Selected Topics from Unification Theory

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria
kutsia@risc. jku.at

Overview

Syntactic Unification

Equational Unification

What is Unification

» Goal: Identify two symbolic expressions.

» Method: Replace certain subexpressions (variables) by
other expressions.

What is Unification

» Goal: Identify two symbolic expressions.

» Method: Replace certain subexpressions (variables) by
other expressions.

Example

» Goal: Identify f(x,a) and f (b, y).

» Method: Replace the variable x by b, and the variable y
by a. Both initial expressions become f (b, a).

What is Unification

» Goal: Identify two symbolic expressions.

» Method: Replace certain subexpressions (variables) by
other expressions.

Example

» Goal: Identify f(x,a) and f (b, y).

» Method: Replace the variable x by b, and the variable y
by a. Both initial expressions become f (b, a).

» Of course, one should know what expressions are

variables, and what are not.
(Syntax: variables, function symbols, terms, etc.)

What is Unification

» Goal: Identify two symbolic expressions.

» Method: Replace certain subexpressions (variables) by
other expressions.

Example

» Goal: Identify f(x,a) and f (b, y).

» Method: Replace the variable x by b, and the variable y
by a. Both initial expressions become f (b, a).

» Of course, one should know what expressions are
variables, and what are not.
(Syntax: variables, function symbols, terms, etc.)

» The substitution {x — b,y — a} unifies the terms f(x,a) and

f(b,y).

What is Unification

» Goal: Identify two symbolic expressions.

» Method: Replace certain subexpressions (variables) by
other expressions.

Example

» Goal: Identify f(x,a) and f (b, y).

» Method: Replace the variable x by b, and the variable y
by a. Both initial expressions become f (b, a).

» Of course, one should know what expressions are
variables, and what are not.
(Syntax: variables, function symbols, terms, etc.)

» The substitution {x — b,y — a} unifies the terms f(x,a) and
f(b,y).

» Solving the equation f(x,a) = f(b,y) for x and y.

What is Unification

» Goal of unification: Identify two symbolic expressions.

>

Depending what is meant under "identify" (syntactic identity or
equality modulo some equations) one speaks about syntactic
unification or equational unification.

Example

» The terms f(x,a) and g(a,x) are not syntactically unifiable.

» However, they are unifiable modulo the equation
f(a,a) = g(a,a) with the substitution {x ~ a}.

What is Unification

>

» Method: Replace certain subexpressions (variables) by
other expressions.

Depending at which positions the variables are allowed to
occur, and which kind of expressions they are allowed to be
replaced by, one speaks about first-order unification or
higher-order unification.

Example
» If G and x are variables, the terms f(x,a) and G(a,x) can
not be subjected to first-order unification.
» G(a,x) is not a first-order term: G occurs in the top position.

» However, f(x,a) and G(a,x) can be unified by higher-order
unification with the substitution {x — a,G ~ f}.

What is Unification Good For?

» To make an inference step in theorem proving.

» To perform an inference in logic programming.

» To make a rewriting step in term rewriting.

» To generate a critical pair in completion.

» To extract a part from structured or semistructured data.
» For type inference in programming languages.

» For matching in pattern-based languages.

» For program schemas manipulation.

» For various formalisms in computational linguistics.

> etc.

Subject of Today’s Lecture

» Syntactic unification and matching.
» Generalizations to the equational case.

Notation

v

First-order language.

F: Set of function symbols.

» V: Set of variables.

» x,y,z: Variables.

» a,b,c: Constants.

» f,g, h: Arbitrary function symbols.

» s,t,r: Terms.

» T(F,V): Set of terms over F and V.
» Equation: a pair of terms, written s = r.

v

» vars(t): The set of variables in ¢. This notation will be used
also for sets of terms, equations, and sets of equations.

Substitutions

Substitution

» A mapping from variables to terms, where all but finitely
many variables are mapped to themselves.

Example
A substitution is represented as a set of bindings:
> {x=f(a,b),y >z}
> {x e f(xy),y = f(x,0))
All variables except x and y are mapped to themselves by these
substitutions.

Substitutions

Notation

» o, ¥, n, p denote arbitrary substitutions.
» ¢ denotes the identity substitution.

Substitutions

Substitution Application
Applying a substitution o to a term ¢:

| o(x) ifr=x
o= f(to,....tyo) ifr=f(t1,...,1,)

Example

s o={xef(x,y),y~ g(a)}.
» =1 g(f(f(v,2))))-
10 = (), 8 (), F(8(a),).

Substitutions

Domain, Range, Variable Range
For a substitution o:
» The domain is the set of variables:

dom(o) = {x| xo # x}.
» The range is the set of terms:

ran(o) = |J {xo}.

xedom(o)

» The variable range is the set of variables:

vran(o) = vars(ran(o)).

Substitutions

Example (Domain, Range, Variable Range)

dom({x+~ f(a,y),y+~ g(2)}) = {x,y}
ran({x ~ f(a,y), y~ g(2)}) ={f(a,y),g(z)}
vran({x~ f(a,y), y ~ g(2)}) = {y,2}

dom(e) = ran(e) = vran(e) = @

Substitutions

Composition of Substitutions

» Written: o9.
» 1(0) = (t0)9.

Example

ro={x~f(y),yrz}
»9={x—a,y~b,z~y}

> ol ={xf(b), 2y}
Composition is associative but not commutative:

Yo ={x~a,y~b}+o0.

Substitutions

Instantiation Quasi-Ordering

» A substitution o is more general than ¢, written o < 9, if
there exists n such that on = 9.

» The relation < is quasi-ordering (reflexive and transitive
binary relation), called instantiation quasi-ordering.

» =is the equivalence relation corresponding to <.

Example

Leto={x—y}, p={xa,y—a},¥={y~x}.
» 0 < p, because o{y~ a} = p.
» o <9, because o{y ~ x} = 9.
» ¥ <o, because ¥{x~y} =o0.

» o =1,

Substitutions

Unifier, Most General Unifier, Unification Problem

» A substitution o is a unifier of the terms s and ¢ if so = to.

» A unifier o of s and ¢ is a most general unifier (mgu) if o <9
for every unifier ¢ of s and z.

» A unification problem for s and t is represented as s = t.

Substitutions

Example (Unifier, Most General Unifier)
Unification problem: £ (x,z) =° f(y,g(a)).
» Some of the unifiers:
{x=y,zmg(a)}
{ymx,2g(a)}
{x~a,y—az~g(a)}

{x=f(x,y),y=f(x,y),2+ gla)}

» mgu's: {x+—y,z~g(a)}, {y~x,z~g(a)}.
» mgu is unique up to a variable renaming:

{xeyzmg@)} ={y~xzmg(a)}

Outline

Syntactic Unification

Unification Algorithm

» Goal: Design an algorithm that for a given unification
problem s =” ¢
» returns an mgu of s and ¢ if they are unifiable,
» reports failure otherwise.

