
A Formalization of the General Theory of1

Quaternions2

Thaynara Arielly de Lima £3

Universidade Federal de Goiás, Brasil4

André Luiz Galdino £5

Universidade Federal de Catalão, Brasil6

Bruno Berto de Oliveira Ribeiro7

Universidade de Brasília, Brasil8

Mauricio Ayala-Rincón £9

Universidade de Brasília, Brasil10

Abstract11

This paper discusses the formalization of the theory of quaternions in the Prototype Verification12

System (PVS). The general approach in this mechanization allows for specification of arbitrary13

quaternion algebras parameterizing with the adequate field and constants. The theory includes14

characterizing algebraic properties that lead to constructing a quaternion structure that is a15

division ring. In particular, we illustrate how the general theory is applied to formalize Hamilton’s16

quaternions using the field of reals as a parameter, for which we also mechanized theorems that17

show the completeness of three-dimensional rotations.18
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69:2 A Formalization of the General Theory of Quaternions

1 Introduction41

Quaternions is the theory of algebraic structures consisting of quadruples built over a field,
〈F,+F, ∗F, zeroF, oneF〉 and two selected elements of the field a, b ∈ F, where the quaternion
addition is built from the field addition component to component, and the product quaternion
is a distributive product, that satisfies a series of axioms, including

(zeroF, oneF, zeroF, zeroF)2 = (a, zeroF, zeroF, zeroF)

(zeroF, zeroF, oneF, zeroF)2 = (b, zeroF, zeroF, zeroF)

(zeroF, zeroF, oneF, zeroF) ∗ (zeroF, oneF, zeroF, zeroF) = (zeroF, zeroF, zeroF, oneF)

among others, from which all properties of addition and multiplication of quaternions are
inferred. In general, given a field F, and elements a, b ∈ F, the quaternion algebra is

represented as
(
a, b

F

)
. It is a vector space in F, with the basis

1 = (oneF, zeroF, zeroF, zeroF) i = (zeroF, oneF, zeroF, zeroF)
j = (zeroF, zeroF, oneF, zeroF) k = (zeroF, zeroF, zeroF, oneF)

and a distributive product, such that : i2 = a, j2 = b, ij = k (cf. axioms above), and42

ij = −ji, for a = (a, zeroF, zeroF, zeroF), b = (b, zeroF, zeroF, zeroF).43

Hamilton’s quaternions are the first introduced structure of quaternions [6]. After its44

discovery, the research for structures similar to the original quaternions started, leading to a45

more generic and algebraic definition than the classic approach of Hamilton. Our specification46

in PVS uses such a generic definition. Using the notation above, Hamilton’s quaternions is47

the algebra H =
(
−1,−1

R

)
. The structure of Hamilton’s quaternions is the most popular48

because of its well-known efficient applicability in manipulating three-dimensional (3D)49

objects. Although this, the interest in quaternions is not limited to Hamilton’s ones but also50

to other structures of quaternions that are of great interest (e.g., [15]).51

1.1 Main results52

This paper describes the formalization of the general theory of the structures of quaternions53

in the interactive proof assistant PVS. It provides a characterization of quaternions as54

division rings based on algebraic properties of the field. The characterization is crucial to55

building multiplicative inverses for non-zero quaternions elements, an essential element in56

structures such as Hamilton’s quaternions. In addition, the formalization shows how to build57

the structure of Hamilton’s quaternions with adequate parameters. Finally, we formalize a58

completeness theorem of Hamilton’s quaternions to rotate any 3D vector.59

As far as we know, there are two solid formalizations of the structure of Hamilton’s60

quaternions, one of them in HOL Light [4], and the other in Isabelle/HOL [11]). In contrast,61

some elements of the general theory of quaternions built over any abstract field, as in our62

case, were developed as part of the Lean mathlib library [9].63

1.2 Organization64

Section 2 is divided into subsections discussing the basic elements used in the specification65

and axiomatization of the general theory of quaternions (2.1), discussing how the algebraic66

properties of such structures are inferred from the axiomatization (2.2), and how quaternions67
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Specification 1 Quaternion addition and scalar multiplication quaternion_def W
+(u,v): quat = ( u’x + v’x, u’y + v’y, u’z + v’z, u’t + v’t ) ;
*(c,v): quat = ( c * v’x, c * v’y, c * v’z, c * v’t ) ;

% scalar multiplication
* :[ quat ,quat -> quat] ; % quaternion multiplication

are characterized as division rings (2.3). Section 3 is divided into two subsections presenting68

the parameterization to obtain the theory of quaternions (3.1), and the formalization of the69

completeness of Hamilton’s quaternions to deal with 3D vector rotations (3.2). Finally, before70

concluding and discussing future lines of research in Section 5, Section 4 briefly discusses71

how other structures of quaternions can be specified.72

The paper includes links to the specific points of the formalization, available as part of73

the PVS nasalib theory algebra W.74

2 Mechanization of the theory of quaternions75

This section presents the formalization of the theory of quaternions using as a parameter an76

algebraic field and two constants: 〈F,+F, ∗F, zeroF, oneF, a, b〉.77

2.1 Specification of Basic Notions78

The general theory of quaternions is built from any abstract type T, with binary operators79

for addition and multiplication +,*: [T, T] -> T, with constants zero, one, a, b: T.80

Initially, in the theory defining the structure and type quat, quaternion_def W, it is81

only assumed that [T,+,zero] is a group: group?(fullset[T]). An element q of type quat82

is a quadruple of elements of type T, represented as q = (x, y, z, t), and through the83

use of a macro, components of q can be accessed, for instance q’y = y. Quadruples for84

the quaternion basis 1, i, j, k, and for quaternions a and b are defined; distinguishing them85

with names one_q, i, j, k, a_q, b_q. Also, zero_q specifies the zero quaternion. The86

conjugate and the additive inverse of a quaternion are specified in the usual manner: they are87

well-defined since [T,+,zero] is a group, and each element of the quadruple has an additive88

inverse. Tuple addition and scalar multiplication are defined in Specification 1. Also, notice89

that quaternion multiplication is defined as a binary operator over quaternions.90

