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Motivation



Equational Problems

• Equality check: s = t?

• Matching: There exists σ such that sσ = t?

• Unification: There exists σ such that sσ = tσ?

• Anti-unification: There exist r , σ and ρ such that

rσ = s and rρ = t?

s and t, and u are terms in some signature and σ and ρ are

substitutions.
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Motivation

Unification modulo



Unification modulo

Unification

Goal: find a substitution that identifies two expressions.

s ?
=

sσ≈ tσ

t

σ σ
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Syntactic Unification

• Goal: to identify two expressions.

• Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function

symbol,

• Identify f (x , a) and f (b, y)

• solution {x/b, y/a}.
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Syntactic Unification

Example:

• Solution σ = {x/b} for f (x , y) = f (b, y) is more general than

solution γ = {x/b, y/b}.

σ is more general than γ:

there exists δ such that σδ = γ;

δ = {y/b}.
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Syntactic Unification

Interesting questions:

• Decidability, Unification Type, Correctness and Completeness.

• Complexity.

• With adequate data structures, there are linear solutions

(Martelli-Montanari 1976, Petterson-Wegman 1978).

Syntactic unification is of type unary and linear.
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Unification Modulo

When operators have algebraic equational properties, the problem is

not as simple.

Example: for f commutative (C), f (x , y) ≈ f (y , x):

• f (x , y) = f (a, b)?

• Solutions: {x/a, y/b} and {x/b, y/a}.

The unification problem is of type finitary.
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Unification Modulo

Example: for f associative (A), f (f (x , y), z) ≈ f (x , f (y , z)):

• f (x , a) = f (a, x)?

• Solutions: {x/a}, {x/f (a, a)}, {x/f (a, f (a, a))}, . . .

The unification problem is of type infinitary.
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Unification Modulo

Example: for f AC with unity (U), f (x , e) ≈ x :

• f (x , y) = f (a, b)?

• Solutions: {x/e, y/f (a, b)}, {x/f (a, b), y/e}, {x/a, y/b}, and
{x/b, y/a}.

The unification problem is of type finitary.
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Unification Modulo

Example: for f A, and idempotent (I), f (x , x) ≈ x :

• f (x , f (y , x)) = f (f (x , z), x))?

• Solutions: {y/f (u, f (x , u)), z/u}, . . .

The unification problem is of type zero (Schmidt-Schauß 1986,

Baader 1986).
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Unification Modulo

Example: for + AC, and h homomorphism (h),

h(x + y) ≈ h(x) + h(y):

• h(y) + a = y + z?

• Solutions: {y/a, z/h(a)}, {y/h(a) + a, z/h2(a)}, . . . ,
{y/hk(a) + . . .+ h(a) + a, z/hk+1(a)}, . . .

The unification problem is of type zero and undecidable (Narendran

1996). The same happens for ACUh (Nutt 1990, Baader 1993).
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Synthesis Unification modulo i

Synthesis Unification modulo

Theory
Unif.
type

Equality-
checking

Matching Unification
Related
work

Syntactic 1 O(n) O(n) O(n)

R65

MM76

PW78

C ω O(n2) NP-comp. NP-comp.
BKN87

KN87

A ∞ O(n) NP-comp. NP-hard
M77

BKN87

AU ∞ O(n) NP-comp. decidable
M77

KN87

AI 0 O(n) NP-comp. NP-comp.

Kĺıma02

SS86

Baader86
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Synthesis Unification modulo

Synthesis Unification modulo

Theory
Unif.
type

Equality-
checking

Matching Unification
Related
work

AC ω O(n3) NP-comp. NP-comp.

