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Context

Context

Identify programs and specifications with their associated
input-output relations on a space state Σ.

A programming theory may be developed within the
framework of Tarski’s relational calculus where programs and
specifications (possibly non-deterministic) are considered as
logical predicates.

Look at recursive program definitions as fixed point equations
associated to relational operators, whose solutions include the
input-output relations corresponding to such programs.

Conditions (boolean expressions on Σ) correspond to relations
whose domains coincide with the set of those initial states in
which the condition holds, and which relates each member of
its domain onto any final state whatsoever.
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Context

Continuous Operators

According to Knaster-Tarski theorem for a continuous relational
operator f (function from relations to relations on Σ) the equation
X = f .X has a solution on Σ (a complete lattice).
There may be many solutions; the least of them is µf , the least
fixed point of the operator f .
The continuity of f implies that µf can be constructed as the
union of a series of approximations obtained by its iteration:

µf =
⋃
n>0

f n.O

where f 0.R = R
and f n+1.R = f (f n.R) for all n≥0 and relation R.
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Context

The Correctness Problem for a Recursive Program

Correctness Problem

Given the program (by its source text) which computes a function
f with domain D (D ⊆ Σ) and given its specification in terms of a
predicate S describing the desired relationship between its initial
and final values, find non restrictive regularity conditions on its
text to prove it correct with respect to S by a well-founded
induction on a covering of D.
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Regular Operators

Source Code of a Recursive Program

Every recursive program computing a function f with domain a
subset of Σ , is an instance of the following abstract scheme:

f.s = if b.s → q.s
� c.s → h(f, M.s)
fi

where

s symbolizes the initial state of program f.

conditions b and c correspond (initially) to all non-recursive
and all recursive cases of its domain,

q.s is the final value given by f in the non recursive cases

h(f,M.s) involves at least one recursive invocation of f on a
set of states M.s.
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Regular Operators

Associated Operator

Abstract Recursive Scheme

f.s = if b.s → q.s
� c.s → h(f, M.s)
fi

For a relational operator f corresponding to the program scheme
above we may assume the existence of a relation Q and a
relational operator h fulfilling the following for all relation R ,

f .R = Q ∪ h .R

with

(a) QL ∩ (h .L)L = O

(b) h .O = O
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Regular Operators

The Concept of Inductivity

The fact that the recursive program scheme above allows
calculating the values of (program) function f by stages suggests
both

i) requiring the associated operator f to be continuous and

ii) defining the following concept:

Inductivity

Given an operator f , a relation R and a sequence of conditions
〈cn〉n≥0 , we say that f is inductive over R through the given
sequence if

f .R ∩ cn+1 = f (R ∩ cn)

for all n≥0.
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Regular Operators

Regularity Conditions

The regularity conditions we looked for are the following:

Definition of Regular Operators

A continuous operator f is regular if it fulfills the following
regularity conditions:

There exist a relation Q and an operator h such that

(a) f .R = Q ∪ h .R for all relation R .

(b) QL ∩ (h .L)L = O

(c) h .O = O

(d) h is inductive over every fixed point of f , through the
sequence of conditions 〈 (f n.O)L 〉n>0 .

The inductivity of h over any fixed point K of f through the
ascending chain 〈(f m.O) L〉m>0 is equivalent to the inductivity of f
over K through the same chain.
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Regular Operators

Inductivity of Regular Operators

Proposition 1

For a continuous operator f , satisfying regularity conditions (a),
(b) and (c) and K fixed point of f , the following three properties
are equivalent:

(i) f is inductive over K through ascending chain 〈 (f n.O)L 〉n>0 .

(ii) K ∩ (f n.O)L = f n.O for all natural n.

(iii) K ∩ µf L = µf , and sequence 〈f n.O〉n>0 is stable.

Definition of a Stable sequence of relations

A sequence of relations 〈Rn〉n≥0 is stable whenever

m<n ⇒ Rn ∩ RmL = Rm

for all natural numbers m and n.
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Regular Operators

Deterministic Programs are (easily) Regular

Inductivity condition is non restrictive for recursive programs
defining (partial) functions:
if in scheme equation

f .R = Q ∪ h .R

Q is a univalent relation and h is closed on univalent relations;
necessarily, f is also closed on these relations and µf becomes a
partial function. Therefore,

if every fixed point of f is univalent (at least on the domain of
µf ) then necessarily, all of them coincide with µf on µf L and

since the chain of partial functions f n.O must be stable,

by last proposition f satisfies inductivity condition (d).
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Regular Operators

Proof of Proposition 1

(i) f is inductive over K through ascending chain 〈 (f n.O)L 〉n>0 .

