
Explaining Concepts in
Compositional Type-Based Program

Analysis:
Principality, Intersection Types,

Expansion, etc.
Joe Wells

Heriot-Watt University

Sébastien Carlier and Christian Haack helped with these overheads.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.1/46

Overview.
Basic concepts of types.

Type polymorphism.

Compositionality and principality.

Case study: Type error slicing made possible by
compositionality.

Case study: Getting principal typings in the l-calculus
with polymorphism.

Conclusion.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.2/46

What are types?

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.3/46

What are types?
Types are used as predicates or specifications
connected with some semantics.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.3/46

What are types?
Types are used as predicates or specifications
connected with some semantics.

Types are usually syntactic names of some of the
conceivable predicates/specifications.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.3/46

What are types?
Types are used as predicates or specifications
connected with some semantics.

Types are usually syntactic names of some of the
conceivable predicates/specifications.

Usually, rules of a type system associate types with
terms that satisfy or refine them.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.3/46

What are types?
Types are used as predicates or specifications
connected with some semantics.

Types are usually syntactic names of some of the
conceivable predicates/specifications.

Usually, rules of a type system associate types with
terms that satisfy or refine them.

Non-characterizers of types:

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.3/46

What are types?
Types are used as predicates or specifications
connected with some semantics.

Types are usually syntactic names of some of the
conceivable predicates/specifications.

Usually, rules of a type system associate types with
terms that satisfy or refine them.

Non-characterizers of types:

Types can be used for description or prescription.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.3/46

What are types?
Types are used as predicates or specifications
connected with some semantics.

Types are usually syntactic names of some of the
conceivable predicates/specifications.

Usually, rules of a type system associate types with
terms that satisfy or refine them.

Non-characterizers of types:

Types can be used for description or prescription.

Types may be intended for reading by humans or
computers.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.3/46

What are types?
Types are used as predicates or specifications
connected with some semantics.

Types are usually syntactic names of some of the
conceivable predicates/specifications.

Usually, rules of a type system associate types with
terms that satisfy or refine them.

Non-characterizers of types:

Types can be used for description or prescription.

Types may be intended for reading by humans or
computers.

Types may be easy or hard to determine.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.3/46

Why find types automatically?
Without type inference, explicit types might be needed
at any program point. In the case of higher-order
programming, they would get big, and it would be too
tedious to type them.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.4/46

Why find types automatically?
Without type inference, explicit types might be needed
at any program point. In the case of higher-order
programming, they would get big, and it would be too
tedious to type them.

For programming flexibility, it is best to automatically
calculate optimal types, because programmers might
write type information that is not “most general”,
preventing typable programs from being accepted
and/or making modules reusable in fewer combinations.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.4/46

Why find types automatically?
Without type inference, explicit types might be needed
at any program point. In the case of higher-order
programming, they would get big, and it would be too
tedious to type them.

For programming flexibility, it is best to automatically
calculate optimal types, because programmers might
write type information that is not “most general”,
preventing typable programs from being accepted
and/or making modules reusable in fewer combinations.

Programming language type systems are getting more
and more complex (e.g., Cyclone, a “safe C”) and it is
getting harder for programmers to supply the types.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.4/46

An example program.
This Standard ML (SML) program:

fun twice f x = f (f x);
fun id z = z;
twice (twice id);

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.5/46

An example program.
This Standard ML (SML) program:

fun twice f x = f (f x);
fun id z = z;
twice (twice id);

is the same as this λ-term:
@

λt.

@

λi.

@

t @

t i

λy.

y

λf.

λx.

@

f @

f x

= (λt.(λi.t (t i)) (λy.y))(λf.λx.f (f x))

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.5/46

Example: Types.
Our example analyzed using the simply typed λ-calculus:

@ o → o

λt ((o → o) → (o → o)) → (o → o)

@ o → o

λi (o → o) → (o → o)

@ o → o

t (o → o) → (o → o) @ o → o

t (o → o) → (o → o) i o → o

λz o → o

z o

λf (o → o) → (o → o)

λx o → o

@ o

f o → o @ o

f o → o x o

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.6/46

Example: Flow.
Our example analyzed using 0CFA [Shivers, 1991]:

@

λt

@

λi

@

t @

t i

λz

z

λf

λx

@

f @

f x

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.7/46

Type analysisis flow analysis.
Illustrating how the type and flow analyses are intertwined:

@ o→o

λt ((o→o)→(o→o))→(o→o)

@ o→o

λi (o→o)→(o→o)

@ o→o

t (o→o)→(o→o) @ o→o

t (o→o)→(o→o) i o→o

λz o→o

z o

λf (o→o)→(o→o)

λx o→o

@ o

f o→o @ o

f o→o x o

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.8/46

Overview.
Basic concepts of types.

Type polymorphism.

Compositionality and principality.

Case study: Type error slicing made possible by
compositionality.

Case study: Getting principal typings in the l-calculus
with polymorphism.

Conclusion.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.9/46

What is type polymorphism?
An important feature mitigating type system inflexibility is
type polymorphism, which:

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.10/46

What is type polymorphism?
An important feature mitigating type system inflexibility is
type polymorphism, which:

Allows a program fragment to be viewed in different
ways, depending on where its output is used or where
its inputs come from.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.10/46

What is type polymorphism?
An important feature mitigating type system inflexibility is
type polymorphism, which:

Allows a program fragment to be viewed in different
ways, depending on where its output is used or where
its inputs come from.

Is essential for code reuse [Reynolds, 1974] and
abstract data types [Mitchell and Plotkin, 1988].

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.10/46

What is type polymorphism?
An important feature mitigating type system inflexibility is
type polymorphism, which:

Allows a program fragment to be viewed in different
ways, depending on where its output is used or where
its inputs come from.

Is essential for code reuse [Reynolds, 1974] and
abstract data types [Mitchell and Plotkin, 1988].

Is traditionally treated formally using “for all” (∀)
quantifiers [Girard, 1972] or “there exists” (∃) quantifiers
and/or by a notion of subtyping (T1 ≤ T2).