91

The required axioms of the theory of quaternions are given in Specification 2, where92

variable types are u, v : quat, and c, d : T. Notice that the axioms include associativity93

and (right and left) distributivity of the quaternion multiplication over the addition (q_assoc,94

q_distr and q_distrl), and associativity and commutativity regarding scalar multiplication95

over quaternion multiplication (sc_quat_assoc, sc_comm and sc_assoc). Also, it is required96

that one_q be the identity for quaternion multiplication: the axioms one_q_times and97

times_one_q are essential to prove the characterization of the quaternion multiplication98

provided in the Subsection 2.2.99

100

2.2 Inference of Quaternion’s Algebraic Properties101

The PVS theory quaternions W completes the basic structure of quaternions refining the102

parameters in such a manner that a and b are different from zero, and [T,+,*,zero,one] is103

Subm. ITP 2024

https://github.com/nasa/pvslib/tree/master/algebra/quaternions_def.pvs#L69-L73
https://github.com/nasa/pvslib/tree/master/algebra
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_def.pvs#L22-L93
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L22-L210
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Specification 2 Axioms for the Theory of Quaternion W

sqr_i : AXIOM i * i = a_q
sqr_j : AXIOM j * j = b_q
ij_is_k : AXIOM i * j = k
ji_prod : AXIOM j * i = inv(k)
sc_quat_ assoc : AXIOM c*(u*v) = (c*u)*v
sc_comm : AXIOM (c*u)*v = u*(c*v)
sc_ assoc : AXIOM c*(d*u) = (c*d)*u
q_ distr : AXIOM distributive ?[ quat ](* , +)
q_ distrl : AXIOM (u + v) * w = u * w + v * w
q_ assoc : AXIOM associative ?[ quat ](*)
one_q_ times : AXIOM one_q * u = u
times _one_q : AXIOM u * one_q = u

Specification 3 Quaternion Basis W
basis _quat: LEMMA

FORALL (q: quat ): q = q’x * one_q + q’y * i + q’z * j + q’t * k

a field (specified in theory field_def W). So, the type T with addition and zero, as well as,104

T-{zero} with multiplication and one are Abelian groups.105

From this basis, it is now possible to infer a series of lemmas about quaternions106

such as j*i = - (i*j), k*k = -a_q * b_q, k * i = -a_q * j, k * j = b_q * i, i107

* k = a_q * j, and j * k = -b_q * i (see basic lemmas W).108

Such lemmas allow us to infer that quaternions one_q, i, j, and k act as a basis as109

given in Specification 3, and the characterization of quaternion multiplication as given in110

Specification 4. The proof of this characterization uses the decomposition according to the111

lemma basis_quaternion, and requires exhaustive algebraic manipulation using quaternions112

axioms, a series of auxiliary lemmas, including the previous ones mentioned, and others113

about the algebra of quaternions, such as lemmas for scalar product. The advantage of such114

formulation, is that the characterization of quaternion multiplication, usually presented as a115

definition, is obtained from a minimal axiomatization.116

117

118

Further results include the formalization of the fact that any quaternion abstract119

structure, quat[T,+,*,zero,one,a,b], is a ring with unity as given in the Specifica-120

tion 5. The proof requires expanding the definition of field for [T, +, *, zero, one],121

then using it is a commutative division ring, that is, a commutative group with unity.122

From this, and the algebraic properties inferred until this point, it is possible to prove123

that the structure of quaternions given as [quat[T,+,*,zero,one,a,b], +, *, zero_q,124

one_q] is indeed a ring with unity. The last is done expanding the notion of ring with125

Specification 4 Quaternion Multiplication Characterization W

q_prod_ charac : LEMMA FORALL (u,v:quat ):
u * v = (u’x * v’x + u’y * v’y * a + u’z * v’z * b + u’t * v’t * inv(a)*b,

u’x * v’y + u’y * v’x + (inv(b)) * u’z * v’t + b* u’t * v’z,
u’x * v’z + u’z * v’x +a * u’y * v’t + inv(a) * u’t * v’y,
u’x * v’t + u’y * v’z + inv(u’z * v’y) + u’t * v’x );

https://github.com/nasa/pvslib/tree/master/algebra/quaternions_def.pvs#L79-L90
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L86-L86
https://github.com/nasa/pvslib/tree/master/algebra/field_def.pvs#L1-L20
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L74-L84
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L99-L103
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Specification 5 Quaternions are Rings with Unity W

quat_is_ring_w_one: LEMMA
ring_with_one ?[ quat ,+,*, zero_q,one_q]( fullset [quat ])

Specification 6 Conjugate of Multiplication of Quaternions W
conj_ product _quat : LEMMA FORALL (q, u : quat) :

conjugate (q * u) = conjugate (u) * conjugate (q)

unity, and proving that [quat[T,+,*,zero,one,a,b], +, *, zero_q] is a ring, and that126

[quat[T,+,*,zero,one,a,b], *, one_q] is a monoid.127

128

Some of the formalizations benefit from PVS strategies to automatize manipulation of the129

algebra of quaternions. For instance, the lemma in Specification 6, stating that for quaternions130

q, u, conjugate(q * u) = conjugate(u) * conjugate(q), where conjugate(u) W is131

given by the quaternion (u‘x, -u‘y, -u‘z, -u‘t). The proof of this lemma is done132

by applying the theorem of characterization of quaternion multiplication q_prod_charac,133

showing that each pair of corresponding components of the resulting quadruples are equal.134

This required algebraic automation through the development of specialized PVS strategies135

W since the PVS engine for algebraic simplification is not implemented for the structure of136

quaternions (as happens with each other non-numerical algebraic structure). For instance,137

at some point in the proof, one must show that the quadruples’ first components coincide138

with the corresponding equation presented below. However, proving this equality is not139

straightforward, requiring exhaustive applications of quaternions’ addition and multiplication140

properties, which justified the development of such strategies.141

-(q‘x * u‘t + q‘y * u‘z + -(q‘z * u‘y) + q‘t * u‘x) =
-(u‘x * q‘t) + u‘y * q‘z + -(u‘z * q‘y) + -(u‘t * q‘x)

