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Overview

• Languages with binders: α-equivalence

• Nominal logic

• Nominal terms: unification and matching modulo α

• Equational axioms: AC operators

• Nominal rewriting (modulo α and other axioms)
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Binding operators: Examples (informally)

• Operational semantics:

let a = N in M −→ (fun a.M)N

• β and η-reductions in the λ-calculus:

(λx .M)N → M[x/N]
(λx .Mx) → M (x 6∈ fv(M))

• π-calculus:
P | νa.Q → νa.(P | Q) (a 6∈ fv(P))

• Logic equivalences:

P and (∀x .Q)⇔ ∀x(P and Q) (x 6∈ fv(P))
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Binding operators - α-equivalence

Terms are defined modulo renaming of bound variables, i.e., α-equivalence.

Example:
In ∀x .P the variable x can be renamed (avoiding name capture)

∀x .P =α ∀y .P{x 7→ y}

How can we formally specify and reason with binding operators?
There are several alternatives.
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First-order frameworks

encode α-equivalence:

• Example: λ-calculus using De Bruijn’s indices with “lift” and “shift” operators to
encode non-capturing substitution
• We need to ’implement’ α-equivalence from scratch (-)
• Simple (first-order) (+)
• Efficient matching and unification algorithms (+)
• No metavariables (-)
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Higher-order frameworks

λ-calculus meta-language, built-in α-equivalence

Examples:

• Combinatory Reduction Systems [Klop 80]
β-rule:

app(lam([a]Z (a)),Z ′)→ Z (Z ′)

• Higher-Order Abstract Syntax [Pfenning, Elliott 88]

let a = N in M(a) −→ (fun a→ M(a))N
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Higher-order frameworks

• The syntax includes binders (+)

• Implicit α-equivalence (+)

• We targeted α but now we have to deal with β too (-)

• Unification is undecidable in general [Huet 75] (-)

• Interesting fragments are decidable [Miller 90] (+)
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Nominal Approach [Gabbay-Pitts 99]

Key ideas:

• Names, which can be swapped

• abstraction

• freshness

Based on Nominal Set Theory [Fraenkel, Mostowski 1920-40]

Maribel Fernández Nominal Unification modulo equational axioms



Nominal Logic [Pitts03]

a sorted first-order logic theory:

(a a)x = x (S1)
(a a′)(a a′)x = x (S2)

(a a′)a = a′ (S3)
(a a′)(b b′)x = ((a a′)b (a a′)b′)(a a′)x (E 1)

b # x ⇒ (a a′)b # (a a′)x (E 2)
(a a′)f (~x) = f ((a a′)~x) (E 3)

p(~x)⇒ p((a a′)~x) (E 4)
(b b′)[a]x = [(b b′)a](b b′)x (E 5)

a # x ∧ a′ # x ⇒ (a a′)x = x (F 1)
a # a′ ⇐⇒ a 6= a′ (F 2)

∀a : ns, a′ : ns ′.a # a′ (ns 6= ns ′) (F 3)
∀~x .∃a.a # ~x (F 4)

[a]x = [a′]x ′ ⇐⇒ (a = a′ ∧ x = x ′) ∨ (a # x ′ ∧ (a a′)x = x) (A1)
∀x : [ns]s.∃a : ns, y : s.x = [a]y (A2)

∀~x .( Na.φ ⇐⇒ ∃a.a # ~x ∧ φ) (FV ( Na.φ) ⊆ ~x) (Q)Maribel Fernández Nominal Unification modulo equational axioms



Nominal Languages

Freshness conditions a#t, name swapping (a b) · t, abstraction [a]t

• Terms with binders

• Built-in α-equivalence

• Simple notion of substitution (first order)

• Efficient matching and unification algorithms

• Dependencies of terms on names are implicit
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Nominal Syntax [Urban, Pitts, Gabbay 2004]

• Variables: M,N,X ,Y , . . .
Atoms: a, b, . . .
Function symbols (term formers): f , g . . .