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.10/46

Example: “for all” quantifiers.

val swap∀a,b.(a×b)→(b×a) = (fn (xa, yb) ⇒ (yb, xa));

val pair1int×bool = (1, true);

val pair2real×real = (2.7, 9.9);

(swap(int×bool)→(bool×int) pair1,

swap(real×real)→(real×real) pair2);

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.11/46

Example: “for all” quantifiers.

val swap∀a,b.(a×b)→(b×a) = (fn (xa, yb) ⇒ (yb, xa));

val pair1int×bool = (1, true);

val pair2real×real = (2.7, 9.9);

(swap(int×bool)→(bool×int) pair1,

swap(real×real)→(real×real) pair2);

Implicit typing discovers the types automatically [Damas
and Milner, 1982] (at least for the above example).

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.11/46

Example: “for all” quantifiers.

val swap∀a,b.(a×b)→(b×a) = (fn (xa, yb) ⇒ (yb, xa));

val pair1int×bool = (1, true);

val pair2real×real = (2.7, 9.9);

(swap(int×bool)→(bool×int) pair1,

swap(real×real)→(real×real) pair2);

Implicit typing discovers the types automatically [Damas
and Milner, 1982] (at least for the above example).

In body of polymorphic function, the usage types are
hidden behind type variables.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.11/46

Example: “there exists” quantifiers.

val closure1int×(int→bool) = (5, (fn x ⇒ x > 1));

val closure2bool×(bool→bool) = (true, (fn x ⇒ not x));

val closure = if b then closure1∃a.a×(a→bool)

else closure2∃a.a×(a→bool);

val resultbool = (#2 closure)a→bool(#1 closure)a;

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.12/46

Example: “there exists” quantifiers.

val closure1int×(int→bool) = (5, (fn x ⇒ x > 1));

val closure2bool×(bool→bool) = (true, (fn x ⇒ not x));

val closure = if b then closure1∃a.a×(a→bool)

else closure2∃a.a×(a→bool);

val resultbool = (#2 closure)a→bool(#1 closure)a;

Dual of universal quantifier.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.12/46

Example: “there exists” quantifiers.

val closure1int×(int→bool) = (5, (fn x ⇒ x > 1));

val closure2bool×(bool→bool) = (true, (fn x ⇒ not x));

val closure = if b then closure1∃a.a×(a→bool)

else closure2∃a.a×(a→bool);

val resultbool = (#2 closure)a→bool(#1 closure)a;

Dual of universal quantifier.

Usage site does not know source types.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.12/46

Polymorphism via intersection types.
Type polymorphism by listing usage types [Coppo,
Dezani-Ciancaglini, and Venneri, 1980].

[℄ [℄[℄ [℄ [℄

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.13/46

Polymorphism via intersection types.
Type polymorphism by listing usage types [Coppo,
Dezani-Ciancaglini, and Venneri, 1980].

Example comparing ∀-quantified and intersection types:

∀-quantified types: (fn x ⇒ x)∀a.(a→a)

intersection types: (fn x ⇒ x)(int→int)∩(real→real)

Example is semantically like ∀a ∈ {int, real}.a→ a, but
the typing rules have significant practical differences.

[℄ [℄[℄ [℄ [℄

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.13/46

Polymorphism via intersection types.
Type polymorphism by listing usage types [Coppo,
Dezani-Ciancaglini, and Venneri, 1980].

Example comparing ∀-quantified and intersection types:

∀-quantified types: (fn x ⇒ x)∀a.(a→a)

intersection types: (fn x ⇒ x)(int→int)∩(real→real)

Example is semantically like ∀a ∈ {int, real}.a→ a, but
the typing rules have significant practical differences.

Named “intersection types” because in traditional model
theory, semantic denotations [T1℄ and [T2℄ are program
fragment sets and [T1 ∩ T2℄ = [T1℄ ∩ [T2℄ (usually).

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.13/46

Example: Intersection types.

val swap

„

∩
(int× bool) → (bool× int)
(real× real) → (real× real)

«

= (fn (x

int

real, y

bool

real) ⇒ (y

bool

real, x

int

real));

val pair1int×bool = (1, true);

val pair2real×real = (2.7, 9.9);

(swap(int×bool)→(bool×int) pair1,

swap(real×real)→(real×real) pair2);

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.14/46

Example: Intersection types.

val swap

„

∩
(int× bool) → (bool× int)
(real× real) → (real× real)

«

= (fn (x

int

real, y

bool

real) ⇒ (y

bool

real, x

int

real));

val pair1int×bool = (1, true);

val pair2real×real = (2.7, 9.9);

(swap(int×bool)→(bool×int) pair1,

swap(real×real)→(real×real) pair2);

All types can be discovered automatically [van Bakel,
1993; Jim, 1996; Kfoury and Wells, 1999]. (Also Ronchi
Della Rocca [1988].)

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.14/46

Example: Intersection types.

val swap

„

∩
(int× bool) → (bool× int)
(real× real) → (real× real)

«

= (fn (x

int

real, y

bool

real) ⇒ (y

bool

real, x

int

real));

val pair1int×bool = (1, true);

val pair2real×real = (2.7, 9.9);

(swap(int×bool)→(bool×int) pair1,

swap(real×real)→(real×real) pair2);

All types can be discovered automatically [van Bakel,
1993; Jim, 1996; Kfoury and Wells, 1999]. (Also Ronchi
Della Rocca [1988].)

Exposes usage types throughout.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.14/46

Example: Union types.

val closure1int×(int→bool) = (5, (fn x ⇒ x > 1));

val closure2bool×(bool→bool) = (true, (fn x ⇒ not x));

val closure = if b then closure1

“

∪
int× (int→ bool)
bool× (bool→ bool)

”

else closure2

“

∪
int× (int→ bool)
bool× (bool→ bool)

”

;

val resultbool = (#2 closure)
int→ bool

bool → bool(#1 closure)
int

bool;

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.15/46

Example: Union types.

val closure1int×(int→bool) = (5, (fn x ⇒ x > 1));

val closure2bool×(bool→bool) = (true, (fn x ⇒ not x));

val closure = if b then closure1

“

∪
int× (int→ bool)
bool× (bool→ bool)

”

else closure2

“

∪
int× (int→ bool)
bool× (bool→ bool)

”

;

val resultbool = (#2 closure)
int→ bool

bool → bool(#1 closure)
int

bool;

Dual of intersection types.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.15/46

Example: Union types.

val closure1int×(int→bool) = (5, (fn x ⇒ x > 1));

val closure2bool×(bool→bool) = (true, (fn x ⇒ not x));

val closure = if b then closure1

“

∪
int× (int→ bool)
bool× (bool→ bool)

”

else closure2

“

∪
int× (int→ bool)
bool× (bool→ bool)

”

;

val resultbool = (#2 closure)
int→ bool

bool → bool(#1 closure)
int

bool;

Dual of intersection types.