142

143

Some additional lemmas and definitions are formalized to characterize quaternions as144

division rings.145

Two important predicates and subtypes of quat are defined, the type of pure quaternions,146

pure_quat W, and the type of scalar quaternions, scalar_F W, which consists of quaternions147

with null scalar component and with null components i,j,k, respectively. Also, we specify148

the reduced norm of a quaternion q as red_norm(q) = q * conjugate(q). The lemmas149

obtained for such definitions cover the properties in the Specification 7, among others. The150

lemma center_quat_is_sc_F expresses the fact that if the characteristic of the ring [T, +,151

*, zero] is different from two, i.e., there exists an element x ∈ T such that x + x 6= zero,152

the center of the structure built with the quaternions and its multiplication is exactly the153

subtype of all the scalar quaternions. The center of such structure is given by the quaternions154

that multiplicatively commute with all other quaternions: { q | ∀ u : q * u = u * q }155

. This theorem is obtained, proving that for any quaternion q in the center, commutativity156

with the basis quaternions i, j, k implies the pure components of x should be zero.157

158

Finally, from the last lemma in Specification 7, q_x_v_cq, the transformation given159

as the curried operator Tq(q:quat)(v:(pure_quat)) is specified, and crucial properties160

Subm. ITP 2024

https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L109-L109
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L134-L135
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_def.pvs#L67-L67
https://github.com/nasa/pvslib/tree/master/algebra/pvs-strategies#L1-L207
https://github.com/nasa/pvslib/tree/master/algebra/pvs-strategies#L1-L207
https://github.com/nasa/pvslib/tree/master/algebra/pvs-strategies#L1-L207
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_def.pvs#L52-L58
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_def.pvs#L52-L58
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Specification 7 Pure and Scalar Quaternions Conjugate and Norm Properties W
red_norm_ charac : LEMMA FORALL (q: quat ):

red_norm(q) = (q‘x * q‘x + inv(a) * (q‘y * q‘y) + inv(b) * (q‘z * q‘z) +
(a * b) * (q‘t * q‘t),
zero , zero , zero)

conj_ product _quat_ scalar : LEMMA FORALL (s : T, q : quat) :
conjugate (s * q) = s * conjugate (q)

red_norm_conj: LEMMA FORALL (q:quat ):
red_norm( conjugate (q)) = red_norm(q)

center _quat_is_sc_F: LEMMA charac ( fullset [T]) /= 2 IMPLIES
center [( quat ) ,*]( fullset [quat ]) = scalar _F

q_x_v_cq : LEMMA FORALL (q:quat , v:( pure_quat )) :
pure_quat(q * v * conjugate (q))

Specification 8 T_q(q)(v) Operator W
T_q(q: quat )(v:( pure_quat )): (pure_quat) = q * v * conjugate (q)

T_q_is_ linear : LEMMA FORALL (c,d: T, q: quat , v,w: (pure_quat )):
T_q(q)(c * v + d * w) = c * T_q(q)(v) + d * T_q(q)(w)

T_q_red_norm_ invariant : LEMMA FORALL (q: quat , v:( pure_quat )):
red_norm(q) = one_q IMPLIES red_norm(T_q(q)(v)) = red_norm(v)

T_q_ invariant _red_norm: LEMMA FORALL (c: T, q: quat ):
red_norm(q) = one_q IMPLIES T_q(q)(c * pure_part(q)) = c * pure_part(q)

about it are proved, as presented in Specification 8. Such properties express the linearity161

of the operator, T_q_is_linear; the fact that if the red_norm of q is one, the resulting162

transformation of the pure quaternion v, T_q(q)(v), has the same norm as v; and, that the163

transformation over the pure quaternion pure_part(q), obtained from q, does not affect164

any multiple of it.165

166

2.3 Charaterization of Quaternions as Division Rings167

The characterization of quaternions as division rings is given by a series of six lemmas168

presented in Specification 9.169

The first lemma, nz_red_norm_if_inv_exist, is proved constructively. Assuming170

red_norm(q) 6= zero_q, using the characterization of red_norm in Specification 7, one has171

that the scalar component of red_norm(q) = q‘x * q‘x + -(a) * (q‘y * q‘y) + -(b)172

* (q‘z * q‘z) + (a * b) * (q‘t * q‘t) is not null and consequently has a multiplicative173

inverse in the field, say y. From this, one builds the desired quaternion multiplicative inverse174

of q as the quaternion conjugate(q) *(y * one_q). The exhaustive job is once again175

related to the algebraic manipulation to prove that q * (conjugate(q) *(y * one_q)) =176

one_q and vice-versa. This involves repeated applications of the characterization of qua-177

ternion multiplication, the definition and characterization of red_norm, and several algebraic178

properties of quaternions.179

https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L124-L156
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L160-L172
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The second lemma in Specification 9, div_ring_iff_nz_rednorm, states the equivalence180

between being the quaternion structure a division ring with the quaternion multiplication and181

having a reduced norm different from zero_q, for any non zero_q quaternion, q. Necessity182

is proved by contradiction from the existence of an inverse for q, say y * q = one_q, and183

expansion of the definition of reduced norm, q * conjugate(q) = zero_q. From these184

equations, by algebraic manipulations one obtains y * (q * conjugate(q)) = one_q *185

conjugate(q), and then zero_q = conjugate(q), which contradicts the assumption that186

q 6= zero_q. The proof of sufficiency uses the first lemma.187

The third lemma in Specification 9, inv_q_prod_charac, characterizes the inverse of a non188

zero_q quaternion q through the equation inv(q) = conjugate(q) * inv(red_norm(q))189

whenever the quaternion structure is a division ring. This lemma uses the previous one and190

exhaustive algebraic manipulation. The key of the proof is to show that conjugate(q) *191

(red_norm(q))−1 is the inverse of q. This is proved showing that q * (conjugate(q) *192