Naive Algorithm

Write down two terms and set markers at the beginning of the
terms. Then:

1. Move the markers simultaneously, one symbol at a time,
until both move off the end of the term (success), or until
they point to two different symbols;

2. If the two symbols are both non-variables, then fail;
otherwise, one is a variable (call it x) and the other one is
the first symbol of a subterm (call it 7):

» If x occurs in ¢, then fail,

» Otherwise, replace x everywhere from the marker positions
by ¢ (including in the solution), write down "x — " as a part
of the solution, and return to 1.

Naive Algorithm

» Finds disagreements in the two terms to be unified.

» Attempts to repair the disagreements by binding variables
to terms.

» Fails when function symbols clash, or when an attempt is
made to unify a variable with a term containing that
variable.

Example

f(x,8(a),8(z))

T

fe(y),8(y),g(g(x)))

T

Example

f(x,8(a),8(z))

T

fe(y),8(y),g(g(x)))

T

Example

f(x,8(a),8(z))

T

fle(y),8(y), g(g(x)))

T

Example

f(x,8(a),8(z))

T

fle(y),8(y), g(g(x)))

T

Example

f(g(y);g(a),8(2))

T

fle(y),8(y),&(g(e(¥))))

T

Example

f(g(y);g(a),8(2))

T

fle(y),8(y),&(g(e(¥))))

T

{x=8(}

Example

f(g(y);g(a),(2))

T

fe(y), (), &(g(g(¥))))

T

{x=8(}

Example

f(g(y);g(a),2(2))

T

fe(y),8(y),&(g(g(¥))))

T

{x=8(}

Example

f(g(y);g(a),2(2))

T

f(g(y),g(a),g(g(g(a))))

T

{x = g(a)}

Example

f(g(y);g(a),2(2))

T

f(g(y),g(a),g(g(g(a))))

T

{x—g(a),yr a}

Example

f(g(y);g(a),(2))

T

f(g(y);g(a),s(g(g(a))))

T

{x—g(a),yr a}

Example

f(g(y);g(a),2(2))

T

f(8(y),8(a),8(s(g(a))))

T

{x—g(a),yr a}

Example

f(g(y);g(a),2(2))

T

f(g(y);g(a),g(g(g(a))))

T

{x—g(a),yr a}

Example

f(g(y),g(a),g(g(g(a))))

T

f(g(y);g(a),g(g(g(a))))

T

{x—g(a),yr a}

Example

f(g(y),g(a),g(g(g(a))))

T

f(g(y);g(a),g(g(g(a))))

T

{x—gla),ya,z~g(g(a))}

Example

f(g(y),g(a),s(g(g(a))))

T

f(g(y);g(a),g(g(g(a))))

T

{x—gla),ya,z~g(g(a))}

Interesting Questions

Correctness:
» Does the algorithm always terminate?

» Does it always produce an mgu for two unifiable terms, and
fail for non-unifiable terms?

» Do these answers depend on the order of operations?
Implementation:

» What data structures should be used for terms and
substitutions?

» How should application of a substitution be implemented?

» What order should the operations be performed in?
Complexity:

» How much space does this take, and how much time?

Rule-Based Formulation of Unification

» Unification algorithm in a rule-base way.
» Repeated transformation of a set of equations.

» The left-to-right search for disagreements: modeled by
term decomposition.

The Inference System U/

» A set of equations in solved form:

{x1 itl,...,xnitn}

where each x; occurs exactly once.

» For each idempotent substitution there exists exactly one
set of equations in solved form.

» Notation:

» [o] for the solved form set for an idempotent substitution o.
» oy for the idempotent substitution corresponding to a solved
form set S.

The Inference System U/

v

System: The symbol 1 or a pair P; S where

» P is a set of unification problems,
» Sis a set of equations in solved form.

» 1 represents failure.

A unifier (or a solution) of a system P;S: A substitution that
unifies each of the equations in P and S.

» 1 has no unifiers.

v

The Inference System U/

Example

> System: {g(a) =" g(»), g(z) =" g(g(x))}; {x=g(»)}.
» Its unifier: {x — g(a), y = a, 7+ g(g(a))}.

The Inference System U/

Six transformation rules on systems:'

Trivial:
{sz's}wP;S=—P';S.
Decomposition:
{F(st,.ss0) = f(t1, . ty) O P § =
{s1="ti,....s,=" 1, UP'; S, wheren>0.
Symbol Clash:
sty sn) = g(tn, ... ty) WP S= 1, iff+g.

' stands for disjoint union.

The Inference System U/

Orient:

{t="x}wP; S = {x="1} UP'; S, if is not a variable.
Occurs Check:

{(x="1}wP;S=— 1, ifxevars(t) butx+1z.
Variable Elimination:

(x2"}wP S = P{xw1}; S{x >t} u{x =1},

if x ¢ vars(z).

Unification with ¢/

In order to unify s and :
1. Create an initial system {s =’ 1}; &.
2. Apply successively rules from U.

The system U is essentially the Herbrand’s Unification
Algorithm.

Properties of U: Termination

Lemma
For any finite set of equations P, every sequence of
transformations in U

P, = P1;51 = P;5 =— -

terminates either with 1 or with &; S, with S in solved form.

Corollary
If P; 3 =" @;S then os is idempotent.

Properties of /: Soundness and Completeness

Theorem (Soundness)
If P, =" @8, then og unifies any equation in P.

Theorem (Completeness)

If 9 unifies every equation in P, then any maximal sequence of
transformations P; 3 — --- ends in a system @; S such that
os <.

Observations

v

U computes an idempotent mgu.

The choice of rules in computations via U/ is “don’t care”
nondeterminism (the word “any” in Completeness
Theorem).

Any control strategy will result to an mgu for unifiable
terms, and failure for non-unifiable terms.
Any practical algorithm that proceeds by performing
transformations of I/ in any order is

» sound and complete,

» generates mgus for unifiable terms.
Not all transformation sequences have the same length.

Not all transformation sequences end in exactly the same
mgu.