• Nominal Terms:

s, t ::= a | π · X | [a]t | f t | (t1, . . . , tn)

π is a permutation: finite bijection on names, represented as a list of swappings,
e.g., (a b)(c d), Id (empty list).
π · t: π acts on t, permutes names, suspends on variables.
(a b) · a = b, (a b) · b = a, (a b) · c = c
Id · X written as X .
• Example (ML): var(a), app(t, t ′), lam([a]t), let(t, [a]t ′), letrec[f ]([a]t, t ′),

subst([a]t, t ′)
Syntactic sugar:
a, (tt ′), λa.t, let a = t in t ′, letrec fa = t in t ′, t[a 7→ t ′]
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α-equivalence

We use freshness to avoid name capture:
a#X means a 6∈ fv(X ) when X is instantiated.

a ≈α a

ds(π, π′)#X

π · X ≈α π′ · X
s1 ≈α t1 · · · sn ≈α tn

(s1, . . . , sn) ≈α (t1, . . . , tn)

s ≈α t

fs ≈α ft

s ≈α t

[a]s ≈α [a]t

a#t s ≈α (a b) · t

[a]s ≈α [b]t

where
ds(π, π′) = {n|π(n) 6= π′(n)}

• a#X , b#X ` (a b) · X ≈α X

• b#X ` λ[a]X ≈α λ[b](a b) · X
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Freshness

Also defined by induction:

a#b a#[a]s

π−1(a)#X

a#π · X

a#s1 · · · a#sn

a#(s1, . . . , sn)

a#s

a#fs

a#s

a#[b]s
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Computing with Nominal Terms

Nominal rewriting: rewriting with nominal terms.

Rewrite rules specify:

• equational theories

• algebraic specifications of operators and data structures

• operational semantics of programs

• functions, processes...
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Nominal Rewriting

Nominal Rewriting Rules:

∆ ` l → r V (r) ∪ V (∆) ⊆ V (l)

Example: Prenex Normal Forms

a#P ` P ∧ ∀[a]Q → ∀[a](P ∧ Q)
a#P ` (∀[a]Q) ∧ P → ∀[a](Q ∧ P)
a#P ` P ∨ ∀[a]Q → ∀[a](P ∨ Q)
a#P ` (∀[a]Q) ∨ P → ∀[a](Q ∨ P)
a#P ` P ∧ ∃[a]Q → ∃[a](P ∧ Q)
a#P ` (∃[a]Q) ∧ P → ∃[a](Q ∧ P)
a#P ` P ∨ ∃[a]Q → ∃[a](P ∨ Q)
a#P ` (∃[a]Q) ∨ P → ∃[a](Q ∨ P)

` ¬(∃[a]Q)→ ∀[a]¬Q
` ¬(∀[a]Q)→ ∃[a]¬Q
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Nominal Rewriting

Rewriting relation generated by R = ∇ ` l → r : ∆ ` s
R→ t

s rewrites with R to t in the context ∆ when:
1 s ≡ C [s ′] such that θ solves (∇ ` l) ?≈ (∆ ` s ′)
2 ∆ ` C [rθ] ≈α t.

Example

Beta-reduction in the Lambda-calculus:

Beta (λ[a]X )Y → X [a 7→Y ]
σa a[a 7→Y ] → Y
σapp (XX ′)[a 7→Y ] → X [a 7→Y ]X ′[a 7→Y ]
σε a#Y ` Y [a 7→X ] → Y
σλ b#Y ` (λ[b]X )[a 7→Y ] → λ[b](X [a 7→Y ])

Rewriting steps: (λ[c]c)Z → c[c 7→Z ]→ Z
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Computing with Nominal Terms - Unification/Matching

To implement rewriting (functional/logic programming) we need a
matching/unification algorithm.
Recall:

• There are efficient algorithms (linear time) for first-order terms

• Here we need more powerful algorithms: α-equivalence

• Higher-order unification is undecidable

Nominal terms have good computational properties:

• Nominal unification is decidable and unitary

• Efficient algorithms: α-equivalence, matching, unification
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Checking α-equivalence

