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Introduction to Anti-Unification

This talk

examples where the anti-unification problems are interesting,
preliminary design of anti-unification rules,
limitations of these rules,
possible future work.
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Introduction to Anti-Unification

An intuitive example

N = {0, S(0), S2(0), · · · }.
Compare 0 + S(0) and S2(0) + S3(0)

x + y gen.

0 + S(0) S2(0) + S3(0)
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Introduction to Anti-Unification

An intuitive example

N = {0, S(0), S2(0), · · · }.
Compare 0 + S(0) and S2(0) + S3(0)

x + y gen.

x + S(z) lgg.

0 + S(0) S2(0) + S3(0)
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Introduction to Anti-Unification

An intuitive example

N = {0, S(0), S2(0), · · · }.
Compare 0 + S(0) and S2(0) + S3(0)

x + y gen.

x + S(z) lgg.

0 + S(0) S2(0) + S3(0)

S(0) + S2(0)
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Introduction to Anti-Unification

Anti-Unification

Definition
Given two terms s and t,
find the set of least general generalizations (lgg) of s and t.
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Anti-Unification with terms with terms with the same type

Avoid some problems

s : τ × t : γ No common generalization
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When types don’t match

Symmetric group S3

Representation 1: S3 = {1, (12), (23), (13), (123), (132)}
Representation 2:

• •

•

• •

•

• •

•

• •

•

• •

•

• •

•

Different representations using different types!
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When types don’t match

Comparing groups

Find the maximal subgroups that are contained in both groups.

D4 : Dihedral group of order 8.

a = (13), b = (14)(23)

D4

< a, ab > < ab > < b, aba >

< a > < bab > < abab > < aba > < b >

< 1 >

Q8 : Quaternion group.

Q8 =< 1, i , j , k >

Q8

< i > < j > < k >

< −1 >

1
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When types don’t match

Comparing groups

Find the maximal subgroups that are contained in both groups.

D4 : Dihedral group of order 8.

a = (13), b = (14)(23)

D4

< a, ab > < ab > < b, aba >

< a > < bab > < abab > < aba > < b >

< 1 >

Q8 : Quaternion group.

Q8 =< <1 >, i , j , k >

Q8

< i > < j > < k >

< −1 >

1

C4

Solution
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When types don’t match

Let’s talk about types

Function 1

Function modulo over real
numbers

r(n) =
√
n2

r : R → R+ ∪ {0}

R•0 •
n
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When types don’t match

Function 2

Function modulo over
complex numbers

c(n) = c(a+ bi) =
√
a2 + b2

c : C → R+ ∪ {0}

R

i

•(a,b)
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When types don’t match

Comparing

C

R

Every real number n it’s also a complex number
n = n + 0i ,
if r(n) is well defined, then c(n) it’s also well
defined
Intuition: c and r should have some structure in
common!
Problem: usual anti-unification problem solutions
says that they have nothing in common because on
they different types!

Gabriela Ferreira (PPGMAT, U. Brasília) Anti-Unification with Different Types 13 / 30



When types don’t match

Comparing the structure:

g(a+ xi) =
√
a2 + x2

r(a) =
√
a2 c(a+ bi) =

√
a2 + b2

{x 7→ 0} {x 7→ b}

How to compare the types?

g(a+ xi) =
√
a2 + x2 : x → R+ ∪ {0}, where x is a type variable

r(a) =
√
a2 : R → R+ ∪ {0}

c(a+ bi) =
√
a2 + b2 : C → R+ ∪ {0}
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Inference Rules Based Procedure

Polymorphism

“The term polymorphism refers to a range of language mechanisms that allow a
single part of a program to be used with different types in different contexts.”

B. Pierce
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Inference Rules Based Procedure

Syntax

λ-term t::= x | c | λx .t| t1t2

function symbols: c , f

bind variables : x , y , z ,

free variables: X ,Y ,Z ,
substitutions: ϕ, ρ, θ,
types: τ , π, ρ,
type variables: x, y, z.
η-long, β-normal form,
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Inference Rules Based Procedure

Anti-Unification Problem:

Definition (Higher Order Pattern)

η-long β-normal form,
all free variables occurrences are applied to lists of pairwise distinct bound
variables.

Examples

λx , y .f (X (x),Z (y)) and λx , y .f (X (x , y),Z (x , y)) are pattern,
and λx , y .f (X (x , x),Z ) and λx , y .f (X (Y ),Z ) are not.
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Inference Rules Based Procedure

Anti-Unification

Definition (Anti-Unification)

Given: terms in η-long β-normal form, such that s : τ and t : π
To find: the set of least general pattern generalizations of s and t.
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Inference Rules Based Procedure

Inference Procedure

P; S ;σ︸ ︷︷ ︸
terms

;TP ;TS ;TB︸ ︷︷ ︸
types

Input: s : τ ≜ t : π, where s and t are both in η-long β-normal form.

