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Abstract—Translocation is a useful operation on strings with
challenging questions in combinatorics of permutations and
interesting applications in analysis of sequences. A translocation
operation essentially is the interchange of prefixes and suffixes
among two substrings of a string. For the case of genomes
represented as strings, symbols represent genes and chromosomes
are modeled as substrings of the genomes; thus, translocation
is an operation that models the interaction between chromo-
somes among a genome. The translocation distance between two
genomes is defined as the minimum number of translocations to
convert one genome into the other and had been proved to be a
meaningful manner of modeling the evolutive distance between
organisms. The particular case of unsigned genomes, those in
which the orientation of the genes are not considered, is partic-
ularly difficult, while the signed case, in which the orientation of
genes is considered, has been proved to be polynomially decidable.
This paper compiles a proof of the NP-hardness and presents
an innovative GA approach to solve the unsigned translocation
distance problem. As distinguished feature, the proposed GA
uses as fitness function the translocation distance for randomly
generated signed versions of the unsigned genomes. Experiments
over randomly generated strings (synthetic chromosomes) show
that the proposed GA approach compute answers that are better
than those computed by an 1.5+ε-approximation algorithm, the
latter also implemented as part of this work.

I. INTRODUCTION

The comparison of biological sequences is a problem of
great relevance in the field of bioinformatics. By doing this
comparison we can determine the evolutionary relationships
between organism through the reconstruction of the sequence
of evolutionary events that transform a genome into another.
These rearrangements mechanisms include operations such as:
reversals, transpositions, and translocations. The reversal and
transposition operations are generally applied to genomes of
only one chromosome ([1], [2], [3]), however translocations
are operations that are applied over multiple chromosomes ([4],
[5]).

A. Related work

The unsigned translocation distance problem (UTD, for
short) was proved NP-hard by Zhu and Wang in [6] using
previous results that relate the complexity of other problems
such as decomposition in Eulerian cycles and color alternate
cycle decomposition [7] and decomposition in k-Cliques [8].
As background this work compiles a complete proof.

The signed translocation distance problem results much
more simpler than the unsigned case. Indeed, the orientation
of genes provides a strong constraint in the genomes that

reduces drastically the combinatorics of the problem. The
first polynomial O(n3) solution was prosed by Hannenhalli
in [4] giving rise to several other polynomial algorithms such
as a quadratic one proposed in [9] and a linear algorithm
proposed by Bergeron et al in [5] that has been implemented
as part of the system UniMoG [10] and in the current work
reimplemented in C in order to compute the fitness function
of the proposed GA.

For unsigned genomes, that are the ones treated in this
paper, known approximate solutions include the following.
In [11], Kececioglu and Ravi gave a ratio-2 approximation
algorithm for computing the translocation distance between
unsigned genomes; Cui et al. presented an 1.75-approximation
algorithm in [12], and further improved the approximation ratio
to 1.5+ε in [13]. Currently, to the best of our knowledge, the
best approximation algorithm is one of ratio 1.408+ε proposed
in [14].

B. Contribution

In this work we present a compilation of the proof of NP-
hardness of the unsigned translocation distance problem and
a GA approach for solving this problem. The fitness function
is based on linear computations of translocation distance for
signed versions of the genomes as implemented in [5]. To
verify the quality of the solutions computed by the GA, the
1.5+ε approximation algorithm [13] was implemented as part
of this work.

In the literature, the best proposed algorithm for UTD
is the 1.408+ε-approximation algorithm, however we use
the algorithm 1.5+ε-approximation, because the 1.408+ε-
approximation algorithm requires computing approximate so-
lutions of the maximum set packing problem with set size at
most 3 (which is NP-complete [15]) and for the maximum
independent set problem with maximum degree 4 ( which is
NP-Complete [15]), and the computation of these problems
can not be done in a straightforward manner. Moreover, for
our requirements, the quality of the solutions provided by both
approximation algorithms are similar since the ratio values are
very closed. Thus, we implemented the 1.5+ε-approximation
algorithm and use it as a good mechanism to control the
quality of the solutions of the proposed GA approach. This
algorithm takes as inputs two unsigned genomes A and B
(identity genome) and provides as output a signed genome
~A. The idea of the algorithm is the following: compute the
decomposition in cycles of the breakpoint graph Gu(A,B)(this
will be defined in Section II), and from this decomposition
attribute signals for the genes in A obtaining a signed genome



~A; then, one can calculate the translocation distance for ~A and
the identity genome using the linear time algorithm [5] for the
UTD problem.

Several experiments were performed for calculating the
translocations distance, indeed, sets of hundred genomes were
randomly generated as input, with each set of genomes
having lengths 10, 20, 30 until 150 genes. The results
of these experiments showed that the proposed standard
GA outperforms the quality of solutions computed by the
1.5+ε approximation algorithm. Regarding running time,
the GA takes only 10 seconds for genomes of length
150. The code was implemented in C and is available at
www.mat.unb.br/∼ayala/publications.html.

C. Organization

Initially, Section II presents the necessary background to
understand the UTD and Section III presentes a detailed
compilation of the proof of NP-hardness of the UTD. After-
wards, Section IV explains the 1.5+ε-approximation algorithm
and Section V introduces the standard GA for solving the
UTD. Finally, before concluding and presenting future work
in Section VIII, Sections VI and VII respectively present the
experiments and discusses quality of the results.

II. BACKGROUND

Standard definitions and notations are used (e.g. [5], [4],
[13]).

A. Genes, Chromosomes and Genomes

In order to represent the genes inside genomes of organ-
isms, each gene is associated with an integer number. A signed
integer represents an oriented gene and an unsigned integer a
non oriented gene. A chromosome is a sequence of genes and
a genome is constituted by a set of chromosomes. To simplify
the model, we consider that each gene appears only once in
the genome. So, a genome G with n oriented genes and N
chromosomes can be seen as:

G = {(x11 . . . x1r1), . . . , (xk1 . . . xkrk), . . . (xN1 . . . xNrN )}

where
N∑
i=1

ri = n, xij ∈ {±1, . . . ,±n} and |xij | 6= |xlk|

whenever i 6= l or j 6= k. For the unsigned version, xij ∈
{1, . . . , n}.

Chromosomes do not have orientation. Thus,
the chromosomes X = (x1, x2, . . . , xk) and
X ′ = (−xk,−xk−1, . . . ,−x1) are the same in the signed case;
whereas X and X ′′ = (xk, xk−1, . . . , x1) are equal in the
unsigned case. So, for example G = {(+1 −3), (−4 +2 −5)}
is a genome with 5 genes and 2 chromosomes; furthermore,
G and G′ = {(+1 −3), (+5 −2 +4)} are the same genome.

For differentiate signed from unsigned genomes the former
are denoted with an arrow: ~G.

Genomes with a sole chromosome can be seen as permu-
tations π in the symmetric group Sn. Indeed, a permutation
is a bijective function from {1, . . . , n} into the same set of
naturals. A permutation π can be represented as (πi, . . . , πn),
where πi abbreviates π(i), for 1 ≤ i ≤ n.

