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Abstract. This work presents two formalisations in Isabelle/HOL of
the extension of Hall’s marriage theorem for finite graphs to countable
infinite graphs. The proofs use a formalisation of the authors’ count-
able set-theoretical version of Hall’s theorem, which was proved using a
formalisation in Isabelle/HOL of the compactness theorem for proposi-
tional logic by dealing with finite families of sets through the well-known
marriage-condition characterisation. The first formalisation focuses on
maintaining specifications and proofs as closely as possible to textbook
proofs. The second one states the theorem directly in terms of the ex-
istence of perfect matchings over finite and infinite graphs, profiting
from the conciseness of Isabelle/HOL locales’ technology. The develop-
ment contributes to mechanising countable infinite versions of properties
equivalent to Hall’s marriage theorem in contexts other than set theory.
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1 Introduction

Hall’s marriage theorem is a landmark result established primarily by Philip Hall
[17], and it is equivalent to several other significant theorems in combinatorics
and graph theory (cf. [8], [9], [28]), namely: Menger’s theorem (1929), König’s
minimax theorem (1931), König–Egerváry theorem (1931), Dilworth’s theorem
(1950), Max Flow-Min Cut theorem (related to the well-known Ford-Fulkerson
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algorithm), among others. Consequently, any mechanisation of Hall’s theorem
allows one to prove any of those equivalent results formally.

Two well-known versions of Hall’s theorem exist, one for finite families of fi-
nite sets and another for finite graphs. The proofs of any previously cited equiv-
alences can be more adapted to a specific version of Hall’s Theorem, either the
set-theoretical or the graph-theoretical version. For example, König–Egerváry
theorem states that the minimum cover in a finite bipartite graph has the same
cardinality as a maximum matching. Thus, if we assume Hall’s theorem for fi-
nite graphs, one possible way to infer König–Egerváry theorem will consist of
building a reduction from the latter to the former. Considering the nature of
König–Egerváry theorem, it is clear that the graph-theoretical version of Hall’s
theorem is more appropriate than the set-theoretical version to establish the
equivalence between these theorems.

Although we referred to the finite versions of the mentioned results in the
previous paragraphs, we point out that extensions to infinite sets and graphs
are of primary interest [2].

Mechanisations such as those presented in this work aim to pave the way to
develop formalisations of infinite versions of some theorems in combinatorics re-
lated to Hall’s Theorem. For example, the authors formalised the set-theoretical
version of Hall’s Theorem for a countable (infinite) collection of finite subsets
{Si}i∈I of a set S [32]. Such a development applied a formalisation of the com-
pactness theorem for propositional logic, developed by Serrano in [31], and Jiang
and Nipkow’s formalisation for the finite case of the set-theoretical version of
Hall’s theorem [21].

As main results, this work discusses how applying authors’ development in
[32], the infinite graph-theoretical version of Hall’s theorem is mechanised in
Isabelle/HOL. The result applies to a general class of infinite bipartite graphs
with finite neighbourhoods regarding one of the sets of vertices of the vertex
bipartition. Additionally, a second succinct formalisation of the same result that
uses Isabelle locales is also discussed. The formalisations are of practical interest
since they can be used to establish the mechanisation of other combinatorial
results, as the previous ones discussed, over infinite sets and graphs.

Interestingly, other combinatorial well-known results equivalent to Hall’s the-
orem in the finite case are not straightforwardly equivalent in the infinite case;
for instance, the infinite version of König-Egerváry theorem that as reported in
[2] cannot be inferred from the compactness theorem.

Organisation. Section 2 discusses Hall’s marriage theorem for finite and infinite
countable sets and graphs and explains the equivalence between the versions for
graphs and sets. Then, Section 3 presents the two formalisations in Isabelle/HOL
of the graph-theoretical version of Hall’s theorem for countable graphs. Section
4 discusses related work before concluding in Section 5. The paper includes links
to the formalisation highlighted by the symbol 2.
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2 Hall’s Theorem for sets and graphs

2.1 Finite and infinite versions of Hall’s theorem

Hall’s theorem for sets establishes that a finite family {Si}i∈I of finite sets not
necessarily disjoint, of elements in a set S, has a system of distinct representa-
tives (SDR) if and only if the so-called marriage condition holds. The marriage
condition states that:

For any J ⊆ I, |J | ≤ |
⋃
j∈J

Sj |

Above, an SDR for the family {Si}i∈I is understood as a subset of elements
of S that contains exactly an element for each set in the family. This can be
formalised as an injective function f : I → S, such that f(i) ∈ Si, for i ∈ I.