Exposes usage types throughout.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.15/46

What is the rank of polymorphism?
Rank is generally relative to some polymorphic type
constructor C, e.g., ∩ or ∀. Rank counts the number of
“→” occurrences an occurrence of C is inside the left
argument of [Leivant, 1983].

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.16/46

What is the rank of polymorphism?
Rank is generally relative to some polymorphic type
constructor C, e.g., ∩ or ∀. Rank counts the number of
“→” occurrences an occurrence of C is inside the left
argument of [Leivant, 1983].

Examples:

Type
→
a b

∩
→
a b

→
c b

→
→
d ∀a

→
a a

e
→

→
∩

a b

d

e

Rank 0 1 2 3

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.16/46

What is the rank of polymorphism?
Rank is generally relative to some polymorphic type
constructor C, e.g., ∩ or ∀. Rank counts the number of
“→” occurrences an occurrence of C is inside the left
argument of [Leivant, 1983].

Examples:

Type
→
a b

∩
→
a b

→
c b

→
→
d ∀a

→
a a

e
→

→
∩

a b

d

e

Rank 0 1 2 3

Rank-k bounds how far into the future evaluation a type
system can look in making distinctions when predicting
behavior. The rank-k restrictions of intersection types
are decidable.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.16/46

Typing power of intersection types.

F: System F.
Λk: rank-k System F.
⋂

: intersection types.
⋂

k: rank-k of
⋂

.
Decidable.
Undecidable.

ML

Λ2

⋂

2

Λ3

⋂

3

...
F

· · ·
⋂

(Decision procedure complexity now known [Kfoury,
Mairson, Turbak, and Wells, 1999].)

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.17/46

Flexibility of intersection types.

M =













fun self_apply2 z ⇒ (z z) z;

fun apply f x ⇒ f x;

fun reverse_apply y g ⇒ g y;

fun id w ⇒ w;

(self_apply2 apply not true,

self_apply2 reverse_apply id false not);













Program fragment M safely computes (false, true).

Urzyczyn [1997] proved that M is not typable in Fω, and
Fω is the most powerful type system with “for all”
quantifiers [Giannini, Honsell, and Ronchi Della Rocca,
1993].

M needs only rank-3 intersection types.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.18/46

Program analysis with intersection types.
Intersection type systems have been developed for many
kinds of program analysis aimed at justifying compiler
optimizations to produce better machine code.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.19/46

Program analysis with intersection types.
Intersection type systems have been developed for many
kinds of program analysis aimed at justifying compiler
optimizations to produce better machine code.

Flow [Banerjee, 1997].

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.19/46

Program analysis with intersection types.
Intersection type systems have been developed for many
kinds of program analysis aimed at justifying compiler
optimizations to produce better machine code.

Flow [Banerjee, 1997].

Dead code [Damiani and Giannini, 2000; Damiani,
2003].

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.19/46

Program analysis with intersection types.
Intersection type systems have been developed for many
kinds of program analysis aimed at justifying compiler
optimizations to produce better machine code.

Flow [Banerjee, 1997].

Dead code [Damiani and Giannini, 2000; Damiani,
2003].

Strictness [Solberg et al., 1994; Jensen, 1998].

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.19/46

Program analysis with intersection types.
Intersection type systems have been developed for many
kinds of program analysis aimed at justifying compiler
optimizations to produce better machine code.

Flow [Banerjee, 1997].

Dead code [Damiani and Giannini, 2000; Damiani,
2003].

Strictness [Solberg et al., 1994; Jensen, 1998].

Totality [Solberg et al., 1994; Coppo et al., 2002].

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.19/46

Program analysis with intersection types.
Intersection type systems have been developed for many
kinds of program analysis aimed at justifying compiler
optimizations to produce better machine code.

Flow [Banerjee, 1997].

Dead code [Damiani and Giannini, 2000; Damiani,
2003].

Strictness [Solberg et al., 1994; Jensen, 1998].

Totality [Solberg et al., 1994; Coppo et al., 2002].

Intersection types seem to have the potential to be a
general, flexible framework for many program analyses.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.19/46

Overview.
Basic concepts of types.

Type polymorphism.

Compositionality and principality.

Case study: Type error slicing made possible by
compositionality.

Case study: Getting principal typings in the l-calculus
with polymorphism.

Conclusion.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.20/46

What is compositional analysis?
Compositional analysis means it always holds that the
parts can be analyzed independently and the analysis
results can be composed without reinspecting the parts.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.21/46

What is compositional analysis?
Compositional analysis means it always holds that the
parts can be analyzed independently and the analysis
results can be composed without reinspecting the parts.

Compositional analysis results are always the best
information for any possible usage context. If a part is
unchanged and its analysis result is available,
reanalyzing it can not help. Only new combinations
need to be checked.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.21/46

What is compositional analysis?
Compositional analysis means it always holds that the
parts can be analyzed independently and the analysis
results can be composed without reinspecting the parts.

Compositional analysis results are always the best
information for any possible usage context. If a part is
unchanged and its analysis result is available,
reanalyzing it can not help. Only new combinations
need to be checked.

Compositional analysis is better for dynamic,
incremental, and modular software assembly, but many
type systems do not support compositional analysis.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.21/46

Why compositional analysis?
For efficiency, minimal analysis/compilation work
needed on incremental changes. Old results for
portions can be reliably reused.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.22/46

Why compositional analysis?
For efficiency, minimal analysis/compilation work
needed on incremental changes. Old results for
portions can be reliably reused.

Reliability of incrementally modified systems. The
analysis obtained by incremental changes (such as
modifying one file and recompiling) should be identical
to reanalyzing the entire system.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.22/46

Why compositional analysis?
For efficiency, minimal analysis/compilation work
needed on incremental changes. Old results for
portions can be reliably reused.

Reliability of incrementally modified systems. The
analysis obtained by incremental changes (such as
modifying one file and recompiling) should be identical
to reanalyzing the entire system.