B. Sub-permutations

Let A and B be genomes with the same genes and S =
(x1, x2, . . . , xn) be a chromosome in A. A sub-permutation
in the chromosome S in A to B (for short, SP in A to B) is
a segment [xi, xi+1, . . . , xi+l] occurring in S with at least 3
genes, such that exactly the naturals between |xi| and |xi+l|
occur in the set {|xi+1|, . . . , |xi+l−1|} and there is another
segment [yj , yj+1, . . . , yj+l] in some chromosome T of the
genome B, satisfying:

• |xi| = |yj | and |xi+l| = |yj+l|;
• {|xi+1|, . . . , |xi+l−1|} = {|yj+1|, . . . , |xj+l−1|};
• [xi, xi+1, . . . , xi+l] 6= [yj , yj+1, . . . , yj+l].

A MinSP is a SP in A to B that does not contain any other
SP. For instance, consider the genomes:
A = {(1, 3, 2, 4, 5, 8, 6), (7, 9)} and
B = {(1, 2, 3, 4, 5, 6), (7, 8, 9)};
[1, 3, 2, 4, 5] is a SP and [1, 3, 2, 4] is a MinSP. For the
signed genomes below, [+1,−3,+2,+4,+5] is a SP and
[+1,−3,+2,+4] is a MinSP:
~A = {(+1,−3,+2,+4,+5,+8,+6), (+7,+9)} and
~B = {(+1,+2,+3,+4,+5,+6), (+7,+8,+9)}.

C. Breakpoint Graphs

Breakpoint graphs are an important data structure used
in combinatorics of permutations and also useful for sorting
genomes by translocations and other biological mutations.

Given a chromosome X = (x1, x2, . . . , xn) of a (signed
or unsigned) genome, we say that the genes xi and xi+1, for
1 ≤ i ≤ n− 1, are adjacent; otherwise, they are not adjacent.
Also, genes in different chromosomes are not adjacent.

Consider two signed genomes ~A and ~B with the same
genes and number of chromosomes. We can build the break-
point graph Gs( ~A, ~B) as follows. For all chromosomes X =
(x1, x2, . . . , xn) of ~A and Y = (y1, y2, . . . , ym) of ~B the
following elements are included:

• Vertices: a left-right ordered pair of vertices
(l(xi), r(xi)) = (−xi,+xi), for each gene xi, 1 ≤
i ≤ n;

• Edges: there is a black edge between r(xi) and
l(xi+1), for 1 ≤ i < n and, there is a gray edge
between +yj and −yj+1, if yj and yj+1 are adjacent
in B, 1 ≤ j ≤ m.

Figure 1 illustrates this notion.

Fig. 1. Gs( ~A, ~B) for ~A = {(+1,+3,+7), (+5,−2,+6,+4)} and ~B =
{(+1,−3,−6,+4), (+5,−2,+7)}

Notice one gray and one black edge are incident to each
vertex in Gs( ~A, ~B), except for those vertices at the ends



of chromosomes. Therefore, breakpoint graphs can only be
decomposed into color alternating cycles and univocally (cf.
[7]). A cycle is called long, if it contains at least two black
(or gray) edges, otherwise it is short.

Breakpoint graphs are also defined for the unsigned case.
Consider two unsigned genomes A and B with the same genes
and number of chromosomes. The breakpoint graph Gu(A,B)
for A and B is constructed as follows: vertices are given by
the genes in A and for all chromosomes X = (x1, x2, . . . , xn)
in A, there is a black edge between xi and xi+1, 1 ≤ i < n;
and, for all chromosomes Y = (y1, y2, . . . , ym) of B there is
a gray edge between yj and yj+1, whenever yj and yj+1 are
adjacent in B. Figure 2 illustrates this notion.

Fig. 2. Gu(A,B) for A = {(1, 3, 7), (5, 2, 6, 4)} and B =
{(1, 2, 3, 4), (5, 6, 7)}

The graph Gu(A,B) can be partitioned into a set of
alternating cycles. Notice that, each vertex in Gu(A,B) has
the same number of black and gray incident edges: vertices
associated with genes at the end of chromosomes in A have
only one black and one gray edge and internal genes have
exactly two black and two gray incident edges. Thus, there
is more than one way to partition Gu(A,B) into alternating
cycles.

Breakpoint graphs will also be defined for permutations
and we will see that these are almost those graphs obtained
for genomes A and B as before, where A has only one
chromosome.

D. Translocation

A translocation is said to be active in two chromosomes X
and Y when both are cut and represented as X = (X1, X2)
and Y = (Y1, Y2) and the segments produced on both chro-
mosomes are interchanged, transforming X and Y in two new
chromosomes X ′ and Y ′. A translocation operation works with
the assumption that the segments X1, X2, Y1 and Y2 are not
empty.

In the translocation scenario, the literature presents two
types of operations over segments of two chromosomes:
Prefix-Prefix and Prefix-Suffix. Given two signed chromo-
somes X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym)
in a genome, applying the translocation by Prefix-
Prefix ρ(X,Y, xi, yk), one obtains two new chromo-
somes X ′ = (x1, . . . , xi, yk+1, . . . , ym) and Y ′ =
(y1, . . . , yk, xi+1, . . . , xn). On the other hand, the transloca-
tion by Prefix-Suffix θ(X,Y, xi, yk) produces the new chro-
mosomes X ′ = (x1, . . . , xi,−yk, . . . ,−y1) and Y ′ =
(−ym, . . . ,−yk+1, xi+1, . . . , xn) (See Figure 3).

Example: Consider the genome ~A = {X,Y, Z} with X =
(+1,+2,−7,+5), Y = (+4,+3) and Z = (+6,−8,+9). The

Fig. 3. Prefix-Prefix and Prefix-Suffix type translocations

translocation ρ(X,Y,+2,+4) transforms ~A into the genome

~A′ = {(+1,+2,+3), (+4,−7,+5), Z}.

Applying the translocation θ(X,Z,+2,+6) to ~A, one
obtains the genome

~A′′ = {(+1,+2,−6), Y, (−9,+8,−7,+5)}.

For the unsigned case, translocation is defined as follows.
Consider two unsigned chromosomes X = (x1, x2, . . . , xn)
and Y = (y1, y2, . . . , ym). A translocation by Prefix-
Prefix ρ(X,Y, xi, yk) transforms X and Y into two
new chromosomes X ′ = (x1, . . . , xi, yk+1, . . . , ym)
and Y ′ = (y1, . . . , yk, xi+1, . . . , xn); whereas a
translocation by Prefix-Suffix θ(X,Y, xi, yk) transforms
X and Y into X ′ = (x1, . . . , xi, yk, . . . , y1 and
Y ′ = (ym, . . . , yk+1, xi+1, . . . , xn).

Example: Consider the unsigned genome A = {X,Y, Z},
with chromosomes X = (1, 2, 7, 5), Y = (4, 3) and Z =
(6, 8, 9). ρ = (X,Y, 2, 4) transforms A into

A′ = {(1, 2, 3), (4, 7, 5), Z}.

θ(X,Z, 2, 6) transform A into

A′′ = {(1, 2, 6), Y, (9, 8, 7, 5)}.

Given a chromosome X = (x1, x2, ..., xk), the genes x1
and −xk are called tails of X . Two genomes are called co-
tails if their sets of tails are the same. The genomes ~B and ~C
below are co-tails since they share the same set of tails, that
is {+1,−6,+7,−10}.