Definition 1 (SDR). Let S be an arbitrary set and {Si}i∈I a collection of not
necessarily distinct subsets of S with indices in the set I. An injective function
f : I →

⋃
i∈I Si is an SDR for {Si}i∈I if for all i ∈ I, f(i) ∈ Si.

Using the compactness theorem, a proof of a countable infinite version of
this theorem was formalised in Isabelle/HOL [32]. The infinite version states
that a countable family of finite sets, indexed by a set I, has a set of distinct
representatives if and only if Hall’s marriage condition below holds:

For any J ⊆ I, J finite, |J | ≤ |
⋃
j∈J

Sj |

Hall’s theorem for finite graphs states that in a bipartite graphG = ⟨X,Y,E⟩,
(where E ⊆ X × Y ,) there is a perfect matching covering X if and only if
|J | ≤ |N(J)| for all J ⊆ X. Here, for x ∈ X ∪ Y , the neighbourhood of x
is the set of vertices N(x) = {y | (x, y) ∈ E, or (y, x) ∈ E}. N is extended
straightforwardly to sets.

Definition 2 (Directed bipartite digraph and perfect matching). Let X
and Y be nonempty sets. The triple G = ⟨X,Y,E⟩ is a directed bipartite digraph
if and only if the following conditions hold.

1. X ∩ Y = ∅, and 2. E ⊆ (X × Y ).
A subset of arcs E′ ⊆ E is a perfect matching of G = ⟨X,Y,E⟩ if and only if

1. X = {x | (x, y) ∈ E′}, and 2. E′ is an injective relation.

The infinite version of Hall’s theorem for graphs states that in a countable bi-
partite graph G = ⟨X,Y,E⟩, where for all x ∈ X, N(x) is finite, there is a perfect
matching covering X if and only if |J | ≤ |N(J)| for all J finite, J ⊆ X. It may be
directly graph-theoretically stated as “there exists a perfect matching if and only
if for any finite subgraph there is a perfect matching.” Indeed, the graph and each
of their subgraphs translate into a family of indexed sets, {N(j)}j∈J , and the
system of distinct representatives allows the construction of a perfect matching
consisting of the set of edges {(j, y) | j ∈ J, where y is the representative of j}.
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Notice that for the infinite version of this theorem, the finiteness of N(x)
cannot be relaxed; in fact, the graph G = ⟨N,N+, {(0, i) | i ∈ N+}

⋃
{(i, i)|i ∈

N+}⟩ is an easy counterexample. In G, the sets of vertices N and N+ are seen as
different copies of natural numbers.

The formalisation of Hall’s Theorem for countable families in [32] uses Nip-
kow’s formalisation of Hall’s theorem for finite families of sets [20] and Serrano’s
formalisation of the compactness theorem for propositional logic [31].

2.2 Countable versions of Hall’s theorem for sets and graphs

The equivalence between countable versions of this theorem for sets and graphs
is clear intuitively.

On the one side, a countable bipartite graph G = ⟨X,Y,E⟩ gives a countable
family of neighbourhoods {N(x)}x∈X , which are finite sets under the constraint
that neighbourhoods of vertices in X are finite. If M is a perfect matching of G,
thus one builds an SDR by considering the injective function f : X → Y such
that, for each x ∈ X, f(x) = y, where (x, y) ∈ M .

On the other side, if one has a countable family of finite sets {Si}i∈I satisfying
the marriage condition, then there exists a distinct set of representatives for
{Si}i∈I , given by f . We consider the countable bipartite graph built as G =
⟨I,

⋃
i∈I Si, E⟩, where E = {(i, y) | i ∈ I, y ∈ Si}. Since the sets in the countable

family of sets {Si}i∈I are finite the set of neighbourhoods in G, for each i ∈ I,
N(i), is finite; indeed, |Si| = |N(i)|. Since f is injective, the perfect matching
covering I is given by the set of arcs M = {(i, f(i)) | i ∈ I}.

3 Formalisation of Hall’s Theorem for Graphs

Initially, we discuss how infinite families of sets and infinite bipartite graphs are
specified. Afterwards, we explain how the proof of correction of the specialised
construction of an SDR from a perfect matching over an infinite directed bi-
partite graph is used to conclude the infinite graph-theoretical version of Hall’s
theorem. Finally, a formalisation using Isabelle locales is presented.

3.1 Formalising relations between sets and graphs

The formalisation is constructive, and its kernel is the transformations of indexed
infinite families of sets to and from directed bipartite digraphs. One of the vital
features of our formalisation is how we build a system of distinct representatives
(SDR) for a family of sets from a perfect matching over arbitrary directed bi-
partite graphs. Such transformations are more general than those discussed in
the previous section since neither the family of sets need to be countable nor
the sets in the family must be restricted to finite sets. Thus, the bipartite graph
may also be non-countable, and the neighbourhoods of the vertices do not need
to be finite. Theorems 1 and 2 present the reductions from a problem to an-
other one and state that from the existence of a perfect matching, the resulting
transformation is an indexed family of sets that has an SDR, and vice-versa.
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Theorem 1 (SDR associated to a directed bipartite digraph). Let G =
⟨X,Y,E⟩ be a directed bipartite digraph.