Unification via ¢/: Exponential in Time and Space

Example
Unifying s and ¢, where

s:h(x1> X2, "'7xn:f(yan0)7f(ylay1)a ~--7f(yn—17yn—1)a yn)
t:h(f(x()ax())>f(x17x1)7 "'?f(xn—hxn—l)?yly))b --'aynaxn)

will create an mgu where each x; and each y; is bound to a term
with 2i*1 — 1 symbols:

{x1 = f(x0,%0), x2 = f(f (x0,%0),f (x0,%0)) - - -
Yo = X0, ¥1 = f(x0,%0), y2 = f(f(x0,%0).f (x0,%0)), - ..}

Efficiency of Unification Algorithms

» There are algorithms with better complexities:
» quadratic (Corbin & Bidoit),
» almost linear (Huet, Martelli & Montanari, ...),
» linear (Patterson & Wegman, ...)
» They require more sophisticated data structures.

» Still, the exponential algorithm is quite popular since it
performs well in practice.

Matching

Matcher, Matching Problem

» A substitution o is a matcher of s to ¢t if so =1t.

» A matching problem between s and ¢ is represented as
?
§ <L 1.

Matching vs Unification

Example

f(x,y) <" f(g(z2),¢)
{x—g(2),y~c}

f(xy) =" f(g(2),¢)
{x—g(2),yrc}

fxy) <" f(g(z),x)
{x—g(2),y=x}

f(xy) =" f(g(2),x)
{x-g(2),y~g(2)}

f(x,a) < f(b,y)

f(x,a) =7 f(b,y)

No matcher {x—b,y—a}
fxx) < f(x,a) f(xx) = f(x,a)
No matcher {x+—a}

x < f(x) x = f(x)
{x=f(x)} No unifier

How to Solve Matching Problems

» s=" rand s «” ¢ coincide, if 7 is ground.
» When ¢ is not ground in s <’ 1, simply regard all variables
in ¢ as constants and use the unification algorithm.

» Alternatively, modify the rules in U to work directly with the
matching problem.

Matched Form

» A set of equations {x; < t1,...,x, < t,} is in matched from,
if all x’s are pairwise distinct.

» The notation og extends to matched forms.
» If S is in matched form, then

t, ifx<reS
X, otherwise

os(x) = {

The Inference System M

» Matching system: The symbol 1 or a pair P; S, where

» P is set of matching problems.
» § is set of equations in matched form.

» A matcher (or a solution) of a system P;S: A substitution
that solves each of the matching equations in P and S.

» 1 has no matchers.

The Inference System M

Five transformation rules on matching systems:?

Decomposition:

(s, ysn) < f(t1,... 1)} WP S —

{s1 <ty sy << tn,} UP';S, wheren>0.
Symbol Clash:

{f(s1y.-ny80) <<?g(l‘1,...,l‘m)}L‘:JP,;S:>J_, if f+g.

2w stands for disjoint union.

The Inference System M

Symbol-Variable Clash:

{F(st,. . 80) < xywP;§ = 1.
Merging Clash:

<" n}wP {x<nlws =1, iftn+n.
Elimination:

(x<"t}wP; S = P'; {x <1} US,

if S does not contain x « ¢’ with ¢ # ¢'.

Matching with M

In order to match s to ¢
1. Create an initial system {s <’ t}; 2.
2. Apply successively the rules from M.

Matching with M

Example
Match f(x,f(a,x)) to f(g(a).f(a,g(a))):

{f(x.f(a,x)) < f(g(a).f(a,8(a)))}; @ = Decomposition
{x <’ g(a), f(a,x) < f(a,g(a))}; @ = Bimination
{f(a,x) <" f(a,8(a))}; {x < g(a)} = Decomposition

{a <" a, x <’ g(a)}; {x < g(a)} == Decomposition

{x <" g(a)}; {x < g(a)} = Merge

@; {x< g(a)}

Matcher: {x ~ g(a)}.

Matching with M

Example
Match f(x,x) to f(x,a):

{f(x¢x) <<?f(x7 Cl)}; 8 == Decomposition
{x <<? X, X <<? a}; J == Elimination

{x <’ a}; {x < X} ==Merging Clash
1

No matcher.

Properties of M: Termination

Theorem

For any finite set of matching problems P, every sequence of
transformations in M of the form

P, = P;§1 = P»;S, = --- terminates either with L or with
@; S, with S in matched form.

Properties of M: Soundness and Completeness

Theorem (Soundness)
If P; 3 =" @, S, then o5 solves all matching equations in P.

Theorem (Completeness)

If9 is a matcher of P, then any maximal sequence of
transformations P; 3 — --- ends in a system @; S such that
gs = 19|V(P)

Notation:

» J],(py: The restriction of 4 to the variables in the left hand
sides of P.

Implementation: Matching vs. Unification

» Unlike matching, efficient unification algorithms require
sophisticated data structures.

» When efficiency is an issue, matching should be
implemented separately from unification.

Outline

Equational Unification

Motivation

» Unifications algorithms are essential components for
deduction systems.

» Simple integration of axioms that describe the properties of
equality often leads to an unacceptable increase of search
space.

» Proposed solution: To build equational axioms into
inference, replacing syntactic unification with equational
unification.

Motivation

Example

Given: Al-theory {f(f(x.y).2) = f(x.f(y,2)), f(x,x) = x}. Apply
idempotence to the term

Fx0,f(x1y« v oo f (1, f Gony f (0 -+ o f (K15 X0) -22))) - 0))-

Motivation

Example

Given: Al-theory {f(f(x.y).2) = f(x.f(y,2)), f(x,x) = x}. Apply
idempotence to the term

Fx0,f(x1y« v oo f (1, f Gony f (0 -+ o f (K15 X0) -22))) - 0))-

» Exponentially many ways of rearranging the parentheses
with the help of associativity: Very time consuming if the
prover has to search for the right one.

Motivation

Example

Given: Al-theory {f(f(x.y).2) = f(x.f(y,2)), f(x,x) = x}. Apply
idempotence to the term

Fx0,f(x1y« v oo f (1, f Gony f (0 -+ o f (K15 X0) -22))) - 0))-

» Exponentially many ways of rearranging the parentheses
with the help of associativity: Very time consuming if the
prover has to search for the right one.

» A human mathematician would use words instead of
terms, i.e. would work modulo associativity, and apply
idempotence xx = x to the word xy---x,x0--x,, by unifying x
with X0 Xy

Motivation

Example

Given: Al-theory {f(f(x.y).2) = f(x.f(y,2)), f(x,x) = x}. Apply
idempotence to the term

f()C(),f(Xl, s ’f(xn—lvf(xn’f(XOa e 7f(xn—luxn) .-))) ..))

» Exponentially many ways of rearranging the parentheses
with the help of associativity: Very time consuming if the
prover has to search for the right one.

» A human mathematician would use words instead of
terms, i.e. would work modulo associativity, and apply
idempotence xx = x to the word xy---x,x0--x,, by unifying x
with xg---x;,.