Modern systems like Java and C♯ have broken the link
needed by separate compilation between the
compile-time and link-time environments, so it is better
not to use any compile-time environment.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.22/46

Why compositional analysis?
For efficiency, minimal analysis/compilation work
needed on incremental changes. Old results for
portions can be reliably reused.

Reliability of incrementally modified systems. The
analysis obtained by incremental changes (such as
modifying one file and recompiling) should be identical
to reanalyzing the entire system.

Modern systems like Java and C♯ have broken the link
needed by separate compilation between the
compile-time and link-time environments, so it is better
not to use any compile-time environment.

A network node without global knowledge can gradually
learn more about other entities and predict possible
failures as soon as sufficient information is available.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.22/46

What is a typing?
A type system has typing judgements that assign
interesting properties to program fragments.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.23/46

What is a typing?
A type system has typing judgements that assign
interesting properties to program fragments.

Conventional typing judgements often look like this:

A ⊢ M : T

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.23/46

What is a typing?
A type system has typing judgements that assign
interesting properties to program fragments.

Conventional typing judgements often look like this:

A ⊢ M : T

To encourage better thinking, we write this instead:

M : 〈A ⊢ T 〉

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.23/46

What is a typing?
A type system has typing judgements that assign
interesting properties to program fragments.

Conventional typing judgements often look like this:

A ⊢ M : T

To encourage better thinking, we write this instead:

M : 〈A ⊢ T 〉

typing
︷ ︸︸ ︷

untyped term type environment result type

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.23/46

What is a typing?
A type system has typing judgements that assign
interesting properties to program fragments.

Conventional typing judgements often look like this:

A ⊢ M : T

To encourage better thinking, we write this instead:

M : 〈A ⊢ T 〉

typing
︷ ︸︸ ︷

untyped term type environment result type

A type system can thus be seen as a set of pairs of the
form (M : Θ) where Θ is usually of the form 〈A ⊢ T 〉.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.23/46

What is a principal typing?
Let S be some type system.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.24/46

What is a principal typing?
Let S be some type system.

The statement Θ1 ≤S Θ2 (“Θ1 is at least as strong as Θ2

in system S”) means M : Θ1 implies M : Θ2 for every M .

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.24/46

What is a principal typing?
Let S be some type system.

The statement Θ1 ≤S Θ2 (“Θ1 is at least as strong as Θ2

in system S”) means M : Θ1 implies M : Θ2 for every M .

A typing Θ for term M is principal exactly when Θ is at
least as strong as all typings for M [Wells, 2002].

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.24/46

What is a principal typing?
Let S be some type system.

The statement Θ1 ≤S Θ2 (“Θ1 is at least as strong as Θ2

in system S”) means M : Θ1 implies M : Θ2 for every M .

A typing Θ for term M is principal exactly when Θ is at
least as strong as all typings for M [Wells, 2002].

Do not confuse this with the weaker notion of “principal
type” with fixed free variable type assumptions often
mentioned for the Hindley/Milner (HM) type system
(Haskell, OCaml, SML, etc.).

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.24/46

What is a principal typing?
Let S be some type system.

The statement Θ1 ≤S Θ2 (“Θ1 is at least as strong as Θ2

in system S”) means M : Θ1 implies M : Θ2 for every M .

A typing Θ for term M is principal exactly when Θ is at
least as strong as all typings for M [Wells, 2002].

Do not confuse this with the weaker notion of “principal
type” with fixed free variable type assumptions often
mentioned for the Hindley/Milner (HM) type system
(Haskell, OCaml, SML, etc.).

Principal typings (PTs) allow compositional analysis.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.24/46

What is a principal typing?
Let S be some type system.

The statement Θ1 ≤S Θ2 (“Θ1 is at least as strong as Θ2

in system S”) means M : Θ1 implies M : Θ2 for every M .

A typing Θ for term M is principal exactly when Θ is at
least as strong as all typings for M [Wells, 2002].

Do not confuse this with the weaker notion of “principal
type” with fixed free variable type assumptions often
mentioned for the Hindley/Milner (HM) type system
(Haskell, OCaml, SML, etc.).

Principal typings (PTs) allow compositional analysis.

Until Wells [2002], each system with PTs had its own
definition via syntactic operations like substitution,
subtyping, weakening, etc.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.24/46

Which systems have principal typings?
Many type systems with ∀-quantifiers (e.g., HM and
System F) do not have PTs [Wells, 2002].

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.25/46

Which systems have principal typings?
Many type systems with ∀-quantifiers (e.g., HM and
System F) do not have PTs [Wells, 2002].

The popular W algorithm [Damas and Milner, 1982] for
HM is not compositional and compositional analysis for
HM can not use HM typings for intermediate results.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.25/46

Which systems have principal typings?
Many type systems with ∀-quantifiers (e.g., HM and
System F) do not have PTs [Wells, 2002].

The popular W algorithm [Damas and Milner, 1982] for
HM is not compositional and compositional analysis for
HM can not use HM typings for intermediate results.
Fortunately, a restricted rank-2 intersection type
system [Damas, 1985] types the same terms and has
PTs.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.25/46

Which systems have principal typings?
Many type systems with ∀-quantifiers (e.g., HM and
System F) do not have PTs [Wells, 2002].

The popular W algorithm [Damas and Milner, 1982] for
HM is not compositional and compositional analysis for
HM can not use HM typings for intermediate results.
Fortunately, a restricted rank-2 intersection type
system [Damas, 1985] types the same terms and has
PTs.

Getting PTs usually needs types or type constraints that
closely follow the language semantics. For the
λ-calculus, adding intersection types can generally gain
PTs (e.g., [Margaria and Zacchi, 1995]).

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.25/46

Implications of not having PTs.
For example, HM’s lack of principal typings means an HM
analysis algorithm must do one of these:

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.26/46

Implications of not having PTs.
For example, HM’s lack of principal typings means an HM
analysis algorithm must do one of these:

Be incomplete (failing on some typable terms).

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.26/46

Implications of not having PTs.
For example, HM’s lack of principal typings means an HM
analysis algorithm must do one of these:

Be incomplete (failing on some typable terms).
Be noncompositional (not strictly bottom-up). For
example, the W algorithm [Damas and Milner, 1982] is
noncompositional because for (let x = M in N) it first
analyzes M and then uses the result in analyzing N .