~B = {(+1,+2,−4,+3,+5,+6), (+7,−9,+8,+10)},

~C = {(+1,+2,+3,+4,+5,+6), (+7,+8,+9,+10)}.

Notice also that genomas ~A, ~A′ and ~A′′ as well as A,A′ and
A′′ of previous example are co-tails.

This property is essential, when we consider genome
rearrangement through translocations, because translocations
by Prefix-Prefix and Prefix-Suffix do not alter the set of tails
of a genome. So, in order to transform the genome A into B
by translocations the following conditions must be satisfied:
the number of chromosomes and genes of A and B must be
the same and A and B must be co-tails.

In the rest of the paper, unless otherwise stated, we will
consider only unsigned genomes.



E. Translocation distance

We are interested in studying the problem of sorting
genomes by translocations. The problem can be described as
follows: consider two unsigned genomes A and B with n
genes, where the genes of the genome B are in increasing
order and A and B are co-tails. Our goal is to find a sequence
δ1, δ2, . . . , δt of translocations that transform A into B, and t
is minimum; the number t is called the translocation distance
between A and B. For the signed case, the problem is defined
analogously; but, the genes of the genome B are positive,
furthermore they are in increasing order.

The complexity of the translocation distance problem is
related with the maximum decomposition into alternating
cycles of breakpoint graphs. Since there is only one possible
decomposition into alternating cycles of the breakpoint graph
of signed genomes, the translocation distance problem results
of polynomial complexity; whereas for the unsigned version,
the problem is NP-hard as will be explained in the next
section.

III. UNSIGNED TRANSLOCATION DISTANCE IS NP-HARD

The original proof of this fact is in [6]; here, we will
compile all necessary steps providing a self-contained proof.

A. Screenplay of the Proof

For a good understanding of the stages of the proof, a
screenplay will be presented containing all necessary steps that
were implicitly or explicitly used in [6] and the associated
references. Some problems should be defined first.

k-cliques: check if the set of edges of a graph H can be
partitioned into cliques of size k. For k ≥ 3, k-cliques is known
to be an NP-complete problem.

MAX-ECD: consider an Eulerian graph H. The problem
consists in finding a maximum decomposition in cycles of H,
i.e., a partition of the set of edges of H in the maximum number
of cycles.

MAX-ACD: given a breakpoint graph G(π) of a permutation
π, the problem consists in finding a maximum decomposition
in alternating cycles of G(π).

The proof is organized in the following steps (See Figure
4):

• Initially, Section III-B demonstrates that the problem
of graph partitioning in cycles for k = 3 is an instance
of the MAX-ECD problem [8]; thus, MAX-ECD is an
NP-complete problem.

• Afterwards, Section III-C presents a polynomial re-
duction from MAX-ECD into MAX-ACD [7]; conse-
quently, MAX-ACD is a NP-hard problem;

• Finally, Section III-D polynomially reduces MAX-
ACD into the translocation distance problem [6]; thus,
the translocation distance problem is NP-hard.

Fig. 4. Reductions for NP-hardness of unsigned translocation distance

B. k-cliques ⊆ MAX-ECD

In the early 1980’s Holyer proved that partitioning a graph
in k-cliques of size k, for k ≥ 3 is an NP-complete problem
[8]. In particular, for k = 3 one wants to check if the edge
set of the graph can be partitioned into triangles. In this
case, the graph can be assumed Eulerian. Thus, the problem
of finding a partition of the set of edges of an Eulerian
graph into triangles is NP-complete. Furthermore, since the
decomposition of a graph into triangles gives the maximum
Eulerian decomposition, one can conclude that 3-cliques ⊆
MAX-ECD.

C. MAX-ECD �p MAX-ACD

In this section we present details of the polynomial reduc-
tion from MAX-ECD to MAX-ACD proposed by Caprara in [7].
Before this, some definitions and properties must be given.

1) Breakpoint Graph G(π): Consider a permutation π =
(π1, . . . , πn) in Sn representing a genome constituted by only
one chromosome.

The breakpoint graph G(π) = 〈V,E = R ∪ B〉 of π is
constructed as follows: initially, add to π the elements π0 = 0
and πn+1 = n+ 1, and consider π′ = (0, 1, . . . , n+ 1). Each
node v ∈ V represents an element of π′.

The breakpoint graph G(π) is a bi-colored graph, where
the set of edges E is partitioned into two subsets: red and
blue edges R and B. There is a red edge (πi, πi+1) whenever
|πi−πi+1| 6= 1, for 0 ≤ i ≤ n, i.e., there is a red edge between
consecutive vertices πi and πi+1 that have non consecutive
labels. In this case, the pair πi, πi+1 is called a breakpoint
of G(π). There is a blue edge between vertices with labelled
with i and i+ 1, 1 ≤ i ≤ n, whenever i and i+ 1 are not in
consecutive positions in π. The Figure 5 illustrates the graph
G(π) for the genome π = (2, 4, 1, 3).

Theorem 1 (Properties of G(π) - Th. 4 in [7]). A bi-colored
graph G = 〈V,R∪B〉 is the breakpoint graph of some genome
π iff



Fig. 5. Breakpoint graph G(π) associated to π = (2, 4, 1, 3)

• Each connected component of the subgraphs G(R) and
G(B), induced by the red and blue edges resp., is a
simple path;

• Each node i ∈ V has the same degree (0, 1 or 2) in
G(R) and G(B);

• There are no edges in G(R) and G(B) connecting the
same vertices.

Sufficiency follows from definition of breakpoint graphs.
Necessity requires construction of a permutation π through
Hamiltonian matchings [7].

An alternating cycle of G(π), is a sequence of edges
r1, b1, r2, b2, . . . , rm, bm, where ri ∈ R, bi ∈ B for i =
1, . . . ,m; ri and bj have a common node for i = j = 1, . . . ,m
and for i = j + 1, j = 1, . . . ,m (where rm+1 = r1); and
ri 6= rj , bi 6= bj for 1 ≤ i < j ≤ m.

A decomposition in alternating cycles of G(π) is a collec-
tion of alternating disjoint edge cycles, such that each edge
of G(π) is contained in exactly one cycle of the collection.
Thus, MAX-ACD is an optimization problem that consists in
searching a maximum decomposition of G(π) in alternating
cycles. For instance see the MAX-ACD in the Figure 6.

Fig. 6. MAX-ACD of size 2 for G(π) for π = (2, 4, 1, 3) (Fig. 5)

2) MAX-ACD is NP-Hard: The proof is based on a
polynomial reduction from MAX-ECD to MAX-ACD. Given
an Eulerian graph H = 〈W,E〉 one can built a bi-colored
graph G in polynomial time, such that there exists a one-to-one
correspondence between cycles of H and alternating cycles of
G. The graph G is built replacing each node v of H of degree
d, by a bi-colored subgraph G(v), containing d bottom nodes
among other vertices, where d is the degree of v (see Figure
7). All connections between the original vertices of H remain
represented by red connections between different base nodes
of the bi-colored subgraphs G(v) ∈ G. To complete the proof,
the graph G must satisfy the characterization of Theorem 1.