» To adopt this way of proceeding for a prover, we must

replace the syntactic unification algorithm in the resolution
step by associative unification.

Equational Theory

Equational Theory

» E: a set of equations over 7 (F,V), called identities.

» Equational theory =¢ defined by E: The least congruence

relation on 7 (F,V) closed under substitution and
containing E

Equational Theory

Equational Theory

» E: a set of equations over 7 (F,V), called identities.

» Equational theory =¢ defined by E: The least congruence
relation on 7 (F,V) closed under substitution and
containing E
i.e., =g is the least binary relation on 7 (F,V) with the
properties:

» EC =g,
» Reflexivity: s =g s for all s.

» Symmetry: If s =g ¢t then r =g s for all 5, 1.

» Transitivity: If s =g t and r =g r then s =g r for all s, ¢, r.

» Congruence: If s; g t1,...,s, =g t, then
S(s1,.oy80) = f(t1,...,1,) forall s,z,n and n-ary f.

» Closure under substitution: If s =g r then so = to for all
s, t,0.

Notation, Terminology

Identities: s ~ .

s =g t: The term s is equal modulo E to the term r.

E will be called an equational theory as well (abuse of the
terminology).

» sig(E): The set of function symbols that occur in E.

v

v

v

Example

» C:={f(x,y) ~f(y,x)}: f is commutative. sig(C) =f.
> f(f(a7b)7c) in(cvf(b?a))'

Notation, Terminology

» ldentities: s ~ 1.

» s =g t: The term s is equal modulo E to the term r.

» E will be called an equational theory as well (abuse of the
terminology).

» sig(E): The set of function symbols that occur in E.

Example
» C:={f(x,y) ~f(y,x)}: f is commutative. sig(C) =f.
> f(f(a7b)7c) in(cvf(baa))'

s AU = {f(£(x.),2) % f(r.f(3.2)), F(x.€) mx, f(e,x) mx}:
f is associative, e is unit. sig(AU) = {f, e}

> fla.f(x.f(e;a))) =av £ (f(a,x),a).

Notation, Terminology

E-Unification Problem, E-Unifier, E-Unifiability

» E: equational theory.
F: set of function symbols.
V: countable set of variables.

» E-Unification problem over F: a finite set of equations
= {s i;"g HyoooySn i,?g fn},

where s;,t; € T(F, V).
» E-Unifier of I': a substitution ¢ such that

S10 =g 11 O,...,8,0 =E [,0.

» ug(T"): the set of E-unifiers of I.
I is E-unifiable iff ug(T") + @.

E-Unification vs Syntactic Unification

» Syntactic unification: a special case of E-unif. with E = &.

» Any syntactic unifier of an E-unification problem T is also
an E-unifier of T.

» For E + @, ug(T") may contain a unifier that is not a
syntactic unifier.

E-Unification vs Syntactic Unification

» Syntactic unification: a special case of E-unif. with E = &.

» Any syntactic unifier of an E-unification problem T is also
an E-unifier of T.

» For E + @, ug(T") may contain a unifier that is not a
syntactic unifier.

Example

» Terms f(a,x) and f(b,y):
» Not syntactically unifiable.
» Unifiable module commutativity of f.
C-unifier: {x— b,y ~ a}

E-Unification vs Syntactic Unification

» Syntactic unification: a special case of E-unif. with E = &.

» Any syntactic unifier of an E-unification problem I is also
an E-unifier of T".

» For E + @, ug(T") may contain a unifier that is not a
syntactic unifier.

Example

» Terms f(a,x) and f(b,y):
» Not syntactically unifiable.
» Unifiable module commutativity of f.
C-unifier: {x+~ b,y a}
» Terms f(a,x) and f(y,b):
» Have the most general syntactic unifier {x — b,y — a}.
» If f is associative, then ua ({f(a,x) =} f(y,b)}) contains
additional A-unifiers, e.g. {x— f(z,b),y = f(a,z)}.

Notions Adapted

Instantiation Quasi-Ordering (Modified)

» E: equational theory. X': set of variables.

A substitution ¢ is more general modulo E on X than 9,
written o <% ¥, if there exists 7 such that xon =g xv for all
xeX.

¥ is called an E-instance of & modulo E on X.

The relation <3 is quasi-ordering, called instantiation
quasi-ordering.

=X is the equivalence relation corresponding to <.

v

v

v

v

No Single MGU

» When comparing unifiers of T, the set X is vars(T").
» Unifiable E-unification problems might not have an mgu.

Example

» f is commutative.
» T'= {f(x,y) =% f(a,b)} has two C-unifiers:

oy ={x~a,y~ b}
oy ={x~ b,y a}.

» Onvars(T") = {x,y}, any unifier is equal to either o, or o,.
» o1 and o, are not comparable wrt g{cx’y}.
» Hence, no mgu for I'.

MCSU vs MGU

In E-unification, the role of mgu is taken on by a complete set of
E-unifiers.

Complete and Minimal Complete Sets of E-Unifiers

» I': E-unification problem over F.
» X =vars(T).
C is a complete set of E-unifiers of T iff

1. Ccug(T'): C’s elements are E-unifiers of I', and
2. For each ¥ € ug(T") there exists o € C such that o <3 9.

» C is a minimal complete set of E-unifiers (mcsug) of I if it is
a complete set of E-unifiers of I and

3. two distinct elements of C are not comparable wrt <.
» o is an mgu of I iff mesug(T) = {o}.

v

MCSU’s

» mesup(I') = @ if I' is not E-unifiable.

Minimal complete sets of unifiers do not always exist.
When they exist, they may be infinite.

When they exist, they are unique up to = ¢.

v

v

v

Unification Type

Unification Type of a Problem, Theory.

» E: equational theory.
» I': E-unification problem over F.

» I" has unification type

» unitary, if mesu(T) has cardinality at most one,
» finitary, if mesu(T") has finite cardinality,

> infinitary, if mesu(T") has infinite cardinality,

» zero, if mesu(I") does not exist.

Abbreviation: type unitary - 1, finitary - w, infinitary - oo,
zero - 0.

v

» Ordering: 1 < w < o0 < 0.

v

Unification type of E wrt F: the maximal type of an
E-unification problem over F.

Unification Type

The unification type of an E-equational problem over F
depends both

» On E, and
» on F.
Examples and more details will follow.

Unification Type

Example (Type Unitary)
Syntactic unification.
» The empty equational theory @: Syntactic unification.

» Unitary wrt any F because any unifiable syntactic
unification problem has an mgu.

Unification Type

Example (Type Finitary)
Commutative unification: {f(x,y) ~f(y,x)}

» {f(x,y) =% f(a,b)} does not have an mgu. C-unification is
not unitary.