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.26/46

Implications of not having PTs.
For example, HM’s lack of principal typings means an HM
analysis algorithm must do one of these:

Be incomplete (failing on some typable terms).
Be noncompositional (not strictly bottom-up). For
example, the W algorithm [Damas and Milner, 1982] is
noncompositional because for (let x = M in N) it first
analyzes M and then uses the result in analyzing N .
Not use HM typings for intermediate results. E.g., the
typing of (xx) in the Chap. 1 system of Damas [1985]:

〈(x : a, x : a→ b) ⊢ b〉

This is essentially intersection types, i.e.:

〈(x : a ∩ (a→ b)) ⊢ b〉

Essentially the same was done by Shao and Appel
[1993] and Bernstein and Stark [1995].

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.26/46

Overview.
Basic concepts of types.

Type polymorphism.

Compositionality and principality.

Case study: Type error slicing made possible by
compositionality.

Case study: Getting principal typings in the l-calculus
with polymorphism.

Conclusion.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.27/46

Case study: Type error slicing.
I now will show by examples a case study where doing an
analysis compositionally made things much easier.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.28/46

Case study: Type error slicing.
I now will show by examples a case study where doing an
analysis compositionally made things much easier.

The system does type error slicing [Haack and Wells,
2004], which means it analyzes a untypable term and
outputs a minimal untypable slice of the term to explain the
type error.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.28/46

Case study: Type error slicing.
I now will show by examples a case study where doing an
analysis compositionally made things much easier.

The system does type error slicing [Haack and Wells,
2004], which means it analyzes a untypable term and
outputs a minimal untypable slice of the term to explain the
type error.

The system I will describe uses a type system that types
the same terms as HM, but uses intersection types instead
of “for all” quantifiers internally, so it is compositional. This
made it much easier to generate and solve constraints.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.28/46

Type error example.
val average = fn weight => fn list =>
let val iterator = fn (x,(sum,length)) =>

(sum + weight x, length + 1)
val (sum,length) = foldl iterator (0,0) list

in sum div length end

val find_best = fn weight => fn lists =>
let val average = average weight

val iterator = fn (list,(best,max)) =>
let val avg_list = average list
in if avg_list > max then

(list,avg_list)
else
(best,max)

end
val (best,_) = foldl iterator (nil,0) lists
in best end

val find_best_simple = find_best 1

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.29/46

Wrong type error location.
val average = fn weight => fn list =>
let val iterator = fn (x,(sum,length)) =>

(sum + weight x, length + 1)
val (sum,length) = foldl iterator (0,0) list

in sum div length end

val find_best = fn weight => fn lists =>
let val average = average weight

val iterator = fn (list,(best,max)) =>
let val avg_list = average list
in if avg_list > max then

(list,avg_list)
else
(best,max)

end
val (best,_) = foldl iterator (nil,0) lists
in best end

val find_best_simple = find_best 1

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.30/46

Another wrong type error location.
val average = fn weight => fn list =>
let val iterator = fn (x,(sum,length)) =>

(sum + weight x, length + 1)
val (sum,length) = foldl iterator (0,0) list

in sum div length end

val find_best = fn weight => fn lists =>
let val average = average weight

val iterator = fn (list,(best,max)) =>
let val avg_list = average list
in if avg_list > max then

(list,avg_list)
else
(best,max)

end
val (best,_) = foldl iterator (nil,0) lists
in best end

val find_best_simple = find_best 1

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.31/46

Correct type error location.
val average = fn weight => fn list =>
let val iterator = fn (x,(sum,length)) =>

(sum + weight x, length + 1)
val (sum,length) = foldl iterator (0,0) list

in sum div length end

val find_best = fn weight => fn lists =>
let val average = average weight

val iterator = fn (list,(best,max)) =>
let val avg_list = average list
in if avg_list > max then

(list,avg_list)
else
(best,max)

end
val (best,_) = foldl iterator (nil,0) lists
in best end

val find_best_simple = find_best 1

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.32/46

Type error slice.

type constructor clash,
endpoints: function vs. int

(.. val average = fn weight =>
(.. weight (..) ..)

.. val find_best = fn weight =>
(.. average weight ..)

.. find_best 1 ..)

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.33/46

A possible fix.

type constructor clash,
endpoints: function vs. int

(.. val average = fn weight =>
(.. weight (..) ..)

.. val find_best = fn weight =>
(.. average weight ..)

.. find_best 1 ..)

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.34/46

A possible fix.

type constructor clash,
endpoints: function vs. int

(.. val average = fn weight =>
(.. weight * (..) ..)

.. val find_best = fn weight =>
(.. average weight ..)

.. find_best 1 ..)

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.34/46

Another possible fix.

type constructor clash,
endpoints: function vs. int

(.. val average = fn weight =>
(.. weight (..) ..)

.. val find_best = fn weight =>
(.. average weight ..)

.. find_best 1 ..)

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.35/46

Another possible fix.

type constructor clash,
endpoints: function vs. int

(.. val average = fn weight =>
(.. weight (..) ..)

.. val find_best = fn weight =>
(.. average weight ..)

.. find_best (fn x => x) ..)

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.35/46

Yet another possible fix.

type constructor clash,
endpoints: function vs. int

(.. val average = fn weight =>
(.. weight (..) ..)

.. val find_best = fn weight =>
(.. average weight ..)

.. find_best 1 ..)

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.36/46

Yet another possible fix.

type constructor clash,
endpoints: function vs. int

(.. val average = fn weight =>
(.. weight (..) ..)

.. val find_best = fn weight =>
(.. average (fn x => weight * x) ..)

.. find_best 1 ..)

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.36/46

Overview.
Basic concepts of types.

Type polymorphism.

Compositionality and principality.

Case study: Type error slicing made possible by
compositionality.

Case study: Getting principal typings in thel-calculus with polymorphism.

Conclusion.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.37/46

Case study: Intersection type inference.
I will now present some details on how to actually do
compositional type inference for a system that has type
polymorphism.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.38/46

Case study: Intersection type inference.
I will now present some details on how to actually do
compositional type inference for a system that has type
polymorphism.

This involves inferring types using both ordinary function
types and intersection types to provide polymorphism.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.38/46

Case study: Intersection type inference.
I will now present some details on how to actually do
compositional type inference for a system that has type
polymorphism.

This involves inferring types using both ordinary function
types and intersection types to provide polymorphism.