The internal structure of each subgraph G(v) ∈ G has d
base nodes and m levels, abbreviated as G(d,m). Let s := d

2

and r := dd4e.

Each level l, l = 1, . . . ,m contains 2s + 1 nodes; s +
1 of them are top-level nodes, denoted by ql1, . . . , q

l
s+1, and

Fig. 7. (a) The Eulerian graph H. (b) The bi-colored graph G(π) constructed
from H.

the other s are lower-level nodes, denoted by pl1, . . . , p
l
s. Top-

level nodes ql1, . . . , q
l
s+1 are connected to lower-level nodes

pl1, . . . , p
l
s by d red edges (qli, p

l
i), (q

l
i+1, p

l
i), for i = 1, . . . , s.

Also, for l = 1, . . . ,m−1 the top-level nodes ql1, . . . , q
l
s+1

are connected to the lower-level nodes of the level l+ 1 by d
blue edges (pl+1

i , qli), (p
l+1
i , qli+1), for i = 1, . . . , s.

Finally, the upper nodes of the last level m are connected
to each other by s blue edges (qmi , q

m
i+1), for i = 1, . . . , s,

and the d bottom nodes, denoted by b1, . . . , bd, are connected
to the lower-level nodes of the first level by d blue edges
(b2i−1, p

1
i ), (b2i, p

1
i ), for i = 1, . . . , s (see Figure 8).

Fig. 8. Subgraph G(d,m) for d = 8 and m = 2.

Observe that all nodes of G(d,m) except bottom nodes
have the same number of red and blue incident edges. Given
two nodes of G(d,m) an alternating path between such nodes
is a path where the colors of the edges are alternate. Given
any two different bottom nodes bi and bj , it is always possible
to build an alternating path between bi and bj , whenever we
have enough number of levels in G(d,m). Indeed, by Theorem
5 in [7], the edge set of G(d,m) can be decomposed into s
alternating paths, connecting any selection of different pairs of
bottom nodes, iff m ≥ r(s− 1) + 1. Thus, one can guarantee
that it is possible from a bottom node bi achieve a different
bottom node bj by an alternating path and then connect bj to
another subgraph belonging to G by a red edge (see Figure 7).

Thus, if there is a cycle in H then it can be represented by
an alternating cycle in G and vice-versa; consequently there
is a correspondence between a cycle decomposition of H and
G. The Figure 9 illustrates this correspondence for a particular
case.

To conclude, one can observe that G satisfies the conditions
of the Theorem 1. Consequently, G is a breakpoint graph. The
reduction is done in polynomial time choosing m = r(s−1)+



Fig. 9. (a) Eulerian graph H containing two cycles. (b) The bi-colored graph
G, representing the same two cycles of H.

1. Thus, we have a polynomial time reduction from MAX-ECD
to MAX-ACD, and MAX-ACD is NP-hard.

D. MAX-ACD �p UTD

In this section, a polynomial reduction from MAX-ACD to
UTD is presented following the presentation in [6]. This allows
one concluding that the latter problem is NP-hard.

Let X and Y be two unsigned chromosomes. Without loss
of generality, let X = (g1, g2, . . . gn) and (Y = 1, 2, . . . , n),
where {g1, g2, . . . , gn} = {1, 2, . . . , n} and g1 = 1, gn = n.
From X and Y , one can build two genomes A = {X1, X2}
and B = {Y1, Y2} as will be described. Also, consider an
integer d that will be used to control the amount of short
cycles in the decomposition of Gu(A,B); this number will
be detailed in Lemma 2. The chromosome X1 of the genome
A is constructed by inserting n − 1 new genes between two
adjacent genes in X as follows:

X1 = (1, t1,1, g2, t1,2, . . . , gn−1, t1,n−1, n)

where, t1,k = 3n− 2 + k, 1 ≤ k ≤ n− 1.
X2 contains two types of new genes, t2,l = n + l, 1 ≤ l ≤
2(n− 1) and si = 4n− 3 + i, 1 ≤ i ≤ (n− 2)d.

X2 = (t2,1, t2,2, s1, s2, . . . , sd,

t2,3, t2,4, sd+1, sd+2, . . . , s2d,

...
t2,2(n−2)−1, t2,2(n−2), s(n−3)d+1, . . . , s(n−2)d,

t2,2(n−1)−1, t2,2(n−1))

To construct the genome B = {Y1, Y2}, consider the same
integers t1,k, t2,l and si, 1 ≤ k ≤ n − 1, 1 ≤ l ≤ 2(n −
1), 1 ≤ i ≤ (n − 2)d, as calculated in A. The chromosome
Y1 = Y = (1, 2, . . . , n) and Y2 is built from X2 inserting t1,k
between t2,2k−1 and t2,2k in X2.

Y2 = (t2,1, t1,1, t2,2, s1, s2, . . . , sd,

t2,3, t1,2, t2,4, sd+1, . . . , s2d,

...
t2,2(n−2)−1, t1,n−2, t2,2(n−2), s(n−3)d+1, . . . , s(n−2)d,

t2,2(n−1)−1, t1,n−1, t2,2(n−1))

At the end of the construction, each one of the genomes
A and B has a total number of 4n− 3 + (n− 2)d genes.

Example. Let X = (1, 3, 4, 2, 5) and Y = (1, 2, 3, 4, 5); the
Figure 10 (a) illustrates the graph Gu(X,Y ). Consider d = 4.
So, the genomes A and B are:

A = {X1, X2}, where
X1 = (1, 14, 3, 15, 4, 16, 2, 17, 5) and
X2 = (6, 7, 18, 19, 20, 21, 8, 9, 22, 23, 24,

25, 10, 11, 26, 27, 28, 29, 12, 13)

and
B = {Y1, Y2}, where
Y1 = (1, 2, 3, 4, 5) and
Y2 = (6, 14, 7, 18, 19, 20, 21, 8, 15, 9, 22, 23, 24,

25, 10, 16, 11, 26, 27, 28, 29, 12, 17, 13)

The graph Gu(A,B) is shown in the Figure 10 (b).

Fig. 10. Breakpoint graphs (a) Gu(X,Y ) and (b) Gu(A,B)

The Lemmas 2 and 5 clarify the relationship between a
maximum decomposition into alternating cycles of Gu(X,Y )
and the translocation distance between genomes A and B.

Lemma 2 (Lemma 4 in [6]). Assume d ≥ n − 1. There is a
decomposition of Gu(X,Y ) into J alternating cycles iff there
is a decomposition of Gu(A,B) into at least (n−2)(d+1)+J
alternating cycles.

Proof: A few details are aggregated to the original pre-
sentation given in [6].

Sufficiency: Assume that there is a decomposition M of
Gu(X,Y ) into J alternating cycles. For each cycle C ∈M , C
can be represented as a list C = u1, u2, . . . , u2k−1, u2k, where
(u2i−1, u2i) is a black edge and (u2i, u2i+1) is a gray edge,
1 ≤ i ≤ k and u2k+1 = u1. Notice that if u2i−1 = gj then
u2i = gj+1 or u2i = gj−1.