BKN87

KN87

KN92

ACU ω O(n3) NP-comp. NP-comp. KN92

AC(U)I ω - - NP-comp.
KN92

BMMO20

D ω - NP-hard NP-hard TA87

ACh 0 - - undecidable

B93

N96

EL18

ACUh 0 - - undecidable
B93

N96
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Motivation

Anti-unification



Anti-unification

Anti-unification

Goal: find the commonalities between two expressions.
s ≜

r

t

rσ rρ
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Anti-Unification

s

f

f

b

t

f

f

b b

Generalizer

f

u v
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Anti-Unification

s

f

f

b

t

f

f

b b

A less general
generalizer

f

f v

u b
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Anti-Unification

s

f

f

b

t

f

f

b

Least general
generalizer (lgg)

f

f u

u b
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Anti-unification - History

¤ Introduced by Gordon Plotkin [Plo70] and John Reynolds

[Rey70]

 First-order: syntactic [Baa91]; C, A, and AC [AEEM14];

idempotent [CK20b], unital [CK20c], semirings [Cer20],

absorption [ACBK24]

 Higher-Order: patterns [BKLV17], top maximal and shallow

generalizations variants [CK20a], equational patterns [CK19],

modulo [CK20a]

ü See david Cerna and Temur Kutsia survey [CK23].
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Motivation

Syntactic anti-unification



Formal verification - Syntactical case

• terms t ::= x | ⟨⟩ | ⟨t, t⟩ | f t
• Labelled equations E = {si ≜

xi
ti | i ≤ n}

Configurations:

〈 EU︸︷︷︸ ES︸︷︷︸ σ︸︷︷︸
Unsolved Solved Substitution

equations equations

〉

Configuration constraints

• All labels in EU ∪ ES are different,

• no redundant equations appear in ES , and

• no label in EU ∪ ES belongs to dom(σ).
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Inference Rules

⟨{f s ≜
x
f t} ∪ E ,S , σ⟩

(Decompose Function)
⟨{s ≜

y
t} ∪ E ,S , {x 7→ f y} ◦ σ⟩

⟨{⟨s, u⟩ ≜
x
⟨t, v⟩} ∪ E ,S , σ⟩

(Decompose Pair)
⟨{s ≜

y
t, u ≜

z
v} ∪ E ,S , {x 7→ ⟨y , z⟩} ◦ σ⟩

⟨{s ≜
x
t} ∪ E ,S , σ⟩

(Solve-Red) if s ≜
x′

t ∈ S

⟨E ,S , {x 7→ x ′} ◦ σ⟩

⟨{s ≜
x
t} ∪ E ,S , σ⟩

(Solve-No-Red) if there is no s ≜
x′

t ∈ S

⟨E , {s ≜
x
t} ∪ S , σ⟩

⟨{s ≜
x
s} ∪ E ,S , σ⟩

(Syntactic) if neither decomposable nor solvable
⟨E ,S , {x 7→ s} ◦ σ⟩ 21 / 68



Inference Rules

Example

⟨{f ⟨f ⟨c , b⟩, c⟩ ≜
x
f ⟨f ⟨d , b⟩, d⟩}, ∅, id⟩

(DecFun)
⟨{⟨f ⟨c , b⟩, c⟩ ≜

y
⟨f ⟨d , b⟩, d⟩}, ∅, {x 7→ f y}⟩

(DecPair)
⟨{f ⟨c , b⟩ ≜

z1
f ⟨d , b⟩, c ≜

z2
d}, ∅, {x 7→ f ⟨z1, z2⟩}⟩

(DecFun)
⟨{⟨c , b⟩ ≜

z3
⟨d , b⟩, c ≜

z2
d}, ∅, {x 7→ f ⟨f z3, z2⟩}⟩

(DecPair)
⟨{c ≜

z
d , b ≜

z4
b, c ≜

z2
d}, ∅, {x 7→ f ⟨f ⟨z , z4⟩, z2⟩}⟩

(SolveNRed)
⟨{b ≜

z4
b, c ≜

z2
d}, {c ≜

z
d}, {x 7→ f ⟨f ⟨z , z4⟩, z2⟩}⟩

(Syntactic)
⟨{c ≜

z2
d}, {c ≜

z
d}, {x 7→ f ⟨f ⟨z , b⟩, z2⟩}⟩

(SolRed)
∅, {c ≜

z
d}, {x 7→ f ⟨f ⟨z , b⟩, z⟩}⟩
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Motivation

Anti-unification modulo



Anti-unification modulo

• Interest on the formalization of anti-unification for theories

with Commutative, Associative and Absorption-symbols: C-,

A-, and a-symbols.