(red_norm(q))−1) = one_q and (conjugate(q) * (red_norm(q))−1) * q = one_q. The193

former equation requires only associativity and expansion of the definition of red_norm to194

obtain the equation (q * conjugate(q)) * (q * conjugate(q))−1 = one_q, from which195

one concludes. The latter equation requires the application of the previous lemma to obtain196

the multiplicative inverse of red_norm(q), say y, such that red_norm(q) * y = one_q. Ex-197

panding the definition of red_norm, one obtains the equation (q * conjugate(q)) * y =198

one_q. In this manner, one obtains the equation q * ((conjugate(q) * y) * q) = q *199

one_q, from which one concludes.200

The fourth lemma in Specification 9, quat_div_ring_aux1, is a simple auxiliary result201

from the theory of fields. If t = zero, the type of a implies -a 6= zero. For the case in which202

t 6= zero, after Skolemization, one obtains the premise t*t = a; also, t has a multiplicative203

inverse, say y. Then, by instantiating the premise with y and zero, one obtains objective204

equality a*(y*y) + b * zero = one. By replacing a with t*t, one obtains (t*t)*(y*y)205

= one. The formalization, as expected, requires simple field algebraic manipulations.206

The fifth lemma, quat_div_ring_aux2, is another auxiliary result on fields. When =207

zero, one concludes by b type. Otherwise, let y and y1 be the multiplicative inverses of t and208

a + a, respectively. Notice that since the characteristic of the field is different from two, a +209

a 6= zero, allowing the use of the latter inverse. The second premise is then instantiated210

with (one + a) * y1 and (one - a) * y1 * y giving the objective211

a((one + a) ∗ y1)2 + b((one− a) ∗ y1 ∗ y)2 = one212

Algebraic manipulation transforms the left-hand side of this equation into the term below,213

where for the integer k, k t abbreviates t+t+· · · +t k times.214

a ∗ y12 + 2(a2 ∗ y12) + a3 ∗ y12 + b ∗ y12 ∗ y2 + 2(b ∗ (−a) ∗ y12 ∗ y2) + b ∗ (−a)2 ∗ y12 ∗ y2
215

By multiplying a*(t*t) + b = zero by y * y one obtains the equation a + b (y * y) =216

zero, which allows the elimination of the first and second component of the above term;217

indeed218

a ∗ y12 + b ∗ y12 ∗ y2 = (a + b ∗ y2)y12 = zero219

The third and last components are also eliminated:220

a3 ∗ y12 + b ∗ (−a)2 ∗ y12 ∗ y2 = (a + b ∗ y2) ∗ a2 ∗ y12 = zero221

Finally, the remaining four components are proved equal to one using the equation222

−b ∗ (y ∗ y) = a:223

2(a2 ∗ y12) + 2(b ∗ (−a) ∗ y12 ∗ y2) = 4(a2 ∗ y12) = (a + a) ∗ (a + a) ∗ y12 = one224

Subm. ITP 2024
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The final lemma, quat_div_ring_char, states that the structure of quaternions with225

multiplication is a division ring whenever the characteristic of the ring [T, +, *, zero] with226

field multiplication is different from two and the condition ∀x, y ∈ T : a ∗ x2 + b ∗ y2 6= one,227

used in previous two lemmas, holds. The proof applies the second lemma in the series of228

lemmas given in Specification 9, div_ring_iff_nz_rednorm, thus, changing the objective229

to proving that red_norm(q) 6= zero_q, for any q 6= zero_q under these conditions.230

On the one side, if there exists x, y in the field such that a ∗ x2 + b ∗ y2 = one, one can231

select the quaternion element q = oneq + x ∗ i + y ∗ j. So, q 6= zero_q, and its reduced232

norm, 1− a ∗ x2 − b ∗ y2 is different from zero. Therefore, the quaternion cannot be a233

division ring. On the other side, suppose the quaternion is not a division ring but the234

condition ∀x, y ∈ T : a ∗ x2 + b ∗ y2 6= one holds. Then, there exists q 6= zero_q such that235

red_norm(q) = q‘x2 − a ∗ q‘y2 − b ∗ q‘z2 + a ∗ b ∗ q‘t2 = zero_q. For short, let this q be236

equal to (x,y,z,t).237

The first component of the reduced norm gives the field equation:238

x2 − a ∗ y2 − b ∗ z2 + a ∗ b ∗ t2 = zero (1)239

From the last equation, one has that x2 − a ∗ y2 = b ∗ (z2 − a ∗ t2). From this equation,240

one obtains (x2 − a ∗ y2) ∗ (z2 − a ∗ t2) = b ∗ (z2 − a ∗ t2)2. This equation gives241

(x2 ∗ z2 + a2 ∗ y2 ∗ t2 − a ∗ x2 ∗ t2 − a ∗ y2 ∗ z2) = b ∗ (z2 − a ∗ t2)2
242

From the last equation, one obtains243

a ∗ (x ∗ t + y ∗ z)2 + b ∗ (z2 − a ∗ t2)2 = (x ∗ z + a ∗ y ∗ t)2 (2)244

Notice that (x ∗ z + a ∗ y ∗ t) 6= zero; otherwise, multiplying the equation by the square245

of the inverse of this term, one contradicts the hypothesis ∀x, y ∈ T : a ∗ x2 + b ∗ y2 6= one.246

Therefore, equation (2) becomes:247

a ∗ (x ∗ t + y ∗ z)2 + b ∗ (z2 − a ∗ t2)2 = zero (3)248

Suppose now that z2 − a ∗ t2 6= zero. Thus, multiplying the equation by the square of249

the inverse of this term, one obtains an equation of the form a ∗ t′2 + b = zero, which gives250

a contradiction by lemma quat_div_ring_aux2. Thus, z2 − a ∗ t2 = zero.251

Now, let suppose t 6= zero. Multiplying by the square of the inverse of t, one obtains an252

equation of the form t′2 − a = zero, which gives a contradiction by lemma quat_div_ring_aux1.253

Therefore the fourth component of the quaternion element q is zero: t = zero, which also254

implies the third component z = zero.255

Thus the reduced norm of q is equal to x2 − ay2, and by hypothesis, x2 − ay2 = zero.256

Once again, if y 6= zero, multiplying the equation by the square of the inverse of y, one257

obtains an equation of the form t′2 − a = zero, which gives a contradiction by lemma258

quat_div_ring_aux1. So, y = zero, and also x = zero.259

This completes the proof.260

261

3 Parameterization of the Algebra of Hamilton’s Quaternions262

By parameterizing the theory quaternions W as quaternions[real,+,*,0,1,-1,-1], one263

obtains Hamilton’s quaternions, H, mentioned in the introduction. This structure is usually264

characterized in textbooks by the identities i2 = j2 = k2 = ijk = −1 (e.g., [15]). In this265

https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L22-L210
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Specification 9 Characterization of Quaternions as Division Rings W
nz_red_norm_iff_inv_ exist : LEMMA