One can obtain a new cycle C ′ in Gu(A,B) replacing each
black edge (u2i−i, u2i) of C by the alternating path P2i−i,2i ,
where,

P2i−i,2i = gj , t1,j , t2,2j−1, t2,2j , t1,j , gj+1

if u2i−1 = gj , u2i = gj+1

P2i−i,2i = gj , t1,j−1, t2,2j−3, t2,2j−2, t1,j−1, gj−1
if u2i−1 = gj , u2i = gj−1.



So, to each cycle C ∈ M one can associate
univocally a long cycle C ′ of Gu(A,B); such cycle
is long because each alternating path P2i−i,2i has 3
black and 2 gray edges. Notice that, the only edges of
Gu(A,B) not used to build the J long cycles are the
edges (t2,2i, s(i−1)d+1), . . . , (sid−1, sid), (sid, t2,2i+1) for i ∈
{1, . . . , n − 2}; such edges can form (n − 2)(d + 1) short
cycles. Consequently, the decomposition M of Gu(X,Y ) into
J alternating cycles induces a decomposition of Gu(A,B) into
(n− 2)(d+ 1) + J alternating cycles.

Necessity: Let M ′ be a set of (n− 2)(d+ 1) + J alternating
cycles forming a decomposition of Gu(A,B). Notice that, only
the edges (t2,2i, s(i−1)d+1), . . . , (sid−1, sid), (sid, t2,2i+1) for
i ∈ {1, . . . , n − 2} can form short cycles of Gu(A,B);
consequently, there are at most (n − 2)(d + 1) short cycles
in M ′. Also, an alternating cycle using a vertice in X1 must
contain at least two black edges containing only vertices of
X1 and at least two gray edges with a vertice in X1 and
another in X2 (this implies that every cycle containing a vertice
in X1 is a long cycle). Consequently, since X1 has 2n − 1
vertices, there are at most n − 1 alternating cycles in M ′

using vertices in X1. For any i, the d+2 consecutive vertices
(t2,2i, s(i−1)d+1), . . . , (sid−1, sid), (sid, t2,2i+1) in X2 can not
be in a same cycle in M ′; indeed, otherwise, the number of
short cycles will be reduced by d+ 1 ≥ n, by hipothesis, and
the maximum number of cycles in M ′ would be

(n− 3)(d+ 1) + (n− 1) = (n− 2− 1)(d+ 1) + n− 1
≤ (n− 2)(d+ 1)− n+ n− 1
< (n− 2)(d+ 1) + J

Thus, if a cycle in M ′ containing one of the gray edges
(t1,j , t2,2j−1) and (t1,j , t2,2j), it must contain both
of them; otherwise, it would exist a cycle in M ′ us-
ing d + 2 consecutive vertices in X2. Furthermore, if a
long cycle in M ′ uses two consecutive vertices in the se-
quence (t2,2i, s(i−1)d+1), . . . , (sid−1, sid), (sid, t2,2i+1), such
cycle must contain both of the black and gray edges between
these two vertices; consequently, such long cycle can be
decomposed in order to increase the number of short cycles.
Thus, we can assume that all the (n− 2)(d+ 1) short cycles
are in M ′.

Finally, because any long cycle from Gu(A,B) can
not only contain gray edges in X1, each long cy-
cle in M ′ must take the path P1,2, . . . , P2k−1,2k , where
P2i−1,2i = u2i−1, t1,j , t2,2j−1, t2,2j , t1,j , u2i, and {u2i−1, u2i}
={gj , gj+1}. Replacing the path P2i−1,2i by the black edge
(u2i−1, u2i), one obtains an alternating cycle in Gu(X,Y ).
Thus Gu(X,Y ) can be decomposed into J alternating cycles.

Before Lemma 5, it is convenient to enunciate two the-
orems introduced in [6]. The first one relates translocation
distance and cycles in the decomposition of breakpoint graphs
and the second one translocation distance between unsigned
genomes and their signed versions.

Theorem 3 (Th. 1 in [6]). The translocation distance between
two signed genomes ~A and ~B satisfies d( ~A, ~B) ≥ n−m−cAB .
If there is no sub-permutations for ~A and ~B, the d( ~A, ~B) =
n−m− cAB , where n is the number of genes, m the number
of chromosomes and cAB the number of cycles in the cycle
decomposition of the breakpoint graph Gs( ~A, ~B).

Theorem 4 (Th. 2 in [6]). Let A and B be unsigned genomes.
Consider ~B the signed genome obtained from B by setting ev-
ery gene as positive. Then, d(A,B) = min ~A∈Spin(A)d(

~A, ~B),
where Spin(A) is the set of all signed genomes obtained from
A by setting signs to its genes.

Lemma 5 (Lemma 5 in [6]). There is a decomposition of
Gu(A,B) into (n − 2)(d + 1) + J alternating cycles iff
d(A,B) ≤ 3n− 3− J .

Proof: Sufficiency: If Gu(A,B) can be decomposed into
(n−2)(d+1)+J alternating cycles, there is a decomposition
M ′ in at least (n−2)(d+1)+J alternating cycles of Gu(A,B),
where every long cycle has a gray edge containing a vertice of
X1 and a vertice of X2. From this decomposition it is possible
construct signed genomes ~A and ~B, such that the number of
alternating cycles of Gs( ~A, ~B) is the same that in M ′; and
because every long cycle in M ′ has a gray edge with a vertice
in X1 and a vertice in X2, there are no sub-permutations for
~A and ~B.

Let n the number of genes in both genomes A and B, N the
number of chromosomes and cAB the number of alternating
cycles in the decomposition M ′ of Gu(A,B). So, by Theorem
4, d(A,B) ≤ d( ~A, ~B) and by Theorem 3,

d( ~A, ~B) = n−N − cAB

= 4n− 3 + (n− 2)d− 2−
= ((n− 2)(d+ 1) + J)

= 3n− 3− J. (1)

Thus, d(A,B) ≤ 3n− 3− J .

Necessity: Let d(A,B) ≤ 3n − 3 − J . By Theorem 4, there
exists genomes ~A and ~B obtained from A and B such that
d( ~A, ~B) ≤ 3n− 3− J .
Using again the Theorem 1, d( ~A, ~B) ≥ 4n− 3 + (n− 2)d−
2− c ~A~B . Thus,

c ~A~B ≥ 4n− 3 + (n− 2)d− 2− d( ~A, ~B)

≥ 4n− 3 + nd− 2d− 2− 3n+ 3 + J

= n+ nd− 2d− 2 + J

= (n− 2)(d+ 1) + J. (2)

Therefore, the maximum number of alternating cycles in a
decomposition of Gu(A,B) is at least (n− 2)(d+1)+ J .

By Lemmas 2 and 5, there is a decomposition into J
alternating cycles of Gu(X,Y ), if and only if, the translocation
distance between A and B is at most 3n− 3− J .

Consider an instance of MAX-ACD containing n genes
and d = n − 1. So, the corresponding instance of unsigned
translocation distance has 4n−3+(n−2).(n−1) = n2+n−1
genes.

Thus, there is a polynomial reduction from MAX-ACD to
Unsigned translocation distance problem and the latter is NP-
hard.



IV. 1.5+ε-APPROXIMATE SOLUTION FOR UTD

In the search for approximate solutions for the translocation
distance problem between unsigned genomes, Zhu and Wang
noted that given an unsigned genome A (since B is considered
as the identity genome, there is no need to give attention to
it), depending on signals attributed to the genes, the minimum
translocations necessary to order signed versions of A can
vary. See a simple example in Figure 11. Thus, the solutions
known in the literature to the unsigned case exploit this
statement, applying complex heuristics, in order to acquire
good approximate solutions.