The collection of sets associated to G is built as {Vi}i∈I , where I = X, and
for all i ∈ I, Vi = {y | (i, y) ∈ E}.

Therefore, if E′ is a perfect matching of G, the function R : I →
⋃

i∈I Vi,
defined as R(i) = y, where y is the unique element in Vi such that (i, y) ∈ E′, is
an SDR of {Vi}i∈I .

Theorem 2 (Perfect matching associated to a collection of sets). Let
{Si}i∈I be a collection of non-necessarily distinct subsets of an arbitrary set S.

The directed bipartite digraph associated to {Si}i∈I is built as the graph G =
⟨X,Y,E⟩ where X = I, Y =

⋃
i∈I Si and E = {(i, x) | i ∈ I and x ∈ Si}.

Therefore, if R is an SDR of {Si}i∈I , then the subset of arcs E′ = {(i, x) |
i ∈ I and x = R(i)} is a perfect matching of G.

Preliminaries and definitions The Isabelle Archive of Formal Proofs contains
a collection of theories regarding Graph Theory [25]. In particular, Noschinski
and Neumann specified, in the theory Digraph.thy, the primary data structure
pre digraph as the basis to develop complex formalisations such as Kuratowski
theorem and the existence of a Eulerian path on directed finite graphs. We also
apply such a record to establish our formalisation.

record (’a,’b) pre_digraph =

verts :: "’a set" arcs :: "’b set"

tail :: "’b ⇒ ’a" head :: "’b ⇒ ’a"

Such a record from the theory mentioned above is used since the formalisation
established in [25] contains specialised concepts intrinsic to the specific results
formalised in it. For example, in the Isabelle AFP theory, Kuratowski.thy and
complete bipartite digraphs are defined. However, there is no general specification
of complete bipartite digraphs. Consequently, a small variety of basic concepts
for graphs were specified. For instance, specifications of the neighbourhood of a
vertex and the notion of bipartite digraph, among others, are necessary to our
development. In the following, some preliminary definitions are presented that
were specified to establish the equivalence between the infinite versions of Hall’s
Theorem.

Arcs of a graph G have tails and heads in the set of vertices of the graph.
The binary predicate neighbour2 on pairs of vertices u, v, holds if there exist
and arc (u, v) or (v, u) in the graph. A bipartite digraph2 is a pre digraph
G with two disjoint sets of vertices X and Y , whose union is the set of vertices
of the graph, and such that all arcs in the graph have tails in X and heads in Y
or vice versa.

definition tails:: "(’a,’b) pre_digraph ⇒ ’a set" where
"tails G ≡ { tail G e |e. e ∈ arcs G }"

https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/background_on_graphs.html#background_on_graphs.neighbour|const
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/background_on_graphs.html#background_on_graphs.bipartite_digraph|const
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definition tails_set :: "(’a,’b) pre_digraph ⇒ ’b set ⇒ ’a set" where
"tails_set G E ≡ { tail G e |e. e ∈ E ∧ E ⊆ arcs G }"

definition heads:: "(’a,’b) pre_digraph ⇒ ’a set" where
"heads G ≡ { head G e |e. e ∈ arcs G }"

definition heads_set:: "(’a,’b) pre_digraph ⇒ ’b set ⇒ ’a set" where
"heads_set G E ≡ { head G e |e. e ∈ E ∧ E ⊆ arcs G }"

definition neighbour:: "(’a,’b) pre_digraph ⇒ ’a ⇒ ’a ⇒ bool" where
"neighbour G v u ≡
∃ e. e∈ (arcs G) ∧ ((head G e = v ∧ tail G e = u) ∨
(head G e = u ∧ tail G e = v))"

definition neighbourhood:: "(’a,’b) pre_digraph ⇒ ’a ⇒ ’a set" where
"neighbourhood G v ≡ {u |u. neighbour G u v}"

definition bipartite_digraph:: "(’a,’b) pre_digraph ⇒ ’a set ⇒ ’a set

⇒ bool" where "bipartite_digraph G X Y ≡
(X ∪ Y = (verts G)) ∧ X ∩ Y = {} ∧
(∀ e ∈ (arcs G).(tail G e) ∈ X ←→ (head G e) ∈ Y)"