Unification Type

Example (Type Finitary)
Commutative unification: {f(x,y) ~f(y,x)}

» {f(x,y) =% f(a,b)} does not have an mgu. C-unification is
not unitary.
» Show that it is finitary for any F:

>

>

LetT = {s; =% t1,...,s, =& t,} be a C-unification problem.
Consider all possible syntactic unification problems

IV={s) ="1,...,s" =" £}, where s/ =¢ s; and t] = ; for each
1<i<n.

There are only finitely many such I'’s, because the
C-equivalence class for a given term ¢ is finite.

It can be shown that collection of all mgu’s of I''s is a
complete set of C-unifiers of I'. This set if finite.

If this set is not minimal (often the case), it can be
minimized by removing redundant C-unifiers.

Unification Type

Example (Type Infinitary)

Associative unification: {f(f(x,y),z) ~f(x,f(y,2))}-
» {f(x,a) =% f(a,x)} has an infinite mcsu:
{{xma},{x~f(a,a)},{x~f(a,f(a,a))},...}
» Hence, A-unification can not be unitary or finitary.
» It is not of type zero because any A-unification problem has
an mcsu that can be enumerated by the procedure from

[d G. Plotkin.
Building in equational theories.
In B. Meltzer and D. Michie, editors, Machine
Intelligence, volume 7, pages 73-90. Edinburgh
University Press, 1972.

» A-unification is infinitary for any F.

Unification Type

Example (Type Zero)
Associative-ldempotent unification:
{F(F(x,5),2) » f(x,f(3,2)).f (x,x) ~ x}.
» {f(x,f(y,x)) =5, £(x,f(z,x))} does not have a minimal
complete set of unifiers, see

[§ F. Baader.
Unification in idempotent semigroups is of type zero.
J. Automated Reasoning, 2(3):283—286, 1986.

» Al-unification is of type zero.

Unification Type. Signature Matters

Associative-commutative unification with unit:

ACU = {f(f(x,y),2) »f(x,f(¥,2)),f(x,¥) ¥ f(3,%),f(x,e) ~ x}.

» Any ACU problem built using only f and variables has an
mgu (i.e. is unitary).

» There are ACU problems that contain function symbols
other than f and e, which are finitary, not unitary.
For instance, mesu({f(x,y) =iy f(a,b)}) consists of four
unifiers (which ones?).

Kinds of E-unification.

Kinds of E-Unification

One may distinguish three kinds of E-unification problems,
depending on the function symbols that are allowed to occur in
them.

E-Unification Problems: Elementary, with Constants, General.

» E: the set of identities defining an equational theory.
I': an E-unification problem over F.

» T'is an elementary E-unification problem iff F = sig(FE).

» I"is an E-unification problem with constants iff F \ sig(E)
consists of constants.

» T'is a general E-unification problem iff F \ sig(E) may
contain arbitrary function symbols.

Unification Types of Theories wrt Kinds

» Unification type of E wrt elementary unification:
Maximal unification type of E wrt all F such that F = sig(E).

» Unification type of E wrt unification with constants:
Maximal unification type of E wrt all F such that
F ~sig(E) is a set of constants.

» Unification type of E wrt general unification: Maximal

unification type of E wrt all F such that
F ~sig(E) is a set of arbitrary function symbols.

Unification Types of Theories wrt Kinds

The same equational theory can have different unification types
for different kinds. Examples:

» ACU (Abelian monoids): Unitary wrt elementary
unification, finitary wrt unification with constants and
general unification.

» AG (Abelian groups): Unitary wrt elementary unification
and unification with constants, finitary wrt general
unification.

Decision and Unification Procedures

» Decision procedure for an equational theory E (wrt F):
An algorithm that for each E-unification problem I' (wrt F)
returns success if I' is E-unifiable, and failure otherwise.

» E is decidable if it admits a decision procedure.

Decision and Unification Procedures

» Decision procedure for an equational theory E (wrt F):

An algorithm that for each E-unification problem I' (wrt F)
returns success if I' is E-unifiable, and failure otherwise.

E is decidable if it admits a decision procedure.

(Minimal) E-unification algorithm (wrt F): An algorithm that
computes a (minimal) finite complete set of E-unifiers for
all E-unification problems over F.

» E-unification algorithm yields a decision procedure for E.

v

v

Decision and Unification Procedures

» Decision procedure for an equational theory E (wrt F):
An algorithm that for each E-unification problem I' (wrt F)
returns success if I' is E-unifiable, and failure otherwise.

» E is decidable if it admits a decision procedure.

» (Minimal) E-unification algorithm (wrt F): An algorithm that
computes a (minimal) finite complete set of E-unifiers for
all E-unification problems over F.

» E-unification algorithm yields a decision procedure for E.

» (Minimal) E-unification procedure: A procedure that
enumerates a possible infinite (minimal) complete set of
E-unifiers.

» E-unification procedure does not yield a decision
procedure for E.

Decidability wrt Kinds

Decidability of an equational theory might depend on the kinds
of E-unification.

» There exists an equational theory for which elementary
unification is decidable, but unification with constants is
undecidable:

[3 H.-J. Biirckert.
Some relationships between unification, restricted
unification, and matching.
In J. Siekmann, editor, Proc. 8th Int. Conference on
Automated Deduction, volume 230 of LNCS. Springer,
1986.

Decidability wrt Kinds

Decidability of an equational theory might depend on the kinds
of E-unification.

» There exists an equational theory for which unification with
constants is decidable, but general unification is
undecidable:

[§ J. Otop.
E-unification with constants vs. general E-unification.
Journal of Automated Reasoning, 48(3):363—-390,
2012.

Single Equation vs Systems of Equations

» In syntactic unification, solving systems of equations can
be reduced to solving a single equation.

» For equational unification, the same holds only for general
unification.

» For elementary unification and for unification with
constants it is not the case.

Single Equation vs Systems of Equations

There exists an equational theory E such that
» all elementary E-unification problems of cardinality 1
(single equations) have minimal complete sets of
E-unifiers, but
» E is of type zero wrt to elementary unification: There exists
an elementary E-unification problem of cardinality > 1 that
does not have a minimal complete set of unifiers.

W H.-J. Biirckert, A. Herold, and M. Schmidt-Schauf.
On equational theories, unification, and decidability.
J. Symbolic Computation 8(3,4), 3—49. 1989.

Single Equation vs Systems of Equations

There exists an equational theory E such that
» unifiability of elementary E-unification problems of
cardinality 1 (single equations) is decidable, but
» for elementary problems of larger cardinality it is
undecidable.