The key mechanism to understand is expansion, which is
presented here via a well chosen example.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.38/46

A problematic type inference example.
Consider typing this example λ-term:

M = (λx.x (λy.y z))
︸ ︷︷ ︸

N

(λf.λx.f (f x))
︸ ︷︷ ︸

P

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.39/46

A problematic type inference example.
Consider typing this example λ-term:

M = (λx.x (λy.y z))
︸ ︷︷ ︸

N

(λf.λx.f (f x))
︸ ︷︷ ︸

P

In an intersection type system, the usual principal typings of
N and P are:

N : 〈(z : a) ⊢ T1 → c〉 where T1 = ((a → b) → b) → c

P : 〈() ⊢ T2〉 where T2 = ((e → f) ∩ (d → e)) → (d → f)

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.39/46

A problematic type inference example.
Consider typing this example λ-term:

M = (λx.x (λy.y z))
︸ ︷︷ ︸

N

(λf.λx.f (f x))
︸ ︷︷ ︸

P

In an intersection type system, the usual principal typings of
N and P are:

N : 〈(z : a) ⊢ T1 → c〉 where T1 = ((a → b) → b) → c

P : 〈() ⊢ T2〉 where T2 = ((e → f) ∩ (d → e)) → (d → f)

To type M , we must find derivable judgements such that:

N : 〈(z : T ′′) ⊢ T → T ′〉 P : 〈() ⊢ T 〉

They ought to be obtainable from the principal typings.
Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.39/46

Can we unify the example types? (1)
Can we unify T1 and T2 merely by substitution?

T1 = ((a→b) → b) → c

T2 = ((e→f) ∩ (d→e)) → (d → f)

T1 = →

→

→

a b

b

c

T2 = →

∩

→

e f

→

d e

→

d f

Problem: clash between → and ∩.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.40/46

Can we unify the example types? (1)
Can we unify T1 and T2 merely by substitution?

T1 = ((a→b) → b) → c

T2 = ((e→f) ∩ (d→e)) → (d → f)

T1 = →

→

→

a b

b

c

T2 = →

∩

→

e f

→

d e

→

d f

Problem: clash between → and ∩.

Could we use T ∩ T = T to make the intersection go away?

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.40/46

Can we unify the example types? (2)
If using T ∩ T = T , we now have 3 types to unify together:

→

→

→

a b

b

c

→

∩

→

e f

→

d e

→

d f

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.41/46

Can we unify the example types? (2)
If using T ∩ T = T , we now have 3 types to unify together:

→

→

→

a b

b

c

→

∩

→

e f

→

d e

→

d f

Oh, no! We cannot solve a→ b = b (without recursive types).

→

→

a b

b

→

e f

→

d e

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.41/46

Solving the example with expansion.
Instead, we do expansion [Coppo, Dezani-Ciancaglini, and
Venneri, 1980] on the typing of N to solve the problem:

N : 〈 (z : a) ⊢(((a → b) → b) → c) → c〉

↓

N : 〈(z : a1 ∩ a2) ⊢(((a1 → b1) → b1) ∩ ((a2 → b2) → b2) → c) → c〉

P : 〈 () ⊢ (e → f) ∩ (d → e) → (d → f)〉

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.42/46

Solving the example with expansion.
Instead, we do expansion [Coppo, Dezani-Ciancaglini, and
Venneri, 1980] on the typing of N to solve the problem:

N : 〈 (z : a) ⊢(((a → b) → b)
︸ ︷︷ ︸

→ c) → c〉

↓

N : 〈(z : a1 ∩ a2) ⊢(((a1 → b1) → b1)
︷ ︸︸ ︷

∩ ((a2 → b2) → b2)
︷ ︸︸ ︷

→ c) → c〉

P : 〈 () ⊢ (e → f) ∩ (d → e) → (d → f)〉

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.42/46

Solving the example with expansion.
Instead, we do expansion [Coppo, Dezani-Ciancaglini, and
Venneri, 1980] on the typing of N to solve the problem:

N : 〈 (z : a) ⊢(((a → b) → b)
︸ ︷︷ ︸

→ c) → c〉

↓

N : 〈(z : a1 ∩ a2) ⊢(((a1 → b1) → b1)
︷ ︸︸ ︷

∩ ((a2 → b2) → b2)
︷ ︸︸ ︷

→ c) → c〉

P : 〈 () ⊢ (e → f) ∩ (d → e) → (d → f)〉

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.42/46

Solving the example with expansion.
Instead, we do expansion [Coppo, Dezani-Ciancaglini, and
Venneri, 1980] on the typing of N to solve the problem:

N : 〈 (z : a) ⊢(((a → b) → b)
︸ ︷︷ ︸

→ c) → c〉

↓

N : 〈(z : a1 ∩ a2) ⊢(((a1 → b1) → b1)
︷ ︸︸ ︷

∩ ((a2 → b2) → b2)
︷ ︸︸ ︷

→ c) → c〉

P : 〈 () ⊢ (e → f) ∩ (d → e) → (d → f)〉

Then we apply this substitution (dotted lines above):

Sf = (e := a1 → b1, f := b1, d := a2 → a1 → b1,

b2 := a1 → b1, c := (a2 → a1 → b1) → b1)

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.42/46

Huh? What did you just do?
But how precisely did expansion go from the 1st to the 2nd
typing for N?

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.43/46

Huh? What did you just do?
But how precisely did expansion go from the 1st to the 2nd
typing for N?

Expansion simulated in types a transformation on the typing
derivation for N that inserted a use of the
intersection-introduction typing rule at a deeply nested
position.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.43/46

Huh? What did you just do?
But how precisely did expansion go from the 1st to the 2nd
typing for N?

Expansion simulated in types a transformation on the typing
derivation for N that inserted a use of the
intersection-introduction typing rule at a deeply nested
position.

Recently this has become much easier to understand due
to a new definition using expansion variables (E-variables)
[Kfoury and Wells, 1999; Carlier et al., 2004], which I will
now show you.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.43/46

How to do expansion with E-variables.
Applying S = (e := (((a := a1), b := b1) ∩ ((a := a2), b := b2))):

λx.

@

x:T e

λy.

@

y:a→b z:a

−
[S] ·
−−−→

λx.

@

x:[S] T ∩

λy.

@

y:a1→b1 z:a1

λy.