• Related a-symbols are a pair of a function and a constant

symbol holding the axioms f (εf , x) = εf = f (x , εf ).
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Anti-unification in (a)(A)(C)(aA)(aC)-theories

Example

Consider the terms:

g

εf a

g

f

f

a a

f

a a

f

a f

a a

An a-generalization and aA-generalization will be illustrated.
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Anti-unification in (a)(A)(C)(aA)(aC)-theories

By expanding εf in g(εf , a), one obtains:

g

af

f

a a

f

a εf

g

f

f

a a

f

a a

f

a f

a a

Notice that g(f (f (a, a), f (a, x)), y) is an a-generalization.
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Anti-unification in (a)(A)(C)(aA)(aC)-theories

Considering the same terms modulo aA, and by expanding εf in

g(εf , a), one has:

g

f

εf a

a

g

f

a f

a f

a a

f

a f

a a

g(f (x , y), y) is an aA-generalization but not an a-generalization.
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Anti-unification modulo types

Theory Anti-unification type References

Syntactic 1 [Plo70, Rey70]

A ω [AEEM14]

C ω [AEEM14]

† (U)1 ω [CK20c]

(U)≥2 nullary [CK20c]

‡ a ∞ [ACBK24]

a(C) ∞ [ACBK24]

(†)Unital: {f (if , x) = f (x , if ) = x}

(‡)Absorption f (εf , x) = εf = f (x , εf ) 27 / 68



Bindings and Nominal Syntax



Systems with Bindings

Systems with bindings frequently appear in mathematics and

computer science but are not captured adequately in first-order

syntax.

For instance, the formulas

∀x1, x2 : x1 + 1 + x2 > 0 and ∀y1, y2 : 1 + y2 + y1 > 0

are not syntactically equal but should be considered equivalent in a

system with binding and AC operators.
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Nominal

The nominal setting extends first-order syntax, replacing the

concept of syntactical equality with α-equivalence, letting us

represent those systems smoothly.

Profiting from the nominal paradigm implies adapting basic notions

(substitution, rewriting, equality) to it.
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Atoms and Variables

Consider a set of variables X = {X ,Y ,Z , . . .} and a set of atoms

A = {a, b, c , . . .}.
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Nominal Terms

Definition 1 (Nominal Terms)
Nominal terms are inductively generated according to the grammar:

s, t ::= a | π · X | ⟨⟩ | [a]t | ⟨s, t⟩ | f t | f AC t

where π is a permutation that exchanges a finite number of atoms.
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Permutations

An atom permutation π represents an exchange of a finite amount

of atoms in A and is presented by a list of swappings:

π = (a1 b1) :: ... :: (an bn) :: nil
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Examples of Permutation Actions

Permutations act on atoms and terms:

• (a b) · a = b;

• (a b) · b = a;

• (a b) · f (a, c) = f (b c);

• (a b) :: (b c) · [a]⟨a, c⟩ = (b c)[b]⟨b, c⟩ = [c]⟨c , b⟩.
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Intuition Behind the Concepts

Two important predicates are the freshness predicate #, and the

α-equality predicate ≈α.

• a#t means that if a occurs in t then it must do so under an

abstractor [a].

• s ≈α t means that s and t are α-equivalent.
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Contexts

A context is a set of constraints of the form a#X . Contexts are

denoted by the letters ∆, ∇ or Γ.
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Advantages of the name binding nominal approach

• First-order terms with binders and implicit atom dependencies.

• Easy syntax to present name binding predicates as

a ∈ FreeVar(M), a ∈ BoundVar([a]s), and operators as

renaming: (a b) · s.
• Built-in α-equivalence and first-order implicit substitution.