[P Narendran and H. Otto.
Some results on equational unification.
In M. E. Stickel, editor, Proc. 10th Int. Conference on
Automated Deduction, volume 449 of LNAI. Springer, 1990.

Three Main Questions in Unification Theory

For a given E, unification theory is mainly concerned with
finding answers to the following three questions:

Decidability: Is it decidable whether an E-unification problem is
solvable? If yes, what is the complexity of this decision
problem?

Unification type: What is the unification type of the theory E?

Unification algorithm: How can we obtain an (efficient)
E-unification algorithm, or a (preferably minimal)
E-unification procedure?

Three Main Questions in Unification Theory

» Decidability depends on
» equational theory,
» signature (kinds),
» cardinality of unification problems.

Three Main Questions in Unification Theory

» Decidability depends on

» equational theory,

» signature (kinds),

» cardinality of unification problems.
» Unification type depends on

» equational theory,

» signature (kinds),

» cardinality of unification problems.

Summary of Results for Specific Theories

General unification:

Theory Decidability Type Algorithm/Procedure
@, BR Yes 1 Yes

A, AU Yes 00 Yes

C, AC, ACU Yes w Yes

I, Cl, ACI Yes w Yes

Al Yes 0 ?

D{f’g}Ag No 00 ?

AG Yes w Yes

CRU No ? (c0 0or 0) ?

BR - Boolean ring, D - distributivity, CRU - commutative ring with unit.

Commutative Unification and Matching

» C-unification inference system U can be obtained from
the U by adding the C-Decomposition rule:

C-Decomposition:
{F(s1,) 25 f(t1,)} w P'; S =
{5125 b, 50 25 11} UP';S, if f is commutative.

» C-Decomposition and Decomposition transform the
same system in different ways.

Commutative Unification and Matching

» C-unification inference system U can be obtained from
the U by adding the C-Decomposition rule:

C-Decomposition:
{F(s1,) 25 f(t1,)} w P'; S =
{5125 b, 50 25 11} UP';S, if f is commutative.

» C-Decomposition and Decomposition transform the
same system in different ways.

» C-matching algorithm Mg is obtained analogously from
M.

C-Unification

In order to C-unify s and t:
1. Create an initial system {s =} t}; 2.
2. Apply successively rules from U, building a complete tree
of derivations. C-Decomposition and Decomposition

rules have to be applied concurrently and form branching
points in the derivation tree.

Example. C-Unification
C-unify g(f(x,y),z) and g(f(f(a,b),f(b,a)),c), commutative f.

{g(f()@y),z) ig; g(f(f(avb)af(bva)))?C)};Q

Example. C-Unification
C-unify g(f(x,y),z) and g(f(f(a,b),f(b,a)),c), commutative f.
{8(f(x.3),2) =L (f(f(a,D).f(b,a))),) }; @

!
{f(x,y) =L f(F(a,b),f(b,a)),z =5 ¢} @

Example. C-Unification
C-unify g(f(x,y),z) and g(f(f(a,b),f(b,a)),c), commutative f.

{g(f()my),z) ig; g(f(f(avb)af(bva)))?C)};Q
!
{f(x,y) 26 f(F(a,b),f(b,a)), 2L c}; @
— T

{x=Lfa,b),y=Lf(ba),z=lchio {x=lf(ba),y=lf(a,b),zl)@

Example. C-Unification
C-unify g(f(x,y),z) and g(f(f(a,b),f(b,a)),c), commutative f.

{8(f(x,5),2) = 8(f(f(a,b).f (b, a))),c)}; @
!
{f(x,y) =L f(F(a,b),f(b,a)),z =5 ¢} @
{x i?Cf(avb)vy i?Cf(baa)az ié C}§® {x ié;f(bva)ﬂ’ iéf(avb%z ié C};@
l
{y = f(ba),z=(c}i{x=f(a,b)}

Example. C-Unification
C-unify g(f(x,y),z) and g(f(f(a,b),f(b,a)),c), commutative f.

{8(f(x,),2) = g(f(f(a,D).f(b,a))),c)}; @
!
{f(x,y) =5 f(f(a,b).f(b,a)),z{ c}; @
{x i?Cf(avb)vy i?Cf(baa)az ié C}§® {x ié;f(bva)ﬂ’ iéf(avb%z ié C};@
!
{yzif(b.a), 2=, c}i{x=f(a,b)}
!
{z={ c}i{x=f(a,b),y = f(b,a)}

Example. C-Unification
C-unify g(f(x,y),z) and g(f(f(a,b),f(b,a)),c), commutative f.

{g(f()my),z) ig; g(f(f(avb)af(bva)))?C)};Q

!
{f(x,y) =5 f(f(a,b).f(b,a)),z{ c}; @
{x i?Cf(avb)vy i?Cf(baa)az ié C}§® {x ié;f(bva)ﬂ’ iéf(avb%z ié C};@
!
{y = f(ba),z=(c}i{x=f(a,b)}
!
{z=¢ ¢} {x=f(a,b),y = f(b,a)}
|

@;{x=f(a,b),y=f(b,a),z=c}

Example. C-Unification
C-unify g(f(x,y),z) and g(f(f(a,b),f(b,a)),c), commutative f.

{g(f()my),z) ig; g(f(f(avb)af(bva)))?C)};Q

!
{f(x,y) =L f(F(a,b),f(b,a)),z =5 ¢} @

{x i?Cf(avb)vy i?Cf(baa)az ié C}§® {x ié;f(bva)ﬂ’ iéf(avb%z ié C};@
l !

{y = f(ba),z=(c}i{x=f(a,b)} {y=5f(a,b),z=(c};{x=f(b,a)}
l

{z={ c}i{x=f(a,b),y = f(b,a)}

l

@;{x=f(a,b),y=f(b,a),z=c}

Example. C-Unification
C-unify g(f(x,y),z) and g(f(f(a,b),f(b,a)),c), commutative f.

{8(f(x,5),2) = 8(f(f(a,b).f (b, a))),c)}; @
!
{f(x,y) =L f(F(a,b),f(b,a)),z =5 ¢} @

{x iE;f(avb)vy i?Cf(baa)az ié C}§® {x ié;f(bva)ﬂ’ iéf(avb%z ié C};@
l !
{y=cf(b,a),z=(¢} {x=f(a,b)} {y=5f(a,b),z=(c};{x=f(b,a)}
l !

{z={ c}i{x=f(a,b),y = f(b,a)} {z2{ chi{x=f(b,a),y = f(a,b)}
l
@;{x=f(a,b),y=f(b,a),z=c}

Example. C-Unification
C-unify g(f(x,y),z) and g(f(f(a,b),f(b,a)),c), commutative f.