@

y:a2→b2 z:a2

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.44/46

How to do expansion with E-variables.
Applying S = (e := (((a := a1), b := b1) ∩ ((a := a2), b := b2))):

λx.

@

x:T e

λy.

@

y:a→b z:a

−
[S] ·
−−−→

λx.

@

x:[S] T ∩

λy.

@

y:a1→b1 z:a1

λy.

@

y:a2→b2 z:a2

Effect on typings:

〈(z : e a) ⊢ (e ((a → b) → b) → c) → c〉

−
[S] ·
−−−→ 〈(z : a1 ∩ a2) ⊢ (((a1 → b1) → b1) ∩ ((a2 → b2) → b2) → c) → c〉

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.44/46

Overview.
Basic concepts of types.

Type polymorphism.

Compositionality and principality.

Case study: Type error slicing made possible by
compositionality.

Case study: Getting principal typings in the l-calculus
with polymorphism.

Conclusion.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.45/46

Conclusion.
Types can be used for many program analyses and are
already equivalent to flow analysis.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.46/46

Conclusion.
Types can be used for many program analyses and are
already equivalent to flow analysis.

Type polymorphism is vital, and can be obtained via
either “for all” quantifiers or intersection types.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.46/46

Conclusion.
Types can be used for many program analyses and are
already equivalent to flow analysis.

Type polymorphism is vital, and can be obtained via
either “for all” quantifiers or intersection types.

Compositional analysis is more suitable for a number of
scenarios that are becoming more common, and
principal typings enable compositional analysis.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.46/46

Conclusion.
Types can be used for many program analyses and are
already equivalent to flow analysis.

Type polymorphism is vital, and can be obtained via
either “for all” quantifiers or intersection types.

Compositional analysis is more suitable for a number of
scenarios that are becoming more common, and
principal typings enable compositional analysis.

Getting compositionality is hard with “for all” quantifiers,
so there may be motivation to learn intersection types
and similar technologies.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.46/46

Conclusion.
Types can be used for many program analyses and are
already equivalent to flow analysis.

Type polymorphism is vital, and can be obtained via
either “for all” quantifiers or intersection types.

Compositional analysis is more suitable for a number of
scenarios that are becoming more common, and
principal typings enable compositional analysis.

Getting compositionality is hard with “for all” quantifiers,
so there may be motivation to learn intersection types
and similar technologies.

Doing compositional analysis with intersection types
requires expansion. This is now much better
understood and can be done with E-variables.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.46/46

References

Anindya Banerjee. A modular, polyvariant, and type-based clo-

sure analysis. In Proc. 1997 Int’l Conf. Functional Program-

ming, pages 1–10. ACM Press, 1997. ISBN 0-89791-918-1.

URL .

Karen L. Bernstein and Eugene W. Stark. Debugging type er-

rors (full version). Technical report, State University of New

York, Stony Brook, November 1995.

Sébastien Carlier, Jeff Polakow, J. B. Wells, and A. J. Kfoury.

System E: Expansion variables for flexible typing with lin-

ear and non-linear types and intersection types. In Pro-

gramming Languages & Systems, 13th European Symp. Pro-

gramming, volume 2986 of LNCS, pages 294–309. Springer-

Verlag, 2004. ISBN 3-540-21313-9.

M. Coppo, F. Damiani, and P. Giannini. Strictness, totality, and

non-standard type inference. Theoret. Comput. Sci., 272(1-

2):69–111, February 2002.

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Ven-

neri. Principal type schemes and λ-calculus semantics. In

J. R[oger] Hindley and J[onathan] P. Seldin, editors, To H. B.

Curry: Essays on Combinatory Logic, Lambda Calculus, and

Formalism, pages 535–560. Academic Press, 1980. ISBN

0-12-349050-2.

46-1

http://www.cis.ksu.edu/~ab/
http://www.macs.hw.ac.uk/~sebc/
http://www.cs.cmu.edu/~jpolakow/
http://www.macs.hw.ac.uk/~jbw/
http://www.cs.bu.edu/~kfoury/
http://www.di.unito.it/~coppo/
http://www.di.unito.it/~damiani/
http://www.di.unito.it/~giannini/
http://www.di.unito.it/~coppo/
http://www.di.unito.it/~dezani/
http://www.dsi.unifi.it/php/prof.php3
http://www-maths.swan.ac.uk/staff/jrh/
http://www.cs.uleth.ca/~seldin/

L. Damas and Robin Milner. Principal type schemes for func-

tional programs. In Conf. Rec. 9th Ann. ACM Symp. Princ. of

Prog. Langs., pages 207–212, 1982.

Luis Manuel Martins Damas. Type assignment in Programming

Languages. PhD thesis, University of Edinburgh, Edinburgh,

Scotland, April 1985.

F. Damiani and P. Giannini. Automatic useless-code detection

and elimination for HOT functional programs. J. Funct. Pro-

gramming, pages 509–559, 2000.

Ferruccio Damiani. A conjunctive type system for useless-

code elimination. Math. Structures Comput. Sci., 13:157–

197, 2003.

Paola Giannini, Furio Honsell, and Simona Ronchi

Della Rocca. Type inference: Some results, some problems.

Fund. Inform., 19(1/2):87–125, September/October 1993.

J[ean]-Y[ves] Girard. Interprétation Fonctionnelle et Elimination

des Coupures de l’Arithmétique d’Ordre Supérieur. Thèse

d’Etat, Université de Paris VII, 1972.

Christian Haack and J. B. Wells. Type error slicing in implicitly

typed higher-order languages. In Programming Languages &

Systems, 12th European Symp. Programming, volume 2618

of LNCS, pages 284–301. Springer-Verlag, 2003. ISBN 3-

540-00886-1. Superseded by Haack and Wells [2004].

46-1

http://www.ncc.up.pt/~luis/
http://www.cl.cam.ac.uk/users/rm135/
http://www.di.unito.it/~damiani/
http://www.di.unito.it/~giannini/
http://www.di.unito.it/~damiani/
http://www.di.unito.it/~giannini/
http://www.dimi.uniud.it/~honsell/
http://www.di.unito.it/~ronchi/
http://iml.univ-mrs.fr/~girard/
http://www.cs.ru.nl/~chaack/
http://www.macs.hw.ac.uk/~jbw/

Christian Haack and J. B. Wells. Type error slicing in implicitly

typed higher-order languages. Sci. Comput. Programming,

50:189–224, 2004. doi: doi:10.1016/j.scico.2004.01.004.