Initial Configuration
{X : sτ ≜ tπ}; ∅; id ; ∅; id ; ∅

· · ·

inf. rules

Final Configuration
∅; S ;B; ∅;TS ;TB

Output: Xσ : xTB
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Inference Rules Based Procedure

Preliminary Rules

Abstraction: ABS

{X (
→
x ) : λxτ1 .sτ2 ≜ λyπ1 .tπ2} ⊎ T ;S ;σ; ∅;TS ;TB

=⇒{Z(→x , z) : sτ2 [x 7→ z] ≜ tτ2 [y 7→ z]} ∪ T ; S ;σ{X 7→ λ
→
x , zx.Z(

→
x , z)}; {x : τ1 ≜ π1};TB

Where Z , z are fresh variable, x is a fresh type variable.

Decomposition: DEC

{X (
→
x ) : f (sτ1

1 , ·, sτnn )τ ≜ f (tτ1
1 , · · · , tτnn )π} ⊎ T , S ;σ; ∅;TS ;TB

=⇒{X1(
→
x ) : sτ1

1 ≜ tτ1
1 , · · ·Xn(

→
x ) : sτnn ≜ tτnn } ∪ T ; S ;σ{X 7→ λ

→
x .f τ1→···→τn→τ (X1, · · · ,Xn)(

→
x )}

∅;TS ;TB

where f is a constant or f ∈ →
x such that f : τ1 → · · · → τn → τ , and X1, · · · ,Xn are fresh

variables.
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Inference Rules Based Procedure

Preliminary Rules
Solve: SOL

{X (
→
x ) : sτ ≜ tπ} ⊎ P;S ;σ; ∅;TS ;TB

=⇒ P; {Y (
→
y ) : sτ ≜ tπ} ∪ S ;σ{X 7→ λ

→
x .Y x(y)}; {x : τ ≜ π};TS ;TB

where and Y is a fresh variable and

τ is a basic type and π is not (or vise versa),or

τ and π are basic type: head(s) ̸= head(t) or head(s) = head(t) = Z ̸∈ →
x , the

sequence
→
y is a subsequence of

→
x consisting of the variables that appear freely in t

or s.

Merge: MER

P; {X (
→
x ) : sτ1 ≜ sπ2 ,Y (

→
y ) : tτ1 ≜ tπ2 } ⊎ S ;σ;TP ;TS ;TB

=⇒ P; {X (
→
x ) : sτ1 ≜ sπ2 } ∪ S ;σ{Y 7→ λ

→
y .X (

→
x θ)};TP ;TS ;TB

where θ : {→x } → {→y } is a bijection, extended as a substitution, with s1θ = t1 and
s2θ = t2.
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Inference Rules Based Procedure

Preliminary Rules

Type Decomposition 1: T-DEC-1

T ;S ;σ; {x : τ1 → τ2 ≜ π1 → π2} ⊎ TP ;TS ;TB

=⇒P;S ;σ; {x1 : τ1 → π1,x2 : τ2 ≜ π2} ∪ TP ;TS ;TB{x 7→ x1 → x2}

Type Decomposition 2: T-DEC-2

P;S ;σ; {x : τ ≜ τ} ⊎ TP ;TS ⊎ TP ;TB

=⇒P;S ;σ;TP ;TS ;TB{x 7→ τ}

where τ is basic.
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Inference Rules Based Procedure

Preliminary Rules

Type Solve T-SOL

P;S ;σ; {x : τ ≜ π} ⊎ TP ;TS ;TB

=⇒P;S ;σ;TP ;TS ∪ {x : τ ≜ π};TB

where τ ̸= π and "τ or π is basic".

Type Merge T-MER

P;S ;σ; ∅; {x : τ ≜ π,y : τ ≜ π} ⊎ S ;TB

=⇒P;S ;σ; ∅; {x : τ ≜ π} ∪ S ;TB{y 7→ x}
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Conclusion

What does the procedure calculates?

Where k = min(m, n)
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Conclusion

What does the procedure calculates?
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Future Work

Identify the type of the problem

Unitary type: Singleton mcsg.

Finitary type: Any anti-unification problem in the theory has an mcsg of finite
cardinality, for at least one problem having greater than 1.

Infinitary type: For any anti-unification problem in the theory there exists an mcsg,
and for at least one problem this set is infinite.

Nullary type (or type zero): There exists an anti-unification problem in the theory
which does not have an mcsg, i.e., every complete set of generalizations for this problem
contain two distinct element such that one is more general than the other.

Gabriela Ferreira (PPGMAT, U. Brasília) Anti-Unification with Different Types 26 / 30



Future Work

Verify desirable properties

Soundeness,
Completeness,
Complexity.
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Future Work

References
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Future Work

Thank you!
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