
Abstract Data Types

Abstract Data Types

• PVS provides support to define recursive types (list, stack, tree, syntax, etc)

• From the prelude:

list [T: TYPE]: DATATYPE  
 BEGIN 
 null: null? 
 cons (car: T, cdr: list) :cons?  
 END list

• Given as a collection of constructors, recognizers, and accessors

Abstract Data Types
Pattern matching for ADTs

• PVS provides support for a simple form of pattern-matching

• length(l): RECURSIVE nat = 
 CASES l OF 
 null: 0, 
 cons(x, y): length(y) + 1 
 ENDCASES 
 MEASURE length(l)

• An ELSE statement can be present if not all constructors were mentioned

• If some case is missing, a specific TCC is generated on typechecking

Abstract Data Types
Implicit declarations

During type checking an ADT, PVS automatically generates:

• Definitions for the type, constructors, recognizers, and accessors

• As uninterpreted declarations

• Axioms providing meaning

• Additional operators

• subterm, <<, reduce_nat, reduce_ordinal

Abstract Data Types
Implicit declarations - Axioms

• Extensionality: 
- there is only one bottom element for every constant constructor and 
- elements are distinguishable by the accessors

• Eta axiom: if the values returned by accessors are used to construct a new
element, the same element is constructed

• Meaning of accessors

• Inclusion and Disjointness: recognizers characterize all the elements

• Structural Induction Scheme

Advanced Tips

Use Judgements to Avoid TCC Explosion

• TCCs appears also as obligations during a proof

• Judgements can be use to add information for the type checker

• This information is used also on proving sessions

Use Recursive Judgements to Avoid Induction

• Recursive Judgements applies only on recursive definitions

• Follow each recursive call

• More restricted than general judgements

• Can be stated only on applications

Use Higher-Order to Simulate Mutual Recursion

• Mutual recursion is not natively supported by PVS

• But there are ways to make it happen…

Advanced Tips

• Use judgements to avoid TCC explosions (and hence proof-step repetitions)

• Use recursive judgements to simplify induction proofs

• Use higher order to simulate mutual recursion

• Use the types to collect valuable information

• Use strategies for meta-logic manipulation

Where can I learn more on PVS?
Resources

• “Applied Logic for Computer Scientists”

• by Mauricio Ayala & Flavio de Moura

• Manuals at PVS website:

• https://pvs.csl.sri.com/documentation.html (also locally at <PVS dir>/doc/)

• PVS google group:

• https://groups.google.com/g/pvs-group

• Write to mariano.m.moscato@nasa.gov

Where can I learn more on PVS?
Tutorial, Classes, Courses, etc.

• Tutorial at CADE 2021:

• https://shemesh.larc.nasa.gov/fm/pvs/TutorialCADE2021/

• PVS Class at ITP 2017:

• http://www.mat.unb.br/ayala/pvsclass17/index.html

• Class at NASA 2012:

• https://shemesh.larc.nasa.gov/PVSClass2012/schedule.html