• Feasible syntactic equational reasoning: efficient equality-check,

matching, and unification algorithms.
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Derivation Rules for Freshness

(#⟨⟩)
∆ ⊢ a#⟨⟩ (#atom)

∆ ⊢ a#b

(π−1(a)#X ) ∈ ∆
(#X )

∆ ⊢ a#π · X
(#[a]a)

∆ ⊢ a#[a]t

∆ ⊢ a#t
(#[a]b)

∆ ⊢ a#[b]t

∆ ⊢ a#s ∆ ⊢ a#t
(#pair)

∆ ⊢ a#⟨s, t⟩

∆ ⊢ a#t
(#app)

∆ ⊢ a#f t
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Derivation Rules for alpha-Equivalence

(≈α ⟨⟩)
∆ ⊢ ⟨⟩ ≈α ⟨⟩ (≈α atom)

∆ ⊢ a ≈α a

∆ ⊢ s ≈α t
(≈α app)

∆ ⊢ fs ≈α ft

∆ ⊢ s ≈α t
(≈α [a]a)

∆ ⊢ [a]s ≈α [a]t

∆ ⊢ s ≈α (a b) · t, a#t
(≈α [a]b)

∆ ⊢ [a]s ≈α [b]t

ds(π, π′)#X ⊆ ∆
(≈α var)

∆ ⊢ π · X ≈α π′ · X

∆ ⊢ s0 ≈α t0, ∆ ⊢ s1 ≈α t1 (≈α pair)
∆ ⊢ ⟨s0, s1⟩ ≈α ⟨t0, t1⟩
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Additional Rule for alpha-Equivalence with C Functions

Let f be a C function symbol.

We add rule (≈α c-app) for dealing with C functions:

∆ ⊢ s2 ≈α t1 ∆ ⊢ s1 ≈α t2

∆ ⊢ f C ⟨s1, s2⟩ ≈α f C ⟨t1, t2⟩
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Additional Rule for alpha-Equivalence with AC Functions

Let f be an AC function symbol.

We add rule (≈α ac-app) for dealing with AC functions:

∆ ⊢ Si (f
AC s) ≈α Sj(f

AC t) ∆ ⊢ Di (f
AC s) ≈α Dj(f

AC t)

∆ ⊢ f AC s ≈α f AC t

Sn(f ∗) selects the nth argument of the flattened subterm f ∗.
Dn(f ∗) deletes the nth argument of the flattened subterm f ∗.
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Derivation Rules as a Sequent Calculus

Deriving ⊢ ∀[a]⊕ ⟨a, fa⟩ ≈α ∀[b]⊕ ⟨fb, b⟩, where ⊕ is C:

(≈α atom)a ≈α a

(≈α atom)a ≈α a
(≈α app)

fa ≈α fa
(≈α c-app)

⊕⟨a, fa⟩ ≈α (a b) · ⊕⟨fb, b⟩

(#atom)
a#b

(#app)
a#fb

(#atom)
a#b

(#pair)
a#⟨fb, b⟩

(#app)
a#⊕ ⟨fb, b⟩

(≈α [a]b)
[a]⊕ ⟨a, fa⟩ ≈α [b]⊕ ⟨fb, b⟩

(≈α app)
∀[a]⊕ ⟨a, fa⟩ ≈α ∀[b]⊕ ⟨fb, b⟩
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Nominal C-unification



Nominal C-unification

Unification problem: ⟨Γ, {s1 ≈α
? t1, . . . sn ≈α

? tn}⟩

Unification solution: ⟨∆, σ⟩, such that

• ∆ ⊢ Γσ;

• ∆ ⊢ siσ ≈α tiσ, 1 ≤ i ≤ n.

We introduced nominal (equality-check, matching) and unification

algorithms that provide solutions given as triples of the form:

⟨∆, σ,FP⟩

where FP is a set of fixed-point equations of the form π · X ≈α
? X .