The α-equivalence derivation rules become simplification rules

a#b,Pr =⇒ Pr
a#fs,Pr =⇒ a#s,Pr

a#(s1, . . . , sn),Pr =⇒ a#s1, . . . , a#sn,Pr
a#[b]s,Pr =⇒ a#s,Pr
a#[a]s,Pr =⇒ Pr

a#π · X ,Pr =⇒ π-1 · a#X ,Pr π 6≡ Id

a ≈α a,Pr =⇒ Pr
(l1, . . . , ln) ≈α (s1, . . . , sn),Pr =⇒ l1 ≈α s1, . . . , ln ≈α sn,Pr

fl ≈α fs,Pr =⇒ l ≈α s,Pr
[a]l ≈α [a]s,Pr =⇒ l ≈α s,Pr
[b]l ≈α [a]s,Pr =⇒ (a b) · l ≈α s, a#l ,Pr

π · X ≈α π′ · X ,Pr =⇒ ds(π, π′)#X ,Pr
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Solving Equations [Urban, Pitts, Gabbay 2003]

• Nominal Unification: l ?≈? t has solution (∆, θ) if

∆ ` lθ ≈α tθ

Nominal Matching: l ?≈ t has solution (∆, θ) if

∆ ` lθ ≈α t

(t ground or variables disjoint from l)

• Examples:
λ([a]X ) = λ([b]b) ??
λ([a]X ) = λ([b]X ) ??

• Solutions: (∅, [X 7→ a]) and ({a#X , b#X}, Id) resp.
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Nominal Matching

• Nominal matching is decidable [Urban, Pitts, Gabbay 2003]
A solvable problem Pr has a unique most general solution: (Γ, θ) such that
Γ ` Prθ.

• Complexity:

Alpha-equivalence check: linear if right-hand sides of constraints are ground.
Otherwise, log-linear.

Matching: linear in the ground case, quadratic in the non-ground case
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Complexity - Summary

Case Alpha-equivalence Matching

Ground linear linear
Non-ground and linear log-linear log-linear

Non-ground and non-linear log-linear quadratic

Remark:
The representation using higher-order abstract syntax does saturate the variables (they
have to be applied to the set of atoms they can capture).
Conjecture: the algorithms are linear wrt HOAS also in the non-ground case.

For more details on the implementation see [4],
see [6] for formalisations in Coq and PVS
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Nominal Rewriting

Equivariance:
Rules defined modulo permutative renamings of atoms.

Beta-reduction in the Lambda-calculus:

Beta (λ[a]X )Y → X [a 7→Y ]
σa a[a 7→Y ] → Y
σapp (XX ′)[a 7→Y ] → X [a 7→Y ]X ′[a 7→Y ]
σε a#Y ` Y [a 7→X ] → Y
σλ b#Y ` (λ[b]X )[a 7→Y ] → λ[b](X [a 7→Y ])
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Nominal Matching vs. Equivariant Matching

• Nominal matching is efficient.

• Equivariant nominal matching is exponential... BUT

• if rules are CLOSED then nominal matching is sufficient.
Intuitively, closed means no free atoms.
The rules in the examples above are closed.

Maribel Fernández Nominal Unification modulo equational axioms



Nominal Matching vs. Equivariant Matching

• Nominal matching is efficient.

• Equivariant nominal matching is exponential... BUT

• if rules are CLOSED then nominal matching is sufficient.
Intuitively, closed means no free atoms.
The rules in the examples above are closed.

Maribel Fernández Nominal Unification modulo equational axioms



Nominal Matching vs. Equivariant Matching

• Nominal matching is efficient.

• Equivariant nominal matching is exponential... BUT

• if rules are CLOSED then nominal matching is sufficient.
Intuitively, closed means no free atoms.
The rules in the examples above are closed.

Maribel Fernández Nominal Unification modulo equational axioms



Programming and Verification

”Nominal” Programming Languages:

• Fresh-ML, CαML, Nominal Haskell, ...

• α-Prolog, α-Kanren, ...

Verification: Nominal packages for Isabelle, Agda, Coq, PVS, ...

Rely on nominal matching and unification

Rewriting-based programming anguages and verification frameworks?
=⇒ ”Modulo”... axioms
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Not all term constructors are free!