(a) (b)

Fig. 11. The red line represents an inversion of chromosome and black lines
translocations. (a) Genomes A = {(+1,+3,+2,+4), (+5,−6,+7,+8)}
and B = {(+1,+2,+3,+4), (+5,+6,+7,+8)}. The translocation dis-
tance is 5. (b) Genomes A = {(+1,+3,+2,+4), (+5,+6,+7,+8)} and
same B. The translocation distance is 4.

Here we described details of the implementation of the
algorithm introduced in [13] that provides approximate so-
lutions of ratio 1.5+ε for translocation distance problem in
the unsigned version. Solutions given by this implementation
are used as a quality control for the solutions provided by
the proposed GA. The strategy of this approximation algo-
rithm consists in computing the decomposition in cycles of
Gu(A,B), and from this decomposition attribute signals for
the genes in A obtaining some ~A; then, one can calculate the
translocation distance for ~A using a linear time algorithm for
the signed version of the translocation distance problem.

A. Heuristics Used in the Approximation Algorithm

In the search for a decomposition in cycles of Gu(A,B), all
1-cycles are maintained, where 1-cycles are formed by a black
and a gray edge, such that appropriate signals are attributed to
the genes involved in order to form an 1-cycle.

After obtaining the maximum number of 1-cycles, one
seeks the maximum number of 2-cycles in polynomial time.
A match graph FAB of the breakpoint graph Gu(A,B) is
constructed as follows:
1 for each black edge in Gu(A,B) with at least one unsigned
vertex, create a vertex in FAB ;

2 for each two vertices in FAB , an edge is created connecting
them if the two black edges in Gu(A,B) form a 2-cycle.

Let V and E be the set vertices and edges of FAB

respectively. A maximum match of FAB is a set M ⊆ E
such that: ∀v ∈ V, v has at most one edge incident in M .

Each edge in M represents a 2-cycle in Gu(A,B). A 2-
cycle in M is isolated if it does not share any edge with any

other 2-cycle. Otherwise, the 2-cycle is related. Since, a 2-
cycle has two gray edges, it relates at most two 2-cycles.

A related component U consists of related 2-cycles
c1, c2, · · · , ck, where ci is related with ci−1 (2 ≤ i ≤ k),
and each 2-cycle is not related to any other 2-cycle out of U.
Also, a related component involves at most two chromosomes
and can be only of one of the four types in Figure 12.

.......xi-1 xi xi+1 xi+2 xj-2 xj-1 xj xj+1
...... ......

.......
xi-1 xi xi+1 xi+2 xj-2 xj-1 xj xj

...... ......

xj+2 xj+3xi-2xi-3

xi-2xi-3 xj+2 xj+3

.......

.......

xj-2 xj-1 xj xj xj+2 xj+3

xi-1 xi xi+1 xi+2xi-2xi-3

.......

.......

xj-2 xj-1 xj xj xj+2 xj+3

xi-1 xi xi+1 xi+2xi-2xi-3

(a)

(b)

(c) (d)

Fig. 12. The four types of related components containing 2-cycles. (a) e (b)
The component is only at one chromosome. (c) e (d) Two chromossomes are
involved in the component.

After the components are built, the focus will be the
isolated components. From isolated 2-cycles it is possible to
identify a special type of 2-cycle, called simple minSP (here,
minSP coincides with the notion defined in Section II) or in the
short form SMSP, those 2-cycles appear with their gray edges
at the extremity twisted, and with all internal cycles with their
black edges involved in 1-cycles. Let Is = xi, xi+1, · · · , xj
an SMSP. If there exists a gray edge (xi−1, xj) or (xi, xj+1)
in Gu(A,B), one can create a gray edge (r(xi−1), r(xj))
or (l(xi), l(xj+1)), transforming Is into a removable SMSP
(RSMSP). The RSMSPs are used to decrease the translocation
distance by changing the signs of their end genes. For more
details, see [13] and [4].

B. Analysis of the implementation

The Algorithm 1 is a high level abstraction of the im-
plementation of the 1.5+ε algorithm that is also available at
www.mat.unb.br/∼ayala/publications.html as part
of the whole development. The implementation uses the lan-
guage C. Here, we present an overview about the running time
complexity, showing that the implementation has the same
complexity given in [13].

Let n be the size of the genome A. At line 1, the breakpoint
graph Gu(A,B) is built using adjacency lists in time O(n2).



At line 2, the process of computing the 1-cycles, and at
line 3 building the graph FAB have time complexity O(n)
each one, since it is necessary to process n genes in A.

At line 4, for computing the maximum matching graph M
of FAB we used the boost library, this well-known library
is implemented in C++ and is available at http://www.boost.
org/. Computation of the matching graph has time complexity
O(V 2) with V representing the number of vertices in FAB .

At line 5, finding isolated 2-cycles and 2-cycles in related
components of M , has time complexity O(m2) with m being
the number of vertices of M , since it is necessary to compare
if two cycles share the same grey edges in M .

At line 6, the procedure to identify the RMSPs has time
complexity O(mp), with p representing the number of genes
of each isolated cycle.

For the lines 7 and 8, distributing appropriate signals for
both 2-cycles either isolated or related, the necessary time is
O(m2).

At line 9, removing RMSPs is performed in O(m), this
procedure is very simple, because reverses only the extreme
genes of each RMSP.

At line 10, getting the signals distributed for the 2-cycles
in the previous steps and assigning it to the genes of A have
time complexity O(n).

At line 11, verifying is there exist genes without signals in
A have time complexity O(n).

At line 12, distributing arbitrarily signals to genes in A
have time complexity O(n).

Thus, if one looks only to the procedure with highest
complexity, that is the procedure that computes the graph
Gu(A,B) and has quadratic complexity, the implementation
runs as proposed in ([12], [13]).

Algorithm 1: 1.5+ε approximate algorithm for UTD
Data: Genomes A (and B as identity genome)
Result: Genomes A

1 Build the breakpoint graph Gu(A,B);
2 Compute all possible 1-cycles in A;
3 Build the graph FAB ;
4 Compute the maximum matching graph M of FAB ;
5 Compute isolated 2-cycles and related components in
M ;

6 Build all possible RMSPs of isolated 2-cycles;
7 Distribute appropriate signals to isolated 2-cycles;
8 Distribute appropriate signals to related components;
9 Remove all RMSPs;

10 Get the signals distributed for the 2-cycles in the
previous steps and put in genes of A;

11 if there exists genes without signals in A then
12 Distribute arbitrarily signals to genes in A;

V. A GENETIC ALGORITHM FOR UTD

Initially, necessary concepts about genetic algorithms are
given. A GA is a searching technique used to solve optimiza-
tion problems, that was introduced in 1975 by Holland in

his book ”Adaptation in natural and artificial systems”. Such
technique works with the hypothesis that the genetic informa-
tion of a specific population contains a possible solution. This
solution, possibly is not contained in a single individual. Thus,
through techniques of genetic combination, new individuals
can be obtained that improve the solution to the proposed
problem, and after some generations the individuals converge
to a good solution [16].