( FORALL (q:nz_quat ):
red_norm(q) /= zero_q) IFF
inv_ exists ?[ quat ,*, one_q]( remove (zero_q, fullset [quat ]))

div_ring_iff_nz_ rednorm : LEMMA
division _ring ?[ quat ,+,*, zero_q,one_q]( fullset [quat ]) IFF
( FORALL (q: nz_quat ): red_norm(q) /= zero_q)

inv_q_prod_ charac : LEMMA
division _ring ?[ quat ,+,*, zero_q,one_q]( fullset [quat ]) IMPLIES
( FORALL (q: nz_quat ):

inv[nz_quat ,*, one_q](q) = conjugate (q)* inv[nz_quat ,*, one_q]( red_norm(q)))

quat_div_ring_aux 1: LEMMA
( FORALL (x,y:T): a * (x*x) + b * (y*y) /= one) IMPLIES

FORALL (t:T): t*t + inv[T,+, zero ](a) /= zero

quat_div_ring_aux 2: LEMMA
( charac ( fullset [T]) /= 2 AND ( FORALL (x,y:T): a * (x*x)+b * (y*y) /= one ))

IMPLIES
FORALL (t:T): a*(t*t) + b /= zero

quat_div_ring_char: LEMMA
charac ( fullset [T]) /= 2 IMPLIES
(( FORALL (x,y:T): a*(x*x) + b*(y*y) /= one) IFF
division _ring ?[ quat ,+,*, zero_q,one_q]( fullset [quat ]))

section, we will present the completeness of 3D rotation by using Hamilton’s quaternion,266

as well as the main properties to achieve such results formalized in the PVS theory qua-267

ternions_Hamilton W. In this section, “quaternions” reference elements of the structure of268

Hamilton’s quaternions.269

3.1 Specification of Basic Properties270

The structure given by (H,+H, zeroq, ∗R), where ∗R indicates the scalar product induced by271

the multiplication over real numbers, can be proved to be a vector space isomorphic to R4
272

equipped with their standard operations. A pure part of a quaternion can be mimicked by a273

vector from R3 and has a fundamental role in the theorems regarding the completeness of274

3D rotations. To reuse results about real vectors, formalized in theory vectors W in PVS275

nasalib, we specified operators that return the real and pure part of a quaternion as a real276

number and a three-dimensional vector, respectively, and formalized basic properties about277

them (see Specification 10).278

279

3.2 Rotational completeness of Hamilton’s Quaternions280

Hamilton’s quaternions is a suitable structure to perform rotations in R3, and it has some281

advantages when compared with techniques based on rotating by Euler angles:282

The rotation using quaternions relies on the application of the linear transformation283

T_q(q)(v), defined in Specification 8. This operator is based on the multiplication of284

three quaternions which, in the light of the lemma q_prod_charac W, is computed using285
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Specification 10 Connection between quaternions and vectors W
Real_part(q: quat ): real = q‘x

Vector _part(q: quat ): Vect3 = (q‘y, q‘z, q‘t)

conversion _quot: LEMMA
FORALL (r: real , nz: nzreal ): r/nz = number _ fields ./(r,nz)

quat_is_Real_p_ Vector _part: LEMMA
FORALL (q: quat ):

q = (Real_part(q), Vector _part(q)‘x, Vector _part(q)‘y, Vector _part(q)‘z)

decompose _eq_Real_ Vector _part: LEMMA
FORALL (q, p : quat ):

Real_part(q) = Real_part(p) AND Vector _part(q) = Vector _part(p) IFF
q = p

Vector _part_ scalar : LEMMA
FORALL (k:real , q: quat ): Vector _part(k*q) = k * Vector _part(q)

multiplication and sum of real numbers in this context. On the other hand, rotating by286

Euler angles relies on the multiplication of three matrices of order 3, whose entries contain287

trigonometric functions, each one of these matrices represents a rotation around the axes288

x, y, and z of a 3D coordinate system (e.g., Chapter 4 in [1], and [12]). Thus, Hamilton’s289

quaternions provide a computational, more efficient manner to perform rotations.290

Rotating by Euler angles can lead to a gimbal lock. This well-known phenomenon occurs291

when two axes align, causing the loss of one degree of freedom and locking the system to292

rotate in a degenerated two-dimensional space [5]. Hamilton’s quaternions avoid gimbal293

lock.294

A rotation by Euler angles is based on the composition of rotations around three axes,295

e.g. yaw, pitch, and roll. In contrast, only the pure part of a quaternion element q defines296

the axis of a rotation using Hamilton’s quaternions [5]. Therefore, it is easier to visualize297

the transformation by quaternions.298

The landmark results of this section, presented in the Specification 11, are the formaliza-299

tions of theorems Quaternions_Rotation W and Quaternions_Rotation_Deform W. The300

former states that given two pure quaternions a and b, which can be identified as vectors301

of R3 of the same norm, there is a quaternion q = rot_quat(a,b) such that the operator302

T_q(q) rotates a into b. The latter theorem ensures the existence of a quaternion q such that303

the operator T_q(q) transforms a into b, even when they are not, necessarily, of the same304

length. For the second transformation, it is only needed multiplying rot_quat
(

a,
|a|
|b|

b
)

305

by the scalar

√
|a|
|b|

, where |v| denotes the usual norm of v in R3. In the following, we will306

highlight the main steps to formalize those theorems.307

308

Initially, consider two pure quaternions a and b such that va = Vector_part(a) and vb309

= Vector_part(b) are linearly independent; i.e., such vectors are nonparallel and non-null.310

Let θ be the smallest angle between va and vb and consider n = va× vb
|va||vb|

, where va× vb311

denotes the usual cross product of vectors in R3. The idea is to consider n as the rotation312

https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L44-L61
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Specification 11 Completion of rotation using Hamilton’s quaternions W
Quaternions _ Rotation : THEOREM