Data Types: Set, Multi-set, List...

A, C, U axioms involving constructors

Operators obey axioms:

• OR, AND

• || and + in the π-calculus

⇒ rewriting modulo axioms, E-unification...
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E-Unification

First Order E-Unification problem:
Given two terms s and t and an equational theory E.
Question: is there a substitution σ such that sσ =E tσ?

Undecidable in general

Decidable subcases: C, AC, ACU, . . .

Question:
Unification modulo α + E?
Nominal Narrowing - enumerates solutions [FSCD 2016]
Question:
Nominal C- unification, Nominal AC- Unification ??
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Unification modulo α + C

Unification modulo α and unification modulo C are finitary, but . . .

q(a) OR p(X ) ≈α,C p((a b) · X ) OR q(a)

⇓
q(a) ≈α q(a), p((a b) · X ) ≈α,C p(X )

⇓
p((a b) · X ) ≈α,C p(X )

⇓
(a b) · X ≈α,C X

Solutions:
X 7→ p(a) OR p(b), X 7→ (p(a) OR p(b)) OR (p(a) OR p(b)), . . .
Not finitary
[LOPSTR 2017, 2019]
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Binders as well as A, C and AC operators

• α + {C ,A,AC}: Decidable Equivalence, formalised in PVS [6]

• Nominal C-Matching Algorithm (Finitary)

• Nominal C-Unification Procedure:

1 Simplification phase:
Build a derivation tree (branching for C symbols)

2 Enumerate solutions for fixed point constraints X ≈α,C π · X

Nominal C-unification is NOT finitary, if we represent solutions using
substitutions/freshness:
X ≈α,C (a b) · X has infinite most general solutions

Alternative representation: fixed-point constraints instead of freshness constraints:
π f x ⇔ π · x = x

Using fixed-point constraints nominal C-unification is finitary.
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Nominal AC Matching and Unification

Nominal AC-Matching - Formalised in PVS [CICM 2023]

Nominal AC-Unification - work in progress

Applications:
Nominal extensions of prog. languages and verification tools:

Maude: first-order rewrite-based language [Meseguer 90]
K: first-order verification framework to specify and implement programming languages
[Rosu 2017].
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Nominal techniques in Maude and K

K: successful first-order verification framework to specify and implement programming
languages [Rosu 2017].

Maude: popular first-order rewrite-based language [Meseguer 90]

But binders are not a primitive notion.

Aim:
Combine Matching Logic (K’s foundation) and Rewriting Logic (Maude’s
foundation) with Nominal Logic to specify and reason about binding.
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languages [Rosu 2017].

Maude: popular first-order rewrite-based language [Meseguer 90]

But binders are not a primitive notion.
Aim:
Combine Matching Logic (K’s foundation) and Rewriting Logic (Maude’s
foundation) with Nominal Logic to specify and reason about binding.
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Matching Logic - Syntax

Signature Σ = (S ,Var ,Σ)

Patterns:

φτ ::= x : τ | φτ ∧ ψτ | ¬φτ | ∃x : τ ′.φτ | σ(φτ1 , . . . , φτn )

where x ∈ Varτ and σ ∈ Στ1,...,τn;τ .

Disjunction, implication, ∀, true and false defined as abbreviations: e.g.
>τ ≡ ∃x : τ.x : τ and ⊥τ ≡ ¬>τ .
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Matching Logic - Model

Valuation ρ : Var → M respecting sorts.
Extension to patterns:
ρ(x) = {ρ(x)} for all x ∈ Var , ρ(φ1 ∧ φ2) = ρ(φ1) ∩ ρ(φ2), ρ(¬φτ ) = Mτ − ρ(φτ ),
ρ(∃x : τ ′.φτ ) =

⋃
a∈Mτ ′

ρ[a/x ](φτ ), ρ(σ(φτ1 , . . . , φτn ) = σM(ρ(φτ1), . . . , ρ(φτn )), for

σ ∈ Στ1,...,τn;τ , where σM(V1, . . . ,Vn) =
⋃
{σM(v1, . . . , vn) | v1 ∈ V1, . . . , vn ∈ Vn}.