(ii) K ∩ (f n.O)L = f n.O for all natural n.

Proof of (i) ≡ (ii):

“ ⇒” By induction on n. Case n=1 is easy. Suppose n>1.

K ∩ (f n.O)L
= 〈 K fixed point of f 〉

f .K ∩ (f n.O)L
= 〈 Hypothesis (i) 〉

f (K ∩ (f n−1.O)L)
= 〈 Inductive hypothesis 〉

f (f n−1.O)
= 〈 Definition of f n 〉

f n.O
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Regular Operators

Proof of Proposition 1

(i) f is inductive over K through ascending chain 〈 (f n.O)L 〉n>0 .

(ii) K ∩ (f n.O)L = f n.O for all natural n.

Proof of (i) ≡ (ii):

“ ⇐”

f (K ∩ (f m.O)L)
= 〈 (ii) 〉

f .f m.O
= 〈 f ◦f m = f m+1 ; (ii) 〉

K ∩ (f m+1.O)L
= 〈 K fixed point of f 〉

f .K ∩ (f m+1.O)L
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Regular Operators

Proof of Proposition 1

(ii) K ∩ (f n.O)L = f n.O for all natural n.
(iii) K ∩ µf L = µf , and sequence 〈f n.O〉n>0 is stable.

Proof of (ii) ≡ (iii):

“⇒” a)

K ∩ µf L
= 〈 f continuous operator 〉

K ∩ (
⋃

m>0 f m.O)L
= 〈 ‘◦’ and ‘∩’ distributes over ‘∪ 〉

(
⋃

m>0 K ∩ (f m.O)L)
= 〈 Hypothesis (ii) 〉

(
⋃

m>0 f m.O)
= 〈 f continuous operator 〉

µf
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Regular Operators

Proof of Proposition 1

(ii) K ∩ (f n.O)L = f n.O for all natural n.
(iii) K ∩ µf L = µf , and sequence 〈f n.O〉n>0 is stable.

Proof of (ii) ≡ (iii):

“⇒” b) Suppose m<n then

f n.O ∩ (f m.O)L
= 〈 (ii) 〉

K ∩ (f n.O)L ∩ (f m.O)L
= 〈 〈(f n.O)L〉n>0 ascending chain ; m<n 〉

K ∩ (f m.O)L
= 〈 (ii) 〉

f m.O
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Regular Operators

Proof of Proposition 1

(ii) K ∩ (f n.O)L = f n.O for all natural n.
(iii) K ∩ µf L = µf , and sequence 〈f n.O〉n>0 is stable.

Proof of (ii) ≡ (iii):

“⇐”

K ∩ (f n.O)L
= 〈 “f continuous” ⇒ (f n.O)L ⊆ µf L 〉

K ∩ µf L ∩ (f n.O)L
= 〈 (iii) 〉

µf ∩ (f n.O)L
= 〈 “f continuous” ; range splitting 〉

((
⋃

m≤n f m.O) ∪ (
⋃

m>n f m.O)) ∩ (f n.O)L
= 〈 ∩ distributes over ∪ twice ; (iii) 〉

(
⋃

m≤n f m.O) ∪ f n.O
= 〈 〈(f n.O)L〉n>0 ascending chain 〉

f n.O
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Correctness of Regular Recursive Programs

Regular Recursive Schemes

Definition

Relation P is defined by a regular recursive scheme associated to
operator f , whenever

P is a relation representing a program, and

P = µf i.e. P is the minimum solution of the fixed point
equation associated to a regular operator f .

If relation P represents a program and a relation S represents a
specification, the expression P ⊆ S means that program P meets
specification S .
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Correctness of Regular Recursive Programs

Correctness Criterion

Proposition 2

If P is a program defined by a regular recursive scheme associated
to an operator f via equation f .R = Q ∪ h .R (i.e. P = µf ) then,
there exists an ascending chain of conditions 〈bn〉n≥0 with union
equal to PL, b0 = QL, and such that

P ⊆ S ≡ Q ⊆ S ∧ (∀n | n≥0 : P ∩ bn ⊆ S ⇒ h(P ∩ bn) ⊆ S)

This proposition gives an induction scheme for proving that
program P satifies S .
In fact, this scheme may be generalized to well founded relations
on the classes determined by a covering on the domain of P.
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Correctness of Regular Recursive Programs

Correctness Criterion

Partial Proof of prop. 2

Let bn = (f n+1.O)L for all non negative n.
The equivalence is proved as follows:

P ⊆ S
≡ 〈 P = µf ; definition of bn ; f regular ; prop. 1 〉

(
⋃

n | n≥0 : P ∩ bn)⊆S
≡ 〈 Set Theory 〉

(∀n | n≥0 : P ∩ bn⊆S)
≡ 〈 Induction on n 〉

P ∩ b0 ⊆ S ∧ (∀n | n≥0 : P ∩ bn⊆S ⇒ P ∩ bn+1⊆S)
≡ 〈 P ∩ b0 = Q ; P = µf ; proposition 1 〉

Q⊆S ∧ (∀n | n≥0 : P ∩ bn⊆S ⇒ f (P ∩ bn)⊆S)
≡ 〈 f .R = Q ∪ h .R 〉

Q⊆S ∧ (∀n | n≥0 : P ∩ bn⊆S ⇒ h(P ∩ bn)⊆S)
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Correctness of Regular Recursive Programs

General Correctness Theorem

If P is a program defined by a recursive scheme associated to a
monotonic operator f via equation f .R = Q ∪ h .R , then, for all
well founded set (C, @) with C a countable family of conditions
with union equal to PL, and ‘@’ a well founded relation on C such
that

(i) (∀u∈C | : u⊆QL ∨ u⊆PL ∩ QL )

(ii) (∀u∈C | u⊆PL ∩ QL : P∩u ⊆ h(
⋃

v | v @u : P∩v))

we have the equivalence of the following two propositions:

a) Program P satisfies specification S .

b) (∀v | v⊆QL : P∩v⊆S) ∧
(∀v | v⊆PL ∩ QL :

(∀u | u@v : P∩u ⊆ S) ⇒ h(
⋃

u | u@v : P∩u) ⊆ S)
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Applications

Recursive program scheme

Remember our recursive program scheme:

Abstract Recursive Scheme

f.s = if b.s → q.s
� c.s → h(f, M.s)
fi
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Applications

Applying the Correctness Theorem

Restricting the application of previous theorem to functions (like f)
requires finding a well founded relation ‘@’ on the domain of f for
which

c.s ∧ t∈M.s ⇒ t @ s for all states s and t.

Besides this, regularity conditions above reduce to two
(reasonable) conditions holding for all state s∈Σ :

1. ¬(b.s ∧ c.s)

2. b.s ⇒ dom q.s
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Applications

Ackermann function

This function A(x , y) is defined for natural numbers x and y by

A(x , y) =


y+1 if x =0
A(x−1, 1) if y =0
A(x−1,A(x , y−1)) otherwise

This function is clearly defined by a regular inductive scheme. The
usual lexicographic order relation on N×N (noted with ‘≺’) is a
well founded relation satisfying the requirement given above:

(x−1, 1) ≺ (x , y) if x 6=0 ∧ y =0.
(x , y−1), (x−1,A(x , y−1)) ≺ (x , y) if x 6=0 ∧ y 6=0.
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Applications

McCarthy’s 91 function

This function is defined for natural number x by

g .x = if x >100 → x − 10
� x≤100 → g(g(x+11))
fi

This recursive scheme is regular. Partial order ‘@’ on Z defined as

x @ y ≡ y≤100 ∧ y <x for all integers x and y ,

allows to apply our theorem. @ is a well founded relation such that

if x >100 then x is @-minimal,

x+11 @ x if x≤100 and

g(x+11) @ x if x≤100.
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Applications

McCarthy’s 91 function

If g .x = if x >100 → x−10
� x≤100 → g(g(x+11))
fi

we may prove by induction on (Z,@) that for all integer x ,
g .x = f .x where

f .x = if x >101 → x−10
� x≤101 → 91
fi

Since g .101 = 101− 10 = 91 = f .101, by definition of f and g , it
is enough to show that g .x = f .x for x≤100.



A Relational Theorem on the Correctness of General Recursive Programs

Applications

g .x
= 〈 Definition of g ; x≤100 〉

g(g(x+11))
= 〈 x+11 @ x ; Inductive Hypothesis 〉

g(f (x+11))
= 〈 Definition of f ; x≤100 〉{

g(x+1) if 100<x+11≤111
g(91) if x <90

= 〈 x <90 ⇒ 91 @ x ; x≤100 ⇒ x+1 @ x ; Ind. Hypothesis 〉{
f (x+1) if 90<x+1≤101
f (91) if x <90

= 〈 Definition of f 〉
91

= 〈 Definition of f ; x≤100 〉
f .x
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Conclusions

Final Conclusions

We have found reasonable regularity conditions to ask of the
code of a recursive program to prove it correct with respect to
a given specification.

(terminating) Deterministic recursive programs fulfill these
regularity conditions.

The correctness proof of a recursive program may be done by
induction on a well founded relation on its domain induced by
the values on which the program recurs (according to its
code).
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