This provides a finite representation of the infinite set of solutions

that may be generated from such fixed-point equations.
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Nominal C-unification

Fixed point equations such as π · X ≈α
? X may have infinite

independent solutions.

For instance, in a signature in which ⊕ and ⋆ are C, the unification

problem: ⟨∅, {(a b)X ≈α
? X}⟩

has solutions:


⟨{a#X , b#X}, id⟩,
⟨∅, {X/a⊕ b}⟩, ⟨∅, {X/a ⋆ b}⟩, . . .
⟨{a#Z , b#Z}, {X/(a⊕ b)⊕ Z}⟩, . . .
⟨∅, {X/(a⊕ b) ⋆ (b ⊕ a)}⟩, . . .
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Issues Adapting First-Order to

Nominal AC-Unification



Our Work in First-Order AC-Unification in a Nutshell

We modified Stickel-Fages’s seminal AC-unification algorithm to

avoid mutual recursion and verified it in the PVS proof assistant.

We formalised the algorithm’s termination, soundness, and

completeness [AFSS22].
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An Example

Let f be an AC function symbol. The solutions that come to mind

when unifying:

f (X ,Y ) ≈? f (a,W )

are:

{X → a,Y → W } and {X → W ,Y → a}

Are there other solutions?
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An Example

Yes!

For instance, {X → f (a,Z1), Y → Z2, W → f (Z1,Z2)} and

{X → Z1, Y → f (a,Z2), W → f (Z1,Z2)}.
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Stickel-Fages AC-unification - the AC Step

Example

the AC Step for AC-unification.

How do we generate a complete set of unifiers for:

f (X ,X ,Y , a, b, c) ≈? f (b, b, b, c,Z )
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Stickel-Fages AC-unification - eliminating Common Arguments

Eliminate common arguments in the terms we are trying to unify.

Now, we must unify

f (X ,X ,Y , a) ≈? f (b, b,Z )
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Stickel-Fages AC-unification - introducing a Linear equation

According to the number of times each argument appears, transform

the unification problem into a linear equation on N:

2X1 + X2 + X3 = 2Y1 + Y2,

Above, variable X1 corresponds to argument X , variable X2

corresponds to argument Y , and so on.
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Stickel-Fages AC-unification - building a basis of solutions

Generate a basis of solutions to the linear equation.

Table 1: Solutions for the Equation 2X1 + X2 + X3 = 2Y1 + Y2

X1 X2 X3 Y1 Y2 2X1 + X2 + X3 2Y1 + Y2

0 0 1 0 1 1 1

0 1 0 0 1 1 1

0 0 2 1 0 2 2

0 1 1 1 0 2 2

0 2 0 1 0 2 2

1 0 0 0 2 2 2

1 0 0 1 0 2 2
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Stickel-Fages AC-unification - associating new variables

Associate new variables with each solution.

Table 2: Solutions for the Equation 2X1 + X2 + X3 = 2Y1 + Y2

X1 X2 X3 Y1 Y2 2X1 + X2 + X3 2Y1 + Y2
New

Variables

0 0 1 0 1 1 1 Z1

0 1 0 0 1 1 1 Z2

0 0 2 1 0 2 2 Z3

0 1 1 1 0 2 2 Z4

0 2 0 1 0 2 2 Z5

1 0 0 0 2 2 2 Z6

1 0 0 1 0 2 2 Z7
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Stickel-Fages AC-unification - old and new variables

Observing the previous Table, relate the “old” variables and the

“new” ones:

X1 ≈? Z6 + Z7

X2 ≈? Z2 + Z4 + 2Z5

X3 ≈? Z1 + 2Z3 + Z4

Y1 ≈? Z3 + Z4 + Z5 + Z7

Y2 ≈? Z1 + Z2 + 2Z6
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Stickel-Fages AC-unification - all the possible cases

Decide whether we will include (set to 1) or not (set to 0) every

“new” variable. Every “old” variable must be different than zero.

In our example, we have 27 possibilities of including/excluding the

variables Z1, . . . ,Z7, but after observing that X1,X2,X3,Y1,Y2

cannot be set to zero, only 69 cases remain.