φτ valid in M, M � φτ , if ρ(φτ ) = Mτ for all ρ : Var → M.
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Adding NL Features to ML

1 Nominal Logic can be embbeded as a Matching Logic Theory: NLML (see [PPDP
2022])
⇒ it can be directly implemented in K
But...

• ground names, which are useful in rewriting, logic programming and program
verification, are not available in NLML

• not clear how to incorporate the N-quantifier in a first-class way, which is needed to
simplify reasoning with freshness constraints.

2 NML: Matching Logic with Built-in Names and N
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NML: Nominal Matching Logic

Matching Logic with Built-in Names and N

NML signature Σ = (S ,Var ,Name,Σ) consists of

• a non-empty set S of sorts τ, τ1, τ2 . . ., split into a set NS of name sorts
α, α1, α2, . . ., a set DS of data sorts δ, δ1, δ2, . . . including a sort Pred , and a set
AS of abstraction sorts [α]τ

• an S-indexed family Var = {Varτ | τ ∈ S} of countable sets of variables
x : τ, y : τ, . . .,

• an NS-indexed family Name = {Nameα | α ∈ NS} of countable sets of names
a: α, b: α, . . . and

• an (S∗× S)-indexed family Σ of sets of many-sorted symbols σ, written Στ1,...,τn;τ .
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NML Syntax

Patterns:

φτ ::= x : τ | a: α | φτ ∧ ψτ | ¬φτ | ∃x : τ ′.φτ

| σ(φτ1 , . . . , φτn ) | Na : α.φτ

where x ∈ Varτ , a ∈ Nameα, and both ∃ and Nare binders (i.e., we work modulo
α-equivalence).
Σ includes the following families of sort-indexed symbols (subscripts omitted):

(− −) · − : α× α× τ → τ swapping (function)
[−]− : α× τ → [α]τ abstraction (function)
−@− : [α]τ × α ⇀ τ concretion (partial function)

freshτ,α ∈ Στ ;α freshness (multivalued operation)
− #α,τ − : α× τ ⇀ Pred freshness relation

−† : ΣPred ;τ coercion operator, often left implicit.
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NML Model

Given Σ = (S ,Var ,Name,Σ)
let A be

⋃
α∈NS Aα where each Aα is an infinite countable set of atoms and the Aα

are pairwise disjoint,
let G be a product of permutation groups

∏
i Sym(Ai )

An NML model M = ({Mτ}τ∈S , {σM}σ∈Σ) consists of

• a non-empty nominal G -set Mτ for each τ ∈ S − NS ;

• an equivariant interpretation σM : Mτ1 × · · · ×Mτn → Pfin(Mτ ) for each
σ ∈ Στ1,...,τn;τ .
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NML Model

A model is standard if the interpretation of:

1 each name sort α is Aα
2 the sort Pred is a singleton set {∗}, where ∗ is equivariant: {∗} is a nominal set

whose powerset is isomorphic to Bool

3 each abstraction sort [α]τ is [Mα]Mτ

4 the swapping symbol (− −) · − : α× α× τ → τ is the swapping function on Mτ

5 the abstraction symbol is the quotienting function mapping 〈a, x〉 to its
alpha-equivalence class, i.e. (a, x) 7→ (a, x)/≡α

6 the concretion symbol is the (partial) concretion function
(X , a) 7→ {y | (a, y) ∈ X}

7 the freshness operation freshτ,α is the function x 7→ {a | a /∈ supp(x)}
8 the freshness relation #α,s is the freshness predicate on Aα ×Mτ , i.e., it holds for

the tuples {(a, x) | a /∈ supp(x)}.
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NML Pattern Semantics

Given valuation ρ whose domain includes the free variables and free names of φ:

ρ(x : τ) = {ρ(x)}
ρ(a : α) = {ρ(a)}

ρ(σ(φ1, . . . , φn)) = σM(ρ(φ1), . . . , ρ(φn))

ρ(φ1 ∧ φ2) = ρ(φ1) ∩ ρ(φ2)

ρ(¬φ) = Mτ − ρ(φ)