Supersedes Haack and Wells [2003].

Thomas Jensen. Inference of polymorphic and conditional

strictness properties. In Conf. Rec. POPL ’98: 25th ACM

Symp. Princ. of Prog. Langs., 1998. ISBN 0-89791-979-3.

Trevor Jim. What are principal typings and what are they good

for? In Conf. Rec. POPL ’96: 23rd ACM Symp. Princ. of

Prog. Langs., 1996.

Assaf J. Kfoury and J. B. Wells. Principality and decidable

type inference for finite-rank intersection types. In Conf. Rec.

POPL ’99: 26th ACM Symp. Princ. of Prog. Langs., pages

161–174, 1999. ISBN 1-58113-095-3. Superseded by Kfoury

and Wells [2004].

Assaf J. Kfoury and J. B. Wells. Principality and type inference

for intersection types using expansion variables. Supersedes

Kfoury and Wells [1999], August 2003.

Assaf J. Kfoury and J. B. Wells. Principality and type inference

for intersection types using expansion variables. Theoret.

Comput. Sci., 311(1–3):1–70, 2004. doi: doi:10.1016/j.tcs.

2003.10.032. Supersedes Kfoury and Wells [1999]. For omit-

ted proofs, see the longer report Kfoury and Wells [2003].

46-1

http://www.cs.ru.nl/~chaack/
http://www.macs.hw.ac.uk/~jbw/
http://www.irisa.fr/lande/jensen/
http://www.research.att.com/~trevor/
http://www.cs.bu.edu/~kfoury/
http://www.macs.hw.ac.uk/~jbw/
http://www.cs.bu.edu/~kfoury/
http://www.macs.hw.ac.uk/~jbw/
http://www.cs.bu.edu/~kfoury/
http://www.macs.hw.ac.uk/~jbw/

Assaf J. Kfoury, Harry G. Mairson, Franklyn A. Turbak, and J. B.

Wells. Relating typability and expressibility in finite-rank in-

tersection type systems. In Proc. 1999 Int’l Conf. Functional

Programming, pages 90–101. ACM Press, 1999. ISBN 1-

58113-111-9.

Daniel Leivant. Polymorphic type inference. In Conf. Rec. 10th

Ann. ACM Symp. Princ. of Prog. Langs., pages 88–98, 1983.

ISBN 0-89791-090-7.

I. Margaria and M. Zacchi. Principal typing in a ∀∩-discipline.

J. Logic Comput., 5(3):367–381, 1995.

John C. Mitchell and Gordon D. Plotkin. Abstract types have

existential type. ACM Trans. on Prog. Langs. & Systs., 10(3):

470–502, July 1988.

J. C. Reynolds. Towards a theory of type structure. In Colloque

sur la Programmation, volume 19 of LNCS, pages 408–425.

Springer-Verlag, 1974.

Simona Ronchi Della Rocca. Principal type schemes and unifi-

cation for intersection type discipline. Theoret. Comput. Sci.,

59(1–2):181–209, March 1988.

Zhong Shao and Andrew Appel. Smartest recompilation. In

Conf. Rec. 20th Ann. ACM Symp. Princ. of Prog. Langs.,

1993.

46-1

http://www.cs.bu.edu/~kfoury/
http://www.cs.brandeis.edu/~mairson/
http://cs.wellesley.edu/~fturbak/lyn.html
http://www.macs.hw.ac.uk/~jbw/
http://www.cs.indiana.edu/~leivant/
http://www.di.unito.it/~ines/
http://www.di.unito.it/~zacchi/
http://theory.stanford.edu/people/jcm/
http://homepages.inf.ed.ac.uk/gdp/
http://www.cs.cmu.edu/~jcr/
http://www.di.unito.it/~ronchi/
http://www.cs.yale.edu/homes/shao-zhong/
http://www.cs.princeton.edu/~appel/

Olin Shivers. Control Flow Analysis of Higher Order Lan-

guages. PhD thesis, Carnegie Mellon University, 1991.

Kirsten Lackner Solberg, Hanne Riis Nielson, and Flemming

Nielson. Strictness and totality analysis. In Proc. 1st Int’l

Static Analysis Symp., pages 408–422, 1994.

Paweł Urzyczyn. Type reconstruction in Fω . Math. Structures

Comput. Sci., 7(4):329–358, 1997.

Steffen J. van Bakel. Intersection Type Disciplines in Lambda

Calculus and Applicative Term Rewriting Systems. PhD the-

sis, Catholic University of Nijmegen, 1993.

J. B. Wells. The essence of principal typings. In Proc. 29th

Int’l Coll. Automata, Languages, and Programming, volume

2380 of LNCS, pages 913–925. Springer-Verlag, 2002. ISBN

3-540-43864-5.

46-1

http://www.cc.gatech.edu/fac/Olin.Shivers/
http://www.mimuw.edu.pl/~urzy/
http://theory.doc.ic.ac.uk/~svb/
http://www.macs.hw.ac.uk/~jbw/

	Overview.
	What are types?
	Why find types automatically?
	An example program.
	Example: Types.
	Example: Flow.
	Type analysis
ewemph {is} flow analysis.
	Overview.
	What is type polymorphism?
	Example: ``for all'' quantifiers.
	Example: ``there exists'' quantifiers.
	Polymorphism via intersection types.
	Example: Intersection types.
	Example: Union types.
	What is the rank of polymorphism?
	Typing power of intersection types.
	Flexibility of intersection types.
	Program analysis with intersection types.
	Overview.
	What is compositional analysis?
	Why compositional analysis?
	What is a typing?
	What is a principal typing?
	Which systems have principal typings?
	Implications of not having PTs.
	Overview.
	Case study: Type error slicing.
	Type error example.
	Wrong type error location.
	Another wrong type error location.
	Correct type error location.
	Type error slice.
	A possible fix.
	Another possible fix.
	Yet another possible fix.
	Overview.
	Case study: Intersection type inference.
	A problematic type inference example.
	Can we unify the example types? (1)
	Can we unify the example types? (2)
	Solving the example with expansion.
	Huh? What did you just do?
	How to do expansion with E-variables.
	Overview.
	Conclusion.