{g(f()my),z) ig; g(f(f(mb),f(b,a))),c)};@

!
{f(x,y) =L f(F(a,b),f(b,a)),z =5 ¢} @

{x iE;f(avb)vy i?Cf(baa)az ié C}§® {x ié;f(bva)ﬂ’ iéf(avb%z ié C};@
l !

{y = f(ba),z=(c}i{x=f(a,b)} {y=5f(a,b),z=(c};{x=f(b,a)}
l !

{z={ c}i{x=f(a,b),y = f(b,a)} {z2{ chi{x=f(b,a),y = f(a,b)}

l |

@i{x=f(a,b),y=f(ba),z=c} @; {x = f(b,a),y = f(a,b),z = c}

Example. C-Unification
C-unify g(f(x,y),z) and g(f(f(a,b),f(b,a)),c), commutative f.

{g(f()my),z) ig; g(f(f(mb),f(b,a))),c)};@

!
{f(x,y) =L f(F(a,b),f(b,a)),z =5 ¢} @
{x iE;f(avb)vy i?Cf(baa)az ié C}§® {x ié;f(bva)ﬂ’ iéf(avb%z ié C};@
l l
{y = f(ba),z=(c}i{x=f(a,b)} {y=Cf(a,b), 22 c}i{x = f(b,a)}
l l
{z=¢ ¢} {x=f(a,b),y = f(b,a)} {z=¢) {x=f(b,a),y = f(a,b)}
l |
o;{x=f(a,b),y =f(b,a),z=c} @; {x = f(b,a),y = f(a,b),z=c}

Not minimal.

C-Unification: Termination, Soundness, Completeness

Theorem
For a C-unification problem P, the C-unification algorithm
terminates and computes a complete set of C-unifiers of P.

MCSUs Can Be Large

Example
> Problem: £(f (x1,x2), f(x3,x4)) =5 f(f(a,b), f(c.d)).

» mcsu contains 4! substitutions.

C-Unification Algorithm Is Not Minimal

» The algorithm, in general, does not return a minimal
complete set of C-unifiers.

» The obtained complete set can be further minimized,
removing redundant unifiers.

» Not clear how to design a C-unification algorithm that
computes a minimal complete set of unifiers directly.

Complexity of C-Unification and Matching

Theorem
The decision problem of C-matching and unification is
NP-complete.

ACU-Unification

ACU = {f(f(X,y),z) Nf(x,f(y,z)),f(x,y) Nf(yvx)7f(x7e) N’x}

1. Associativity, commutativity, unit element.
2. f is associative and commutative, e is the unit element.

Example: Elementary ACU-Unification

Elementary ACU-unification problem:

T = {f(x.f(x,5)) =acu f(2.f (2,2))}

Solving idea:
1. Associate with the equation in I' a homogeneous linear
Diophantine equation 2x + y = 3z.
2. The equation states that the number of new variables
introduced by a unifier ¢ in both sides of I'c must be the
same.

(Continues on the next slide.)

Example. Elementary ACU-Unification (Cont.)

3. Solve 2x +y = 3z over nonnegative integers. Three minimal
solutions:

x=1,y=1,z=1

x=0,y=3,z=1

x=3,y=0,z=2
Any other solution of the equation can be obtained as a
nonnegative linear combination of these three solutions.

(Continues on the next slide.)

Example. Elementary ACU-Unification (Cont.)

4. Introduce new variables vy, v,, v3 for each solution of the
Diophantine equation:

Xy Z
vi 1 1 1
V2 0 3 1
v 3 0 2

5. Each row corresponds to a unifier of T":

op={x v,y v, 2V}
oy ={x e,y f(v2,f(v2,12)), 2 v2}
o3 ={x = f(v3,f(v3,v3)), y = e, 2 f(v3,13) }

However, none of them is an mgu.

Example. Elementary ACU-Unification (Cont.)

6. To obtain an mgu, we should combine all three solutions:

Xy z
vi 1 11
1 %) 0 3 1
vi; 3 0 2

The columns indicate that the mgu we are looking for
should have

» in the binding for x one vy, zero v,, and three v5’s,
» in the binding for y one vy, three v,’s, and zero vs,
» in the binding for z one v, one v, and two v;’s

7. Hence, we can construct an mgu:

o={x=f(vi,f(v3,£(v3,v3))), ¥y = f(v1,.f (v2,f (v2,12))),
2o f(vi,f(v2,f(v3,v3))) }

Example: ACU-Unification with constants
» ACU-unification problem with constants
D= {f(x.f (%)) 2pcu f(a.f (z.f(2,2)))}
reduces to inhomogeneous linear Diophantine equation
S={2x+y=3z+1}.

» The minimal nontrivial natural solutions of S are (0, 1,0)
and (2,0,1).

Example: ACU-Unification with constants

» ACU-unification problem with constants

I'= {f(x,f(x,)))) iZCUf(aaf(Zaf(Zaz)))}

reduces to inhomogeneous linear Diophantine equation
S={2x+y=3z+1}.

» Every natural solution of S is obtained as the sum of one of
its minimal solutions and a solution of the corresponding
homogeneous LDE 2x +y = 3z.

» One element of the minimal complete set of unifiers of T is
obtained from the combination of one minimal solution of §
with the set of all minimal solutions of 2x + y = 3z.

Example: ACU-Unification with constants

» ACU-unification problem with constants
I = {f(x.f(5,9)) =hou f(af (oS (2:2))}
reduces to inhomogeneous linear Diophantine equation
S={2x+y=3z+1}.
» The minimal complete set of unifiers of I" is {01, 0, }, where

o1={x = f(v1,f(v3,f(v3,3))),
ye fla,f(vif(va,f(v2,2))),
20 f(vi,f(va,f(v3,v3)))}
oy = {x > fla,f(a,f(vi,f(v3,£(v3,v3))))),
o f,f(v2,f (v2,2)),
2 fla, f(vi,f(v2,f(v3,v3)))) }

ACU-Unification with constants

» If an ACU-unification problem contains more than one
constant, solve the corresponding inhomogeneous LDE for
each constant.

» The unifiers in the minimal complete set correspond to all
possible combinations of the minimal solutions of these
inhomogeneous equations.

ACU-Unification with constants

Example
XXy iZCU aabbb:
» Equation for a: 2x + y = 2. Minimal solutions: (1,0) and
(0,2).
» Corresponding unifiers: {x » a,y — e}, {x » e,y ~ aa}
» Equation for b: 2x + y = 3. Minimal solutions: (0,3) and
(1,1).
» Corresponding unifiers: {x — e,y —» bbb}, {x = b,y — b}
» Unifiers in the minimal complete set: {x — a,y — bbb},
{x—ab,y~ b}, {x— e,y aabbb}, {x » b,y — aab}.