ρ(∃x : τ.φ) =
⋃

a∈Mτ

ρ[a/x ](φ)

ρ( Na: α.φ) =
⋃

a∈Aα−supp(ρ)

{v ∈ ρ[a/a](φ) | a 6∈ supp(v)}

In the interpretation of the Npattern, ρ is extended by assigning to a any fresh
element a of Aα
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NPattern - Example

Consider three possible rules representing eta-equivalence for the lambda-calculus

x : Exp = lam([a]app(x , var(a)))
x : Exp = lam(∃a.[a]app(x , var(a)))
x : Exp = lam( Na.[a]app(x , var(a)))

Only the third one is correct.
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Applications: The λ-calculus in NML

To reason about the typed lambda-calculus we use sorts
Exp (expressions), Ty (types), and Var (variables, a name-sort)
interpreted as nominal sets MVar , MExp, and MTy satisfying the following equations:

MExp = MVar + (MExp ×MExp) + [MVar ]MExp

MTy = 1 + MTy ×MTy + · · ·

We assume at least one constant type (e.g. int or unit) and a binary constructor
fn : Ty × Ty → Ty for function types

MExp is the set of lambda-terms quotiented by alpha-equivalence.
We fix MΛ as the standard model obtained taking MExp and MTy as defined above.
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The λ-calculus in NML

In NML we can axiomatize substitution equationally (no side condition)

subst(var(a), a, z) = z

subst(var(a),¬a, z) = var(a)

subst(app(x1, x2), y , z) = app(subst(x1, y , z), subst(x2, y , z))

subst(lam(x), y , z) = lam( Na.[a]subst(x@a, y , z))
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The λ-calculus in NML

Induction principle using Navoiding freshness constraints

(∀x : Var .P(var(x))) ⇒
(∀t1 : Exp, t2 : Exp.P(t1) ∧ P(t2)⇒ P(app(t1, t2))) ⇒

(∀t : [Var ]Exp. Na : Var .P(t@a)⇒ P(lam(t)) ⇒
∀t : Exp.P(t)

Substitution Lemma (with just one freshness condition, formalizing the usual
side-condition in textbooks)

a # z ′ ⇒ subst(subst(x , a, z), b, z ′) =

subst(subst(x , b, z ′), a, subst(z , b, z ′)
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Rewriting Logic

A rewrite theory is a tuple
R = (Σ,E , φ,R)

where

• (Σ,E ) is an equational theory with order-sorted signature Σ consisting of sorts
(S , <) and function symbols F , and Σ-equations E ,

• R is a set of (possibly conditional) rewrite rules,

• φ : Σ→ N∗ is a so-called frozenness map indicating, for each function symbol
f ∈ Σ, its frozen argument positions, where rewriting with rules R is forbidden.
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Specifying Names

Two requirements: (i) countably infinite supply of names (ii) an equality predicate

Specification in Maude:
NAME (conditional) equational theory with initiality constraints on subtheories 1

theory NAME protects NAT,BOOL
sort Name
functions : i : Name→ Nat, j : Nat→ Name, .= . : Name Name→ Bool
vars a, b : Name, n : Nat
equations :
a .= . a = true, a .= . b = true⇒ a = b, j(i(a)) = a, i(j(n)) = n
endtheory

1the reduct A|Σ0 of a NAME -algebra A to any subtheory T0 = (Σ0,E0) of it having an initiality
constraint must be isomorphic to the initial T0-algebra TΣ0/E0
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Specifying Syntax with Binding

Definition

A Binder Signature is a pair of an order-sorted signature Σ = ((S , <),F ) and a
function β with domain F .
β(f ) gives binding information: which argument positions bind which other argument
positions in f .

For example, the in operator in the π-calculus binds any occurrence of the name given
as second argument within the third argument, so that β(in) = (2, 3). Similarly, in the
λ-calculus β(λ . ) = (1, 2). For non-binding operators like out in the π-calculus we
have β(out) = ε.
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Constraints on Beta

The signature is parametric on one or more copies of the NAME parameter theory:
Name1, . . . ,Namek are the corresponding parameter sorts in those copies of NAME .