In order to model a solution based in natural evolution, GAs
emulate the evolutionary process that is done in the nature. The
following concepts are necessary in order to understand GA:

Individual: an individual represents a unique solution, within
a scenario of possible solutions.

Population: a population is a set of individuals constituting
a scenario that contains a part of the search space, such
population may contain potential solutions.

Fitness: it is used to measure how good an individual is in the
population.

The process or cycle of reproduction is the central part
of GAs, since during this process new individuals are created
potentially with incremental quality. The reproduction cycle
consist in 4 steps:

Selection: choose two parents to perform the reproduction. The
objective is to find good individuals hoping the generation of
descendants with better fitness.

Crossover: apply the crossover over the selected parents
producing two news descendants. In the context of our problem
this operation is performed by swapping the elements from a
random point to the end of the string of two parents solutions.

Mutation: after the crossover, some of the individuals are
subjected to mutation. The mutation has the roles of recovering
the lost genetic material and also maintaining the genetic
diversity. In the context of our problem this operation is
performed by simply swapping the signs of a random element
of an individual.

Replacement: consists in the replacement of individuals in the
old population, which are the ones with lower fitness.

A. Fitness function in the GA for UTD

The purpose of the fitness in our algorithm is to calculate
the translocation distance between the signed genome ~A and
the identity genome, which is the genome with all its elements
positive an sorted in increasing order. Thus, we can rank the
best signed versions of the unsigned genome A according to
this fitness. The linear algorithm proposed by Bergeron et al
in [5] is used to calculate the translocation distance between
two signed genomes. Originally, this linear algorithm was
implemented in Java as a part of the system UniMoG [10],
but we reimplemented it in the C language.

Finding an optimal solution for a given unsigned genome
A is a hard task, since, the search space for such unsigned
genome consists of 2n signed genomes, that are all possible
signed versions of A. Such signed genomes can be sorted in
linear time. Additionally, it is easy to note that solutions that
solve any signed genome in the search space also solve the
initial unsigned genome, and of course, that all these solutions



will require a number of translocations greater than or equal
to the translocation distance of the given unsigned genome A.
This fact will be used to guide the proposed GA.

B. Description of the GA

The GA works as follows. Initially, a random population
of signed genomes is generated based on the unsigned genome
input. After that, for each generation the reproduction is
performed as follows: Select two individuals of the population,
such individuals are part of the best current solutions for which
crossover and mutation operations are applied producing two
new individuals. Then, the new individuals are incorporated in
the current population. The GA finishes after all the genera-
tions have been completed, the number of generations depends
on the size of the input genome.

The pseudo-code of our proposed standard GA is shown
in Algorithm 2.

Algorithm 2: GA for Calculating UTD
Input: Unsigned Genome A
Output: Number of translocations to sort genome A

1 Generate the initial population of signed genomes;
2 Compute fitness of the initial population;
3 for i = 1 to Length(A) do
4 Perform the selection and save the best solution

found;
5 Apply the crossover operator;
6 Apply the mutation operator;
7 Compute the fitness of the current population;
8 Perform replacement of the worst individuals;

Let n be the size of the genome A. The initial population
size is defined as n log n. Each individual in the population
is generated from A in linear time, randomly assigning either
a positive or negative sign to each gene. This step has time
complexity of O(n2 log n).

Since, for a single individual the fitness is computed in
linear time, the process of computing the fitness value for all
population has time complexity O(n2 log n).

In the Selection step, for sorting the population by fitnesses
in ascending order, we use the counting sort algorithm that runs
with complexity O(n+n log n), with the fitness value of each
individual in the interval from 1 to n, and with population size
being n log n. Thus, the complexity of this step is O(n log n).

In the crossover step, the best individuals classified during
the selection step are chosen to be the parents. For each pair of
parents, apply crossover on them by copying the elements at
the right side of a random point for one individual to the other
and vice versa, clearly this takes linear time (O(n)). Thus, the
running time for executing the crossover over a maximum of
n log n individuals is O(n2 log n).

In the mutation step, this operator is applied to each new
individual produced by the crossover. For each element of one
individual, a check is made to verify whether to apply or not
the mutation over a single element, this clearly takes linear
time (O(n)). The total time taken by the mutation applied
over a maximum of n log n individuals is O(n2 log n).

In the replacement step, each replacement of an individual
takes linear time O(n), since we must copy of all of its ele-
ments. The total time taken by the replacement of a maximum
of n log n individuals takes a total time of O(n2 log n).

Finally, the genetic algorithm finishes after n generations
and its total time complexity is O(n3 log n).

VI. EXPERIMENTS AND RESULTS

In order to validate the proposed GA, several tests were per-
formed. The tests were done for randomly generated genomes.
These genomes were created as follows: Generate an identity
genome containing n genes and N chromosomes. Then, over
this identity genome apply a fixed number of random reversals
and translocations. The pseudocode of this procedure is shown
in Algorithm 3.

Algorithm 3: Construction of synthetic genomes
Input: Number of genes n with N chromosomes
Output: A synthetic genome A

1 Generate an identity genome A with n genes and N
chromosomes;

2 j ← 0;
3 while j ≤ n do
4 Choose randomly a chromosome C of A;
5 Select randomly an interval in C;
6 Apply a reversal over this interval;
7 Choose randomly two chromosomes C and C ′ of A;
8 Apply a Prefix-Prefix translocation between

segments of C and C ′;
9 j ← j + 1;

In order to obtain solutions with good quality, adjustments
were performed in the parameters of the genetic operators.
The fine-tuning was empirically performed and provided better
solutions when compared with the GA solutions without
adjustments in these operators. The experiment was performed
as follows: The GA was executed ten times for each genome
contained in a group of hundred elements, with each group
containing genomes with n genes, for n ∈ {20, 50, 100, 150},
and with 25% of each group having N chromosomes, with
N ∈ {2, 3, 4, 5}. For each parameter to be adjusted its value
was varied over a scenario of possible good values, and for
the other parameters were fixed estimated values.

At the end of the experiment the parameters that provided
the best results for the GA were taken. Those parameters are
the following: single crossover point with probability of 90%,
mutation probability of 2%, selection applied over 80% of the
current population, and replacement applied over the 70% of
the worst individuals of the current population.

Choosing these fine-tuning parameters, experiments were
performed for calculating the translocation distances for the
standard GA and the 1.5+ε-approximation algorithm. For this
purpose, genomes were generated using the Algorithm 3 with
n genes, for n ∈ {10, 20, · · · , 150}, and with N chromosomes,
for N ∈ {2, 3, 4, 5}. For hundred genomes of length (n,N),
the average of the results for the 1.5+ε-approximation algo-
rithm was calculated. The same packages of hundred genomes
used in the approximation algorithm were used to calculate the



TABLE I. RESULTS OF THE 1.5+ε-APPROXIMATION AND THE
STANDARD GA FOR 2 AND 3 CHROMOSOMES.