FORALL (a:( pure_quat), b:( pure_quat) |
norm( Vector _part(a)) = norm( Vector _part(b)) AND
linearly _ independent ?( Vector _part(a), Vector _part(b))):

LET q = rot_quat(a,b) IN b = T_q(q)(a)

Quaternions _ Rotation _ Deform : THEOREM
FORALL (a:( pure_quat), b:( pure_quat) |

linearly _ independent ?( Vector _part(a), Vector _part(b))):
LET q =
(sqrt( number _ fields ./( norm( Vector _part(b)), norm( Vector _part(a )))))*

rot_quat(a,
number _ fields ./( norm( Vector _part(a)), norm( Vector _part(b)))*b)

IN b = T_q(q)(a)

Specification 12 Basic elements to built a rotation by quaternions W
r_ angle (a,b:( nzpure _quat )): nnreal _le_pi =

angle _ between ( Vector _part(a), Vector _part(b))

n_rot_axis(a:( pure_quat),b:( pure_quat) |
linearly _ independent ?( Vector _part(a), Vector _part(b))): Vect3 =

normalize ( cross ( Vector _part(a), Vector _part(b)))

rot_quat(a:( pure_quat),b:( pure_quat) |
linearly _ independent ?( Vector _part(a), Vector _part(b))): quat =

LET rot_angl_ halve : nnreal _le_pi = number _ fields ./(r_ angle (a,b), 2),
sin_ha = sin(rot_angl_ halve ),
cos_ha = cos(rot_angl_ halve ),
n = n_rot_axis(a,b)

IN (cos_ha , sin_ha * n‘x, sin_ha * n‘y, sin_ha * n‘z)

axis and built the quaternion q that leads a into b from θ and n, as follows:313

q =
(

cos
(
θ

2

)
, n′x ∗ sin

(
θ

2

)
, n′y ∗ sin

(
θ

2

)
, n′z ∗ sin

(
θ

2

))
The elements θ, n and q were specified as r_angle(a,b)314

W, n_rot_axis(a,b) W, and rot_quat(a,b) W, respectively315

(See Specification 12). They use some structures formalized316

in the theories vectors W and trig W in the PVS nasalib.317

For example, r_angle(a,b) is formalized from the operator318

angle_between(Vector_part(a),Vector_part(b)) W, which, in319

turn, is specified by using the arccosine function and the usual inner320

product of R3; whereas, n_rot_axis(a,b) uses the specification of321

cross product defined as the vector cross(a,b) W.322

323

Four main lemmas are needed to formalize the Theorem Quaternions_Rotation W.324

The first one consists of a characterization of the operator T_q(q)(a) specified as the325

lemma T_q_Real_charac W. According to this result, for any quaternion q and any pure326
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quaternion a, the following equality holds:327

Vector_part(T_q(q)(a)) = ((q′x)2 − |Vector_part(q)|2) ∗ va +
(2 ∗ (Vector_part(q) ∗ va)) ∗ Vector_part(q) +
(2 ∗ q′x) ∗ (Vector_part(q)× va)

(4)328

The vector part of T_q(q)(a) expresses all the relevant information of the resulting329

quaternion: since the type established for T_q(q)(a)) is pure_quat, see Specification 8, the330

prover automatically generates a proof obligation, called in PVS Type Correctness Condition331

(TCC), to verify that the first component of this quaternion is zero. Also, according to332

the lemma T_q_is_linear, showed in Specification 8, T_q(q)(a) is a linear transformation.333

And since |q| = 1, it preserves the norm of |a|, acting as a rotation.334

The other three key lemmas consist of established equivalent expressions for each term in335

the addition appearing in T_q_Real_charac, see Equation 4.336

The lemma Quat_Rot_Aux1 W ensures that Vector_part(q) * va = 0. Consequently,337

the equation (2 * (Vector_part(q) * va)) * Vector_part(q) = 0 also holds.338

The formalization of this lemma applies the lemma orth_cross W, of the PVS theory339

vectors, that guarantees that the vectors (va× vb) and va are orthogonal. This is a340

consequence of the equalities Vector_part(q) = sin
(
θ

2

)
∗ n =

sin
(
θ
2

)
|va||vb|

∗ (va× vb).341

The lemma Quat_Rot_Aux2 W establishes the equality

((q′x)2 − |Vector_part(q)|2) ∗ va = cos(θ) ∗ va

By definition of q and since |n| = 1,

(q′x)2 − |Vector_part(q)|2 = cos2
(
θ

2

)
− sin2

(
θ

2

)
∗ |n|2 = cos2

(
θ

2

)
− sin2

(
θ

2

)
Thus, Quat_Rot_Aux2 follows as a consequence of the lemma cos_2a W, formalized in the342

theory trig@trig_basic, from which one can infer that cos2
(
θ

2

)
− sin2

(
θ

2

)
= cos(θ).343

Finally, in the lemma Quat_Rot_Aux3 W, it is formalized that

(2 ∗ q′x) ∗ (Vector_part(q)× va) = vb− cos(θ) ∗ va

In fact, by definition of q and n, and the associative property for scalar elements one can
infer that:

(2 ∗ q′x) ∗ (Vector_part(q)× va) =
(

2 cos
(
θ

2

)
sin
(
θ

2

)
1

|va× vb|

)
((va× vb)× va)

Applying the lemmas cross_cross W and sin_2a W, specified in theories vectors@cross_3D
and trig@trig_basic, respectively, one obtains the equality(

2 cos
(
θ

2

)
sin
(
θ

2

)
1

|va× vb|

)
((va× vb)× va) = sin(θ)

|va× vb|
((va ∗ va) ∗ vb− (vb ∗ va) ∗ va)