53 / 68



Stickel-Fages AC-unification - dropping impossible cases

Drop the cases where the variables representing constants or

subterms headed by a different AC function symbol are assigned to

more than one of the “new” variables.

For instance, the potential new unification problem

{X1 ≈? Z6,X2 ≈? Z4,X3 ≈? f (Z1,Z4),

Y1 ≈? Z4,Y2 ≈? f (Z1,Z6,Z6)}

should be discarded as the variable X3, which represents the

constant a, cannot unify with f (Z1,Z4).
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Stickel-Fages AC-unification - dropping more cases

Replace “old” variables by the original terms they substituted and

proceed with the unification.

Some new unification problems may be unsolvable and will be

discarded later. For instance:

{X ≈? Z6,Y ≈? Z4, a ≈? Z4, b ≈? Z4, Z ≈? f (Z6,Z6)}
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Stickel-Fages AC-unification - solutions

In our example,

f (X ,X ,Y , a, b, c) ≈? f (b, b, b, c,Z )

the solutions are:
σ1 = {Y → f (b, b),Z → f (a,X ,X )}
σ2 = {Y → f (Z2, b, b),Z → f (a,Z2,X ,X )}
σ3 = {X → b,Z → f (a,Y )}
σ4 = {X → f (Z6, b),Z → f (a,Y ,Z6,Z6)}


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Adapting first-order AC-unification to nominal AC-unification

We found a loop while solving nominal AC-unification problems

using Stickel-Fages’ Diophantine-based algorithm.

For instance

f (X ,W ) ≈? f (π · X , π · Y )

Variables are associated as below:

U1 is associated with argument X ,

U2 is associated with argument W ,

V1 is associated with argument π · X , and

V2 is associated with argument π · Y .

57 / 68



Table of Solutions

The Diophantine equation associated is U1 + U2 = V1 + V2.

The table with the solutions of the Diophantine equations is shown

below. The name of the new variables was chosen to make clearer

the loop we will fall into.

Table 3: Solutions for the Equation U1 + U2 = V1 + V2

U1 U2 V1 V2 U1 + U2 V1 + V2
New

variables

0 1 0 1 1 1 Z1

0 1 1 0 1 1 W1

1 0 0 1 1 1 Y1

1 0 1 0 1 1 X1
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After solveAC

{X ≈? X1,W ≈? Z1, π · X ≈? X1, π · Y ≈? Z1}
{X ≈? Y1,W ≈? W1, π · X ≈? W1, π · Y ≈? Y1}
{X ≈? Y1 + X1,W ≈? W1, π · X ≈? W1 + X1, π · Y ≈? Y1}
{X ≈? Y1 + X1,W ≈? Z1, π · X ≈? X1, π · Y ≈? Z1 + Y1}
{X ≈? X1,W ≈? Z1 +W1, π · X ≈? W1 + X1, π · Y ≈? Z1}
{X ≈? Y1,W ≈? Z1 +W1, π · X ≈? W1, π · Y ≈? Z1 + Y1}
{X ≈? Y1 + X1,W ≈? Z1 +W1, π · X ≈? W1 + X1, π · Y ≈? Z1 + Y1}
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After solving the linear Diophantine system

Seven branches are generated:

B1− {π · X ≈? X}, σ = {W 7→ π · Y }
B2− σ = {W 7→ π2 · Y ,X 7→ π · Y }
B3− {f (π2 · Y , π · X1) ≈? f (W ,X1)}, σ = {X 7→ f (π · Y ,X1)}
B4− No solution

B5− No solution

B6− σ = {W 7→ f (Z1, π · X ),Y 7→ f (π−1 · Z1, π
−1 · X )}

B7− {f (π · Y1, π · X1) ≈? f (W1,X1)},
σ = {X 7→ f (Y1,X1), W 7→ f (Z1,W1),Y 7→ f (π−1 · Z1, π

−1 · Y1)}
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The Loop <

Focusing on Branch 7, notice that the problem before the AC Step

and the problem after the AC Step and instantiating the variables

are, respectively:

P = {f (X ,W ) ≈? f (π · X , π · Y )}

<

P1 = {f (X1,W1) ≈? f (π · X1, π · Y1)}
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Work in Progress and Future Work



Synthesis on Nominal Equational Modulo

First-order syntax Nominal logic, Nominal Reasoning, · · ·

Stickel
AC-Unif.

