1 ·. . .· ap· ↑n] b1 ·. . .· bq)σ;

Φ(bi �?
λσ biσ, σ) if bi is a flexible term and

� occurs in the λσ-normal form of
(X [a1 · . . . · ap· ↑n] b1 . . . bi−1 � bi+1 . . . bq)σ;

∅ otherwise.
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Example

Example
Let

I A be an atomic type and Γ = A → A · A · nil ;
I matching equation: X [λA.(2 1) · Y · ↑] �?

λσ (1 2).
I solutions: σ1 = {X 7→ (1 3)}, σ2 = {X 7→ 2, Y 7→ (1 2)}

Interpolation equation associated to:

⇒ σ1 : X [λA.(2 1) · �· ↑] �?
λσ (1 2).

⇒ σ2 : X [λA.(2 1) · (1 2)· ↑] �?
λσ (1 2) ∧ Y �?

λσ (1 2).
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General Idea
Let (X [a1 · . . . · ap· ↑n] b1 . . . bq) �?

λσ b be an interpolation
equation and σ is a solution to this equation with
Xσ = λB1 . . . λBq .t then we have that

|t [bq · . . . · b1 · a1 · . . . · ap· ↑n]| = |b|.

If it is always the case that |t | ≤ |t [bq · . . . · b1 · a1 · . . . · ap· ↑n]|,
i.e.,

|t | ≤ |b| (1)

then an enumeration of the terms t satisfying (1) would give a
decision procedure for third-order matching. Unfortunately, this
is not always the case: to solve this problem we show that if a
matching problem is solvable then there is a solution which is
limited by a number that only depends on the initial problem.
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Motivation λσ-Böhm Trees From Matching to Interpolation Problems Conclusions and Future Work

General Idea
Let (X [a1 · . . . · ap· ↑n] b1 . . . bq) �?

λσ b be an interpolation
equation and σ is a solution to this equation with
Xσ = λB1 . . . λBq .t then we have that

|t [bq · . . . · b1 · a1 · . . . · ap· ↑n]| = |b|.

If it is always the case that |t | ≤ |t [bq · . . . · b1 · a1 · . . . · ap· ↑n]|,
i.e.,

|t | ≤ |b| (1)

then an enumeration of the terms t satisfying (1) would give a
decision procedure for third-order matching. Unfortunately, this
is not always the case: to solve this problem we show that if a
matching problem is solvable then there is a solution which is
limited by a number that only depends on the initial problem.

F. L. C. de Moura, M. Ayala-Rincón and F. Kamareddine

Third-Order Matching via Explicit Substitutions
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Interpolation Equation

Theorem
Let a be a λσ-nf, a1, . . . , ap be λσ-normal terms of at most
second-order, n ≥ 0 and a[a1 · . . . · ap· ↑n] be a well typed term.
If for all 1 ≤ i ≤ p, the term ai is relevant in all its arguments
and |ai | 6= 0 then

|a| ≤ |a[a1 · . . . · ap· ↑n]|.
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Depth of the solutions

Example
Let

I A be an atomic type and Γ = A → A · A · nil ;
I A → A → A · A · nil ` X : A
⇒ Interpolation equation well typed in Γ:

X [λAλA.(3 2)· ↑] �?
λσ (1 2)

Solutions:
I σ1 = {X 7→ (1 2 2)}
I σ2 = {X 7→ (1 2 (1 2 2))}
I σ3 = {X 7→ (1 2 (1 2 (1 2 2)))}
I σ4 = {X 7→ (1 2 (1 2 (1 2 (1 2 2))))} . . .
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Occurrence accessible w.r.t. an equation

Definition
Consider a matching equation of the form
(X [a1 · . . . · ap· ↑n] b1 . . . bq) �?

λσ b and the term
t = λC1 . . . λCq .u with the same type and context of X . The set
of occurrences in the λσ-Böhm tree of t accessible with respect
to the equation

(X [a1 · . . . · ap· ↑n] b1 . . . bq) �?
λσ b

is inductively defined as:
• the root of the λσ-Böhm tree of t is accessible.
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Occurrence accessible w.r.t. an equation

Definition (cont.)

• if α is an accessible occurrence labelled with a de Bruijn
index j with 1 ≤ j ≤ p + q and dj is relevant in its r -th
argument then the occurrence α〈r〉 is accessible, where:

dj =

{
aj if q < j ≤ p + q;
bq−i+1 if 1 ≤ j ≤ q.

• if α is an accessible occurrence labelled with a de Bruijn
index greater than p + q or with a meta-variable then all the
sons of α are accessible.
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Accessible solution built from a solution

Definition
Φ be an interpolation problem and let σ be a ground solution to
this problem. For each meta-variable X occurring in the
equations of Φ consider the λσ-term t such that {X 7→ t} ⊆ σ.
In the λσ-Böhm tree of t , we prune all occurrences non
accessible (that are not leaves) with respect to the equations of
Φ in which X has an occurrence and put λσ-Böhm trees of
ground terms of depth 0 of the expected type as leaves. Call t ′

the term whose λσ-Böhm tree is obtained in this way and σ̂ the
resulting substitution.
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Example

Example
Consider again the example where Γ = A → A · A · nil ,
A → A → A · A · nil ` X : A and

X [λAλA.(3 2)· ↑] �?
λσ (1 2) (2)