2 chromosomes 3 chromosomes
n Average GA Average Aprox Average GA Average Aprox
10 3.394 3.540 2.750 2.900
20 9.738 10.770 9.244 10.360
30 16.513 18.690 15.891 18.110
40 23.600 27.080 22.442 25.730
50 29.9810 34.580 29.662 34.170
60 37.183 42.910 36.639 42.010
70 44.907 51.840 43.230 49.930
80 51.869 59.620 50.604 58.490
90 58.213 66.960 57.715 66.620

100 66.287 76.300 65.448 75.320
110 74.534 85.940 72.940 83.710
120 80.587 92.400 80.064 91.710
130 89.164 102.020 86.838 99.590
140 96.252 110.070 94.599 108.210
150 103.510 118.380 102.106 116.350

TABLE II. RESULTS OF THE 1.5+ε-APPROXIMATION AND THE
STANDARD GA FOR 4 AND 5 CHROMOSOMES.

4 chromosomes 5 chromosomes
n Average GA Average Aprox Average GA Average Aprox
10 1.670 1.740 0.980 0.980
20 8.442 9.170 7.320 7.890
30 14.861 16.710 13.650 15.330
40 21.058 23.860 20.078 22.420
50 27.545 31.450 26.334 30.020
60 34.314 39.380 32.111 36.880
70 41.488 47.640 38.935 44.430
80 47.589 54.440 45.134 51.490
90 55.020 63.110 52.609 60.310

100 61.539 70.830 58.815 67.260
110 68.687 78.460 65.027 74.450
120 75.462 86.140 72.028 82.270
130 82.452 94.020 78.792 89.680
140 89.948 102.750 86.133 98.230
150 97.686 111.080 92.506 105.330

average in the standard GA. It is worth mentioning that for
each genome of length (n,N) the standard GA was executed
ten times and then, the average of the ten obtained results was
calculated. This average represents the result for each genome
of length (n,N).

The standard GA and the 1.5+ε-approximation algorithm
were implemented in C language and executed in OS X plat-
forms with Intel core I5 processors. The source code is avail-
able at www.mat.unb.br/∼ayala/publications.html.

The results (average translocation distances) of the exper-
iment are shown in the Tables I and II. Also, experiments
for calculating the average running time (in seconds) of 100
executions were performed for both algorithms and the results
are shown in the Tables III and IV.

VII. DISCUSSION

A few considerations are necessary before discussing the
results. On the way to build synthetic genomes, instead of
applying just prefix-prefix translocations between the chro-
mosomes, we also apply reversals over the chromosomes. By
including reversals it was possible to obtain harder instances
of the problem. Prefix-suffix translocations are not considered
because they are analogous to apply a reversal and a prefix-
prefix translocations, which are already included in Algorithm
3.

TABLE III. RUNNING TIME (IN SECONDS) OF THE
1.5+ε-APPROXIMATION AND THE STANDARD GA FOR 2 AND 3

CHROMOSOMES

2 chromosomes 3 chromosomes
n Average GA Average Aprox Average GA Average Aprox
10 0.008 0.010 0.009 0.010
20 0.030 0.010 0.032 0.011
30 0.082 0.010 0.091 0.012
40 0.184 0.009 0.199 0.011
50 0.356 0.010 0.377 0.010
60 0.605 0.010 0.646 0.019
70 0.962 0.010 1.029 0.010
80 1.427 0.010 1.535 0.011
90 2.076 0.010 2.186 0.010

100 2.877 0.010 3.016 0.010
110 3.839 0.010 4.032 0.011
120 5.011 0.011 5.246 0.010
130 6.498 0.011 6.811 0.011
140 8.123 0.011 8.519 0.011
150 10.071 0.011 10.489 0.011

TABLE IV. RUNNING TIME (IN SECONDS) OF THE
1.5+ε-APPROXIMATION AND THE STANDARD GA FOR 4 AND 5

CHROMOSOMES

4 chromosomes 5 chromosomes
n Average GA Average Aprox Average GA Average Aprox
10 0.011 0.013 0.012 0.012
20 0.037 0.015 0.042 0.011
30 0.101 0.014 0.110 0.011
40 0.217 0.011 0.234 0.011
50 0.405 0.010 0.434 0.010
60 0.685 0.009 0.737 0.010
70 1.082 0.010. 1.134 0.010
80 1.626 0.010 1.687 0.010
90 2.322 0.010 2.415 0.010

100 3.170 0.010 3.322 0.010
110 4.258 0.010 4.413 0.010
120 5.479 0.011 5.756 0.010
130 7.091 0.011 7.384 0.011
140 8.899 0.011 9.273 0.011
150 10.975 0.011 11.421 0.011

It is important to emphasize that the algorithm [5] used as
fitness function had already been implemented by their authors
as a contribution of Jens Stoye. The source code implemented
in Java was made available and then translated to C. Also, we
performed several tests to validate the translocation distance.
For the validation, the algorithm proposed in [4] (as corrected
by Bergeron in [5]) was used, which provides the optimal
sequence of translocations necessary to transform a genome
into another.

There is a little variation in the running time of the 1.5+ε
approximation algorithm even for genomes of length 150. This
is because the steps of the algorithm are relatively simple and
also since, the solutions of the approximation algorithm are
based in the calculation of 2-cycles and the inputs generated
randomly have a few number of 2-cycles. So, the execution of
the algorithm is always fast.

For the standard GA, we can observe that when the number
of chromosomes and genes are incremented, the running time
grows rapidly. This is because the size of the population
depends on the number of genes. Although this, it is necessary
to stress here that the size of the population is not proportional
for the search space for genomes of different size as usual in
combinatorics of permutations (n log n versus n!).

From the experiments, one can conclude that the standard
GA compute better results on average than those obtained



by the 1.5+ε-approximation algorithm. It can be observed
in Tables I and II that for permutations of length greater
than or equal to 50, the standard GA has better solutions in
approximately 12%.

As can be seen in the Tables III and IV the running time
of the standard GA is, as expected, greater when compared
with the running time of the approximation algorithm and this
difference is higher for larger inputs.

VIII. CONCLUSIONS AND FUTURE WORK

In the search for good solutions for the NP-hard problem
of translocation distance for unsigned genomes, a standard
genetic algorithm was proposed in this paper. This standard
GA acts on a population of signed genomes generated from
an unsigned genome (the input), and after each generation
the population evolves to the signed genomes with the best
translocation distance. Indeed, the distinguished feature of
our GA is using as fitness function the (linearly computable)
translocation distance of signed permutations.

The experiments showed that results obtained by the
standard GA outperform the results obtained by the 1.5+ε-
approximation algorithm. With respect to the running time,
the 1.5+ε-approximation algorithm as expected is faster when
compared with the standard GA, however this difference is
tolerable, since, the experiments with the standard GA have
running time of approximately 10 seconds for genomes with
150 genes.

As an immediate further step we are planning experiments
with data generated from real genomes, which can be obtained
from the biological sequence database GeneBank. This data
would be generated by assigning an integer number to each
gene of a real genome; these integer numbers are mapped from
an identity genome with the same genes. Also, as future work
we are planning to improve our standard GA by including
other interesting heuristics as done for other GA approaches
to deal with reversal distance. This will include memetic GA
approaches as in [17] and parallel GA approaches as in [18]
with the aim of improving the quality of the solutions and
reducing the running time. Also it would be of great interest
performing experiments with opposition based learning with
the aim of exploring the search space using opposite solutions
[19].
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