Since, (va ∗ va) = |va|2 and (vb ∗ va) = cos(θ)|va||vb|, it holds that344

sin(θ)
|va× vb|

((va ∗ va) ∗ vb− (vb ∗ va) ∗ va) = sin(θ)
|va× vb|

(|va|2 ∗ vb− (cos(θ) ∗ |va||vb|) ∗ a)
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Thus, by using the fact the |va| = |vb| and applying the identity |va× vb| = |va||vb| sin(θ),345

formalized in the lemma norm_cross_charac_ W of the theory vectors, one obtains the346

equality347

sin(θ)
|va× vb|

(|va|2 ∗ vb− (cos(θ) ∗ |va||vb|) ∗ va) = vb− cos(θ)va

The Theorem Quaternions_Rotation W is then obtained as a direct consequence of the348

lemmas T_q_Real_charac, Quat_Rot_Aux1, Quat_Rot_Aux2 and Quat_Rot_Aux3.349

The formalization of the Theorem Quaternions_Rotation_Deform W ensures that
Hamilton’s quaternions are useful to promote not only rotations in R3 but also linear
scaling since the transformation T_q(q)(a) maps a into b even when they are not of the

same length. For this, we have only to consider q =

√
|b|
|a|
∗ rot_quat

(
a,
|a|
|b|

b
)
. In fact,

using this q as argument of the transformation,

T_q(q)(a) =

√
|b|
|a|
∗ rot_quat

(
a,
|a|
|b|

b
)
∗ a ∗ conjugate

(√
|b|
|a|
∗ rot_quat

(
a,
|a|
|b|

b
))

Then, applying the lemma conj_product_quat_scalar W, behind some algebraic ma-350

nipulations, it holds that351

T_q(q)(a) =

√
|b|
|a|
∗

√
|b|
|a|
∗ rot_quat

(
a,
|a|
|b|

b
)
∗ a ∗ conjugate

(
rot_quat

(
a,
|a|
|b|

b
))

352

= |b|
|a|
∗ T_q

(
rot_quat

(
a,
|a|
|b|

b
))

(a)353
354

Finally, since |Vector_part(a)| =
∣∣∣∣Vector_part

(
|a|
|b|

b
)∣∣∣∣, the proof of the Theorem

Quaternions_Rotation_Deform W is completed instantiating Quaternions_Rotation W

with the pure quaternions a and |a|
|b|

b, which guarantees that

T_q
(

rot_quat
(

a,
|a|
|b|

b
))

(a) = |a|
|b|

b,

and, consequently, that T_q(q)(a) = b.355

It is important to remark that only the crucial lemmas in formalizing the previous results356

were highlighted. Although the automation for the simplification of equations over reals is in357

an advanced stage in PVS, several algebraic manipulations involving associative property358

for scalars, characterization of the norm of a vector, and properties derived from linear359

independence, among others, were necessary to conclude the formal proofs.360

4 Parameterizations to Specify other Quaternion’s Structures361

Quaternion theory, as defined in Section 1, can describe many algebraic structures. Depending362

on the field F and a, b ∈ F×, the subset of invertible elements of the field, some quaternions363

algebra can be isomorphic to the matrix ring M2(F). In these cases, we say that the364

quaternion algebra splits over F. In fact, it has been proved that a quaternion algebra365 (
a, b

F

)
, which is not a division ring, is indeed isomorphic to M2(F) [2]. An example is given366
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by the quaternion built over the complex field:
(
a, b

C

)
∼−→M2(C), in which not only, it splits367

for some values a, b ∈ C \ {0} = C×. On the other hand, all
(
a, b

F

)
that are not isomorphic368

to M2(F) are division rings; an example are Hamilton’s quaternions.369

Another case of a quaternion that is a division ring is
(
a, p

Q

)
, where p is an odd prime370

and a is a quadratic non-residue, or
(
a, p

Qp

)
, where Qp are the p-adic numbers and a, p having371

the same restrictions [15].372

The formalization of the general theory of quaternions constitutes a starting point to373

deal with other interesting applications of the theory of quaternions. Surveying only a few of374

the applications covered in Voight’s book [15], we can mention the following: applications375

of quaternion algebras in analytic number theory, geometry (hyperbolic geometry and low-376

dimensional topology), arithmetic geometry, and supersingular elliptic curves. Also, Lewis377

surveys relevant applications of quaternion theory in several areas [8].378

Many of these application topics use these different types of quaternions or their order.379

In this case, an order is understood as a subring of the quaternion algebra, which is also380

a lattice. In Voight’s book [15], a more detailed description of interesting orders such as381

maximal order, Eichler order, and more general orders is given. The Hurwitz quaternion382

order is one such maximal order used as a tool for proven theorems. This is a subring of383

the quaternions H and
(
−1,−1

Q

)
, given by H = {αζ + βi+ γj + δk | α, β, γ, δ ∈ Z}, where384

ζ = 1
2 (1 + i+ j + k). It is used to prove Lagrange’s theorem that every positive integer is a385

sum of four squares. Furthermore, it is possible to prove that, short of commutativity, H386

has all the properties of an Euclidean ring.387

In the aforementioned proof of Lagrange’s four-square theorem. Considering u, v ∈ H:

u = a0 + a1i+ a2j + a3k, and v = b0 + b1i+ b2j + b3k

Since Red_norm(uv) = Red_norm(u) * Red_norm(v) W, the reduced norm in H can be
used to prove the Lagrange Identity in Z:

(a2
0 + a2

1 + a2
2 + a2

3)(b2
0 + b2

1 + b2
2 + b2

3) = c2
0 + c2

1 + c2
2 + c2

3

where, by the characterization of quaternion multiplication:388

c0 = a0b0 − a1b1 − a2b2 − a3b3 c1 = a0b1 + a1b0 + a2b3 − a3b2

c2 = a0b2 − a1b3 + a2b0 + a3b1 c3 = a0b3 + a1b2 − a2b1 + a3b0

With this identity and by restricting the domain from H to H, we can change the original389

problem from finding a solution for all positive integers into finding it for all primes. In this390

manner, the four integer square problem is expressed using only quaternions, which turns391

the Number Theory problem into an easier algebraic one. A didactic proof approach appears392

in Chapter 7 of Herstein’s textbook [7].393

Among the interesting applications in physics, it is possible to express using quaternion394

algebra, the gravity as part of a simple quaternion wave equation [14], the four Maxwell395

equations as a nonhomogeneous quaternion wave equation, as well as the Klein-Gordon396

equation as a quaternion simple harmonic oscillator [13]. Furthermore, under some restrictions,397

it is possible to express a quaternion analog to the Schrödinger equation, a differential equation398

that governs the behavior of wave functions in quantum mechanics. The Schrödinger equation399

https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L165-L166
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gives the kinetic energy plus the potential. To do this, we first look at the quaternions as400

the external tensor product of a scalar and a vector of R3, denoted by (s, Ṽ), and write the401

quaternion in its polar form, namely:402

q = (s, Ṽ) = ‖q‖ eθ∗I = ‖q‖(cos(θ) + I ∗ sin(θ)),

where ‖q‖ =
√

q ∗ conjugate(q), θ = arccos
(

s
‖q‖

)
, and I = Ṽ

‖Ṽ‖
. Note that I2 = −1.403

Next, it is necessary to determine the quaternion wave function, ψ. Therefore, consider
the quaternion (t, R̃) representing time and space, the quaternion (E, P̃) representing the
electric field and momentum, and the quaternion V(0, X) representing the potential. Thus,
with ~ being the reduced Planck constant, we have:

ψ ≡ (t, R̃) ∗ (E, P̃)
~

= (Et− R̃ ∗ P̃, E ∗ R̃ + P̃ ∗ t + R̃× P̃)
~

Passing ψ to its polar form, and assuming that ψ is normalized, we have the quaternion
wave function:

ψ = e(E∗t−R̃∗P̃)∗I/~,

where I = E ∗ R̃ + P̃ ∗ t + R̃× P̃
‖E ∗ R̃ + P̃ ∗ t + R̃× P̃‖

.404

Now, differentiating ψ with respect to the time and the space we obtain, respectively:

∂ψ

∂t
= E ∗ I

~
ψ√

1 +
(

E∗t−R̃∗P̃
~

)2
and ∇ψ = − P̃ ∗ I

~
ψ√

1 +
(

E∗t−R̃∗P̃
~

)2

To achieve the objective, which is to establish an analog to the Schrödinger equation in
terms of quaternions, it is necessary to consider some assumptions and verify the behavior of
the quaternion wave function ψ. Among these assumptions are, for example, the conservation
of energy and momentum and the assumption that E ∗ t− R̃ ∗ P̃ = 0. Therefore,

∂ψ

∂t
= E ∗ I

~
ψ ⇒ −I ∗ ~∂ψ

∂t
= Eψ ⇒ E = −I ∗ ~ ∂

∂t

∇ψ = − P̃ ∗ I
~

ψ ⇒ I ∗ ~∇ψ = P̃ψ ⇒ P̃ = I ∗ ~∇

It is known that the momentum P̃ is the product of the mass, m, and velocity, v. Con-
sequently,

P̃2 = (mv)2 = 2m
mv2

2
= 2m KE = −~2∇2 ⇒ KE = − ~2

2m
∇2

Since the Hamiltonian H corresponds to the total energy (E), that is, it is equal to the
sum of the kinetic energy KE and the potential energy V, we obtain the following equation,
which is similar to the Schrödinger equation:

Hψ = − ~2

2m
∇2ψ + V ∗ ψ.

5 Conclusions and Future Work405

Table 1 presents the number of lines in the proofs of the crucial lemmas and theorems406

on the characterization of quaternions as division rings and rotational completeness of407
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Table 1 Quantitative information

Theory/Formula Name Proof Line
Numbers

Number of Proved
Formulas

Lemmas/Theorems
nz_red_norm_iff_inv_exist W 125 1
div_ring_iff_nz_rednorm W 95 1
inv_q_prod_charac W 259 1
quat_div_ring_aux1 W 40 1
quat_div_ring_aux2 W 388 1
quat_div_ring_char W 487 1
quaternions.pvs W 10981 63
T_q_Real_charac W 190 1
Quat_Rot_Aux1 W 10 1
Quat_Rot_Aux2 W 116 1
Quat_Rot_Aux3 W 106 1
Quaternions_Rotation W 38 1
Quaternions_Rotation_Deform W 94 1
quaternions_Hamilton.pvs W 3662 30

Hamilton’s quaternions formalized in the theories quaternions W and quaternions_Hamilton408

W, respectively.409

Although the complexity of proving rotational completeness is high, PVS supplies sat-410

isfactory algebraic automation of the field of reals R, which makes the formalization of411

rotational completeness much simpler than the formalization of characterization of an arbit-412

rary structure of quaternion as a division ring (observe the number of proof lines). Indeed,413

algebraic manipulation on standard number types, such as the type real, has been studied414

and implemented during the evolution of PVS, as reported by Muñoz and Mayero in [10] and415

di Vito in [3], among others. The availability of techniques to detect and cancel equal terms416

over algebraic theories as field and quat will surely make possible decreasing substantially417

the length of the proofs presented in Table 1 for the case of the theory of quaternions.418

Possible future work includes formalizations of applications of quaternions theory in419

other areas as discussed in Section 4. For instance, a formalization of Lagrange’s theorem420

will require the adequate parameterization of the quaternion theory proving that Hurwitz421

substructure is indeed a ring and that is almost a Euclidian ring, except for commutativity.422

After such proof, a few more auxiliary arithmetic lemmas, such as Lagrange’s Identity,423

which can turn the problem from finding solutions to all integers into finding for all primes,424

can be used for proving Lagrange’s Theorem using quaternions.425

In addition to the availability of the abstract theory of quaternions, other available PVS426

theories may be useful to formalize the application of quaternions in quantum mechanics427

discussed in Section 4. For instance, to specify quaternions in their polar form and the428

quaternion wave function, the core of theorems related to quaternion arithmetic and tri-429

gonometric theory should be useful; also, to formalize the Schrödinger equation, it will be430

extremely relevant to develop theorems or axioms on the differentiation of quaternions, and431

physics concepts, for example, momentum.432

Of course, another urgent line of research is extending PVS tactics, strategies, and, in433

general, mechanism of arithmetic manipulation for standard types as int, nat, and reals434

to abstract algebraic structures as ring, field, and quat.435

https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L181-L184
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L186-L188
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L190-L193
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L195-L197
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L199-L201
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L203-L206
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L1-L147
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L75-L79
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L148-L150
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L152-L157
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L159-L165
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L167-L171
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L173-L176
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L1-L147
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L181-L206
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L143-L176
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L143-L176
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L143-L176
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