Three kinds of binding relationships: (i) binding a single name;
(ii) binding a tuple of names; and
(iii) binding a non-empty (Ne) list of names.
Name i < m.Tuple i < NeList i < List i
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Structural Congruence

Any calculus C with binders has an associated structural congruence

EC = Eα
C ∪ E cs

C ∪ E aux
C

where the equations
Eα

C define a calculus-generic α-equivalence relation,
E cs

C are calculus-specific equivalences,
E aux

C are other calculus-generic equations defining auxiliary functions, e.g,. name
swapping, a freshness predicate, renaming or substitution operations

Not all calculi need all these auxiliary equations. For example, in the π-calculus
renaming (as opposed to substitution) equations are needed.

Maribel Fernández Nominal Unification modulo equational axioms



Examples

Swapping:
(a b) · f (t1, . . . , tn) = f ((a b) · t1, . . . , (a b) · tn)

Freshness:
# : Namei B → Bool indicates whether a in Namei is fresh in a term of sort B.

There are three cases: the term in the second argument is a name b in Namei , is
rooted by a binding operator (wlg assume f : List1 B̄1 . . . Listk B̄k B̄k+1 → C , where
for 1 ≤ i ≤ k, each List i is a name-list sort, which binds all sorts in the next sequence
of sorts B̄i , and that all neither bound nor binding sorts are exactly those in the sort
list B̄k+1) or by a non-binding operator g (including constants g such as names in
Namej with i 6= j):

a # b = not(a .= . b)
a # f (L1, t̄1, . . . , Lk , t̄k , ū) = (a ∈ L1 ∨ a # t̄1) ∧ . . .

∧(a ∈ Lk ∨ a # t̄k ) ∧ a # ū
a # g(ū) = a # ū

Maribel Fernández Nominal Unification modulo equational axioms



Dynamics

Specified by a rewrite relation →φ
R/EC

on ΣC -terms:
rewriting modulo the equations EC , forbidding reductions at certain frozen positions.

Definition

u →φ
R/EC

v iff there exist u′, v ′ such that:

(i) u =EC
u′ and v =EC

v ′, and

(ii) u′ →φ
R v ′, where the relation →φ

R restricts the standard term-rewriting relation →R

by forbidding rewriting with R at frozen positions (i.e., if f is a function symbol at
position p and i ∈ φ(f ) then rewriting is forbidden at any position piq)

Example, in the π-calculus the react rule cannot apply inside a prefix in, so
φ(in) = {1, 2, 3}.
For executability: Matching modulo EC is required (cf nominal AC matching).
For verification tasks: Unification modulo EC is required
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Conclusions

Summary:

• Nominal Rewriting Systems [PPDP 2004]:
first-order rewriting modulo α, based on Nominal Logic

• Closed NRS ⇔ higher-order rewriting systems
Capture-avoiding atom substitution easy to define.

• Nominal matching is linear, equivariant matching is linear with closed rules

• Nominal unification is quadratic (unknown lower bound) [LOPSTR 2010]

• Hindley-Milner style types: principal types, α-equivalence preserves types.
Sufficient conditions for Subject Reduction.

• Applications: functional and logic programming languages, theorem provers,
model checkers
FreshML, AlphaProlog, AlphaCheck, Nominal package in Isabelle-HOL, . . .
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Conclusions

• Extensions: Nominal E-Unification, Nominal Narrowing, Nominal C-Unification
[LOPSTR 2017,2019]

• Being first-order, nominal logic is a natural candidate for supporting binding in

• Matching Logic (K) - see [PPDP 2022]
• Rewriting Logic (Maude) - uses E-unification (A, C, AC,. . . )
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Implementations/formalisations

Nominal Datatype Package for Haskell (Jamie Gabbay):
https://github.com/bellissimogiorno/nominal

Nominal Project, University of Brasilia: http://nominal.cic.unb.br

alpha-Prolog (James Cheney, Christian Urban):
https://homepages.inf.ed.ac.uk/jcheney/programs/aprolog/

Nominal Isabelle (Christian Urban)
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Questions?

Maribel Fernández Nominal Unification modulo equational axioms


