Modularity

» Specifications are modularized as collections of libraries
 Libraries group theories

 Theories contain declarations

Declarations

* Types

« <identifier> : type[+] [= <definition> |
* Functions/predicates/constants

« <identifier> : <type> [= <definition>]
 Formulas

« <identifier> : <kind> <definition>

« Assumed valid: axiom or postulate, Proof obligation: theorem, lemma, etc.

Types

Collection of elements, possibly empty, possibly infinite

Type expressions: real, [int -> reall], [real, real], [# x: real, y: real #], ...

* Allow to define these collections

Types do not need to have a name

« But remember that (formal) specifications are intended for persons (to00)

PVS uses structural equivalence not name equivalence

* The structure of two types is what define equivalence between them

Types

* Uninterpreted: no assumptions (beside non-emptiness)
e T: type
* number: type+
* Subtyping
 number_field: type+ from number
 real, R: type+ from number_field

 rational, rat, Q: type+ from real

Constant Declarations

Including Functions, Predicates, Relations, and 0-ary Constants

e <identifier> : <type> [= <definition>]

* Function for evaluating a degree 2 polynomial with coefficients a, b, and ¢
e eval: [real, real, real, real -> real] = A(a, b, c, x: real): a*x"2 + b*x + ¢
* eval(a, b, c: real, x: real): real = a*x*2 + b*x + ¢

e eval(a, b, c: real)(x: real): real = a*x*2 + b*x + C

Type Declarations (2)

Predicate Subtyping

 The variables a, b, ¢ represent coefficients of a quadratic polynomial

* Then a should never be zero
e eval(a: nzreal, b, c: real)(x: real): real = a*x"2 + b*x + C

* From the prelude
* nzreal, nonzero_real: NONEMPTY_TYPE = {r: real | r /= 0} CONTAINING 1
* nonneg_real: NONEMPTY_TYPE = {x: real | x >= 0} CONTAINING 0

» posreal: NONEMPTY_TYPE = {x: nonneg_real | x > 0} CONTAINING 1
e [...]

Declaring Formulas

<identifier> : <kind> <definition>

e discr_symm : lemma

 Vv(a: nzreal, b, c: real): discr(a,b,c) = discr(-a,-b,-c)

Proving in PVS

The PVS prover implements a Sequent Calculus

The prover maintains a proof tree, each node is a sequent

Sequent: pair of collections of formulas

Objective: construct a complete proof tree (all leaves recognized as valid)

e Valid sequents:

The proof starts with the sequent

The tree grows by applying a proof step on a leave

Proving in PVS

PVS Sequents

* Intuitive meaning of sequents

« Some equivalences

g

PVS avoids top-level negations
(move formula to the other side)

Universal strength quantifications

Survival Guide

Commands: parenthesis, double quotes - '
P q M- (Meta key) Mac: .opt/on key
_ . . Linux: alt key
» (skeep): skolemize universal quants
 (expand “<constant name>") C- Control key
* (lemma “<formula name>") Prove Formula | =X Pr
C-x C-p
e (inst <form num> “<expr>" ... “<expr>") M-x view-prelude-file
View Prelude M ¢
e (show-parens) -X VP
)) Search C-s
* (help “<command name>”) Search RegExp | M-C-s

More Powerful Commands

prop) -> propositional simplification

bddsimp) -> propositional simplification with Binary Decision Diagrams

(
(
(assert) -> applies type-specific decision procedures and auto rewrites
(ground) -> prop + assert

(

smash) -> Repeatedly tries bddsimp, assert, and lift-if

e (grind) -> All of the above + expand & inst?

Where can | learn more on PVS?

Resources

“Applied Logic for Computer Scientists”

* by Mauricio Ayala & Flavio de Moura

Manuals at PVS website:

» https://pvs.csl.sri.com/documentation.html (also locally at <PVS dir>/doc/)

PVS google group:

 https://groups.google.com/g/pvs-group

Send Me a word! — mariano.m.moscato@nasa.gov

https://pvs.csl.sri.com/documentation.html
https://groups.google.com/g/pvs-group
mailto:mariano.m.moscato@nasa.gov

Where can | learn more on PVS?

Tutorial, Classes, Courses, etc.

This Friday 9:00 AM!

* More advanced topics on specification and proving in PVS

Tutorial at CADE 2021:

 https://shemesh.larc.nasa.gov/fm/pvs/Tutorial CADE2021/

PVS Class at ITP 2017:

 http://www.mat.unb.br/ayala/pvsclass17/index.html

Class at NASA 2021:

» https://shemesh.larc.nasa.gov/PVSClass2012/schedule.html

https://shemesh.larc.nasa.gov/fm/pvs/TutorialCADE2021/
http://www.mat.unb.br/ayala/pvsclass17/index.html
https://shemesh.larc.nasa.gov/PVSClass2012/schedule.html