IJCAR 1975
J.ACM 1981

Fages
AC-unif.

CADE 1984
JSC 1987

Pitts& Gabbay
Nominal Logic

Inf.&C.
2003

Urban et al.
Form. Nominal

Unif.
Isabelle/HOL
TCS 2004

Contejean
Form.

AC-Match.
Coq

RTA 2004

Calvès&Fernández
Nom. Unif.

Poly
WoLLIC 2008

Alpuente et al.
Anti-Unif.
Inf.&C.
2014

Cerna&Kutsia
Unital

Anti-Unif.
FSCD 2020

Levy&Villaret
Nom. Unif.

O(n2)
RTA 2010

Silva et al.
Form.

AC-Unif.
PVS

FSCD 2022

González et al.
Anti-Unif.
modulo

Absorption
IJCAR 2024

Reynolds
Machine
Intell.
1970

Plotkin
Machine
Intell.
1970

Oliveira et al.
Form.

Nom.-Unif.
PVS

LSFA 2016

Carvalho et al.
Form.

Nom. C-Unif.
Coq

FroCoS 2017
TCS 2019

Carvalho et al.
Form.

Nom. C-Match.
Coq

LoPSTR 2017

Silva et al.
Form.

Nom. C-Unif.
PVS

LoPSTR 2019
MSCS 2021

Cerna, Kutsia
Anti-Unif
Survey

IJCAI 2023

Silva et al.
Form.

Nom. AC-Match.
PVS

CICM 2023

Timeline on the formalisation of nominal equational reasoning

1970 1975 1985 2000 2005 2010 2015 2020 20220 2024
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Results

Synthesis Unification Nominal Modulo

Theory
Unif.
type

Equality-
checking

Matching Unification
Related
work

≈α 1 O(n log n) O(n log n) O(n2)

UPG04 LV10

CF08 CF10

LSFA2015

C ∞ O(n2 log n) NP-comp. NP-comp.

LOPSTR2017

FroCoS2017

TCS2019

LOPSTR2019

MSCS2021

A ∞ O(n log n) NP-comp. NP-hard
LSFA2016

TCS2019

AC ω O(n3 log n) NP-comp. NP-comp.

LSFA2016

TCS2019

CICM2023

63 / 68

https://doi.org/10.1016/j.tcs.2004.06.016
https://doi.org/10.4230/LIPIcs.RTA.2010.209
https://doi.org/10.1007/978-3-540-69937-8_11
https://doi.org/10.1007/978-3-642-20551-4_15
https://doi.org/10.1016/j.entcs.2016.06.005
https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1016/j.tcs.2019.02.020
https://doi.org/10.1007/978-3-030-45260-5_8
https://doi.org/10.1017/S0960129521000050
https://doi.org/10.1016/j.entcs.2017.04.003
https://doi.org/10.1016/j.tcs.2019.02.020
https://doi.org/10.1016/j.entcs.2017.04.003
https://doi.org/10.1016/j.tcs.2019.02.020
https://link.springer.com/chapter/10.1007/978-3-031-42753-4_4


Future Work ü

ü Study how to avoid the circularity in nominal AC-unification.

? How circularity enriches the set of computed solutions?

? Under which conditions can circularity be avoided?

 Formalising anti-unification.

3 Only recently, anti-unification modulo a-, C-, and (aC)-symbols

have been addressed. Procedures combining such properties

have been shown to be challenging from theoretical and

practical perspectives.
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Thank you for your attention!

Thank you for your attention!
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