From ACU to AC

Example

» How to solve 'y = {f(x,f(x,y)) =acf(2.f(2:2))}?
» We “know” how to solve

Ty = {f(x.f(x,y)) =acu f(z.f(z,2))}, but its mgu is not an
mgu for I'y.

Mgu of T',:

o= {x '—>f(V1,f(V3,f(V3,V3))), y '_)f(vbf(vZaf(VZva)))’
e f(vif(v2,f(v3,v3)))}

Unifier of T'y: ¢ = {x » vi,y = vi,z> v }.
» o is not more general modulo AC than .

v

v

From ACU to AC

Example

» |ldea: Take the mgu of I';.

» Compose it with all possible erasing substitutions that map
a subset of {v;,v,,v3} to the unit element.

» Restriction: The result of the composition should not map
x, y, and z to the unit element.

From ACU to AC

Example
Minimal complete set of unifiers for I';:

o1 ={x e fv.f(v3,.f(v3,v3))), y = fF (V1. f (v2, £ (v2,12))),
e f(vi,f(v2,f(v3,v3)))}
02 = {x = f(v3,f(v3,v3)), ¥y = f(v2,f (v2,12)),
20 f(va,f(v3,13))}
03 = {x = f(vi,f(v3,f(v3,v3))), y = vi, 2= f(v1,f(v3,v3)) }
o4 ={x = v,y = f(vi,f(v2,f (v2,12))), 2= f(vi,v2)}

U5={X'—>V1,y'—>V1,ZP—>V1}

How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:

[§ Evelyne Contejean and Hervé Devie.
An Efficient Incremental Algorithm for Solving Systems of
Linear Diophantine Equations.
Information and Computation 113(1): 143-172 (1994).

How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:

[§ Evelyne Contejean and Hervé Devie.
An Efficient Incremental Algorithm for Solving Systems of
Linear Diophantine Equations.
Information and Computation 113(1): 143-172 (1994).

Generalizes Fortenbacher’s Algorithm for solving a single
equation:

[§ Michael Clausen and Albrecht Fortenbacher.
Efficient Solution of Linear Diophantine Equations.
J. Symbolic Computation 8(1,2): 201-216 (1989).

Example. E-Unification of Type 0O

Example

» Equational theory: E = {f(e,x) » x, g(f(x,y)) ~ g(y)}.
» E-unification problem: T = {g(x) =1 g(e)}.

Example. E-Unification of Type 0

Example

» Equational theory: E = {f(e,x) » x, g(f(x,y)) ~ g(y)}.
» E-unification problem: T = {g(x) =1 g(e)}.
» Complete (why?) set of solutions:

oo ={x e}
o1 ={x~ f(x0,e)}
o2 ={x = f(x1.f(x0,€))}

On :{X Hf(xn—lvxa-n—l)}

Example. E-Unification of Type 0

Example
» Equational theory: E = {f(e,x) » x, g(f(x,y)) ~ g(y)}.
» E-unification problem: T = {g(x) =1 g(e)}.
» Complete (why?) set of solutions:
oo ={x— e}
o1 ={xf(x0,€)}
02 :{X Hf(th(x()ue))}

On :{X Hf(-xn—lvxa-n—l)}

» No mcsu. o; = é}(fﬁ_l{xl e} o ;{E ojfori>j.
Infinite descending chain: o > { Vo 1{9} o) >§‘}

Example. E-Unification of Type 0

Example (Cont.)
Why does o 5 a1 5 0, 31 ... imply that there is no mesu?

>

>

>

LetS= {0'0,0'1, .. }

Let S’ be an arbitrary complete set of unifiers of I.

Since S is complete, for any ¢ € S’ there exists o; € S such
that o; <t .

Since o121 <t o7, we get o1y <t 0.

On the other hand, since §’ is complete, there exists 1 € §’
such that n g,{;‘} Oit]-

Hence, 7 <,{5"} ¥ which implies that §" is not minimal.

Specific vs General Results

For each specific equational theory separately studying
» decidability,
» unification type,
» unification algorithm/procedure.

Can one study these problems for bigger classes of equational
theories?

Specific vs General Results

For each specific equational theory separately studying
» decidability,
» unification type,
» unification algorithm/procedure.

Can one study these problems for bigger classes of equational
theories?

General Results

In general, unification modulo equational theories
» is undecidable,
» unification type of a given theory is undecidable,

» admits a complete unification procedure
(Gallier & Snyder, called an universal E-unification
procedure).

General Results: Universal E-Unification Procedure

Universal E-unification procedure Ug.
Rules:

» Trivial, Orient, Decomposition, Variable Elimination
from U, plus

» Lazy Paramodulation:
{e[u]y UP';S = {1 =" u, e[r]} UP';S,

for a fresh variant of the identity I ~ r from E u E~', where
» e[u] is an equation where the term u occurs,
» u is not a variable,

» if 1 is not a variable, then the top symbol of / and u are the
same.

Universal E-Unification Procedure. Control

In order to solve a unification problem I" modulo a given E:
» Create an initial system I'; @.

» Apply successively rules from Ug, building a complete tree
of derivations.

» No other inference rule may be applied to the equation
1= u that is generated by the Lazy Paramodulation rule
before it is subjected to a Decomposition step.

Universal E-Unification Procedure. Example

E={f(a,b) ~a,a~b}.
Unification problem: {f(x,x) =% x}.

Computing a unifier {x — a} by the universal procedure:

{f(x,x) =p x}; @ ==1p {f(a,b) = f(x,X),a 2 x}; @
.? .7 .?
=—plazpx,bzpx,azgx}; D
=0 {xi?Ea’bil?i-xaai?Ex}; 1]
=g {b i}; a,a il?i- a}; {x=a}
=LP {a i;:" a, b:; b> aiZ? a}; {xia}

—7 &;{xza}

Universal E-Unification Procedure: Assessment

Pros and cons of the universal procedure:
» Pros: Is sound and complete. Can be used for any E.

» Cons: Very inefficient. Usually does not yield a decision
procedure or a (minimal) E-unification algorithm even for
unitary or finitary theories with decidable unification.

General Results

More useful results can be obtained by imposing additional
restrictions on equational theories:

» Syntactic approaches: Restricting syntactic form of the
identities defining equational theories.

» Semantic approaches: Depend on properties of the free
algebras defined by the equational theory.

	Motivation
	Preliminaries
	Syntactic Unification
	
	

	Equational Unification
	Motivation
	Equational Theories, Reformulations of Notions
	Unification Type, Kinds of Unification
	Results for Specific Theories
	
	
	

	General Results