The grafting σ = {X 7→ (1 2 a)} is a solution to this equation
where a is any λσ-term of type A that is well typed in context
A · A · Γ. In fact, the occurrence a in the term (1 2 a) is not
accessible w.r.t. equation (2).
Accessible solution: σ̂ = {X 7→ (1 2 �)}

F. L. C. de Moura, M. Ayala-Rincón and F. Kamareddine

Third-Order Matching via Explicit Substitutions
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Depth of the solutions

Example
Let

I A be an atomic type and Γ = A · A · nil ;
I Γ ` X : (A → A) → A
⇒ Third-order matching problem well typed in Γ:

X (λA.1) �?
λσ 2

Solutions:
I σ1 = {X 7→ λA→A.3}
I σ2 = {X 7→ λA→A.(1 3)}
I σ3 = {X 7→ λA→A.(1(1 3))} . . .
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Compact Solution

Theorem
Let

I X [a1 · . . . · ap· ↑n] �?
λσ b be an interpolation equation;

I σ̂ = t be an accessible solution to this equation.
If α is an occurrence in the λσ-Böhm tree of t that contains
more than |b|+ 1 free occurrences of the de Bruijn index
j (1 ≤ j ≤ p) in its path, then the (|b|+ 2)-th occurrence
labelled with j is accessible w.r.t. this equation, the term aj is a
projection, i.e., there exists an integer 1 ≤ r ≤ p such that
aj = λB1 . . . λBp .r .
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Compact Accessible Solution

Definition
Let

I Φ: interpolation problem;
I σ̂ be an accessible solution;
I h be the maximum depth in the λσ-Böhm tree of the

right-hand side of the equations of Φ.
The grafting σ̂ is a compact accessible solution built from an
accessible solution to Φ if, for all meta-variable X occurring in
Φ, the term t = σ̂X is such that there is no path in the λσ-Böhm
tree of t containing more than h + 1 occurrences labelled with
the de Bruijn index j (1 ≤ j ≤ p).
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Remark

Remark
If there exists a path in the λσ-Böhm tree of t that has more
than h + 1 free occurrences of the de Bruijn index j (1 ≤ j ≤ p)
then the compact accessible solution is built as follows: if these
occurrences are accessible w.r.t. the equation
X [a1 · . . . · ap· ↑n], we have that aj is a projection of the form
λB1 . . . λBp .r . In this case, we replace all these occurrences of j
by λB1 . . . λBp .r . The compact accessible solution built from the
accessible solution σ is denoted by σ′.
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Compact accessible solution

Theorem
Let Φ be a third-order interpolation problem, σ be a solution to
Φ, σ̂ be the accessible solution built from σ and σ′ be the
compact accessible solution built from σ̂. If h is the maximum
depth in the λσ-Böhm tree of the right-hand side of the
equations of Φ, then for every meta-variable X of arity n, the
depth of the λσ-Böhm tree of σ′X is less than or equal to
(n + 1)(h + 1)− 1.
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Decision procedure

Theorem
The class of third-order matching problems in the λσ-calculus is
decidable.

Proof.
Let Ψ be a third-order matching problem in the λσ-calculus.
Enumerate all ground substitutions for the meta-variables
occurring in the equations of the form
(X [a1 · . . . · ap· ↑n] b1 . . . bq) �?

λσ b of Ψ, such that the terms to
be substituted for X have depth less than or equal to
(q + 1)(h + 1)− 1, where h is the depth of the λσ-Böhm tree of
b. If none of these substitutions is a solution Φ then Φ is not
solvable. Otherwise, it is solvable.
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Conclusions and Future Work

In this work:
I We adapted the Dowek’s decision procedure to third-order

matching in the λσ-calculus to prove decidability of
third-order matching in the λσ-calculus;

I We introduced the notion of λσ-Böhm tree that is essential
for establishing the decision procedure.

I We introduced the notion of interpolation problem for the
λσ-language.

F. L. C. de Moura, M. Ayala-Rincón and F. Kamareddine

Third-Order Matching via Explicit Substitutions
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Conclusions and Future Work

Future work:

⇒ Investigate if explicit substitutions can give some insights
on how to get better bounds for the depth of the λσ-Böhm
trees including higher-order cases.

⇒ Implementation of this decision procedure to compare
efficiency with other implementations.
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Definition (Free occurrence)
A free occurrence of a de Bruijn index i in the λσ-term a is
defined by:

1. If a = X [s] then i does not occur free in a, where X is a
meta-variable and s is any substitution.

2. If a = i then i occurs free in a.
3. If a = λA.b and i occurs free in b then i + 1 occurs free in a.
4. If a = (b c) and i occurs free in b or c (or in both) then i

occurs free in a.
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Definition (Free occurrence)
A free occurrence of a de Bruijn index i in the λσ-term a is
defined by:

1. If a = X [s] then i does not occur free in a, where X is a
meta-variable and s is any substitution.

2. If a = i then i occurs free in a.
3. If a = λA.b and i occurs free in b then i + 1 occurs free in a.
4. If a = (b c) and i occurs free in b or c (or in both) then i

occurs free in a.

Definition (Relevant term)
A λσ-term a = λA1 . . . λAk .b is relevant in its i-th (1 ≤ i ≤ k)
argument if the index k − i + 1 occurs free in b.
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