The specialised notion of directed bipartite digraphs used is specified in defi-
nition dir bipartite digraph2 Such a graph is a bipartite digraph, consisting
of a bi-partition of vertices X and Y in which all arcs have tails in the set X
and heads in the set Y . Arcs with the same tail and head are equal.

definition dir_bipartite_digraph:: "(’a,’b) pre_digraph ⇒ ’a set ⇒
’a set ⇒ bool" where "dir_bipartite_digraph G X Y ≡

(bipartite_digraph G X Y) ∧ ((tails G = X) ∧
(∀ e1 ∈ arcs G. ∀ e2 ∈ arcs G. e1 = e2 ←→
head G e1 = head G e2 ∧ tail G e1 = tail G e2))"

Definition dirBD matching2 specifies a matching in a directed bipartite di-
graph G is specified as a subset E of the arcs of the graph, such that any pair
of distinct arcs in E have neither the same head nor the same tail. A perfect
matching, specified in definition dirBD perfect matching2, is a matching in
the digraph G that covers the set of vertices X.

definition dirBD_matching:: "(’a,’b) pre_digraph ⇒ ’a set ⇒ ’a set ⇒
’b set ⇒ bool" where "dirBD_matching G X Y E ≡

dir_bipartite_digraph G X Y ∧ (E ⊆ (arcs G)) ∧
(∀ e1∈E. (∀ e2∈ E. e1 ̸= e2 −→
((head G e1) ̸= (head G e2)) ∧
((tail G e1) ̸= (tail G e2))))"

definition dirBD_perfect_matching::

"(’a,’b) pre_digraph ⇒ ’a set ⇒ ’a set ⇒ ’b set ⇒ bool"

https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/background_on_graphs.html#background_on_graphs.dir_bipartite_digraph|const
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/background_on_graphs.html#background_on_graphs.dirBD_matching|const
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/background_on_graphs.html#background_on_graphs.dirBD_perfect_matching|const
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where "dirBD_perfect_matching G X Y E ≡
dirBD_matching G X Y E ∧ (tails_set G E = X)"

The theory background on graphs2 includes all definitions in this subsec-
tion. It specialised graphs according to the target formalisation requirements.

Building SDRs from perfect matchings Theorem 1, is specified as theorem
dir BD to Hall2 below. It uses the definition E head2 that for any set of arcs
E in a digraph and any vertex x, tail of some arc in E, selects the head, y,
of an arc in E with tail x. The theorem states that for any directed bipartite
digraph, G = ⟨X,Y,E⟩ with a perfect matching E′ ⊆ E, the arcs of G, the
family of sets given by the neighbourhoods of vertices x ∈ X in G, {N(x)}x∈X ,
the set of indices given by the set of vertices in X, and the representatives given
by E head using the perfect matching E′, is an SDR. Since E′ is a perfect
matching, a unique arc with tail x in E′ exists.

The required properties on the operator E head on directed bipartite digraphs
is that it gives an injective function over matchings also covering X over perfect
matchings, which is stated as the crucial lemma dirBD matching inj on2. The
proof requires proving a chain of auxiliary lemmas, including one stating the
unicity of the operator E head over matchings and then constructing an injective
function that univocally maps tails into heads on the set of arcs E′.

Then, after unfolding definitions, one concludes that (E head G E), as an
injective function onX, gives an SDR for the family of neighbourhoods of vertices
in X, {N(X)}x∈X , built from the graph G and the perfect matching E′.

definition E_head2 :: "(’a,’b) pre_digraph ⇒ ’b set ⇒ (’a ⇒ ’a)"

where "E_head G E =

(λx. (THE y. ∃ e. e ∈ E ∧ tail G e = x ∧ head G e = y))"

theorem dir_BD_to_Hall2:

"dirBD_perfect_matching G X Y E −→
system_representatives (neighbourhood G) X (E_head G E)"

3.2 Formalising the graph-theoretical version of Hall’s theorem

Here, we explain how the graph-theoretical version of Hall’s theorem is obtained
from its set-theoretical version formalised in [32]. The graph-theoretical version
is stated as Theorem 3.

Theorem 3 (Hall - marriage-conditioned graph-theoretical version).
Let G = ⟨X,Y,E⟩ be a directed bipartite digraph. G contains a perfect matching
covering the set of vertices X if and only if

|J | ≤ |N(J)| for all J ⊆ X

As mentioned in the introduction, the theorem may be stated without para-
phrasing the marriage condition to the context of graph theory.

https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/background_on_graphs.html#background_on_graphs
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.dir_BD_to_Hall|fact
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/background_on_graphs.html#background_on_graphs.E_head|const
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/background_on_graphs.html#background_on_graphs.dirBD_matching_inj_on|fact
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/background_on_graphs.html#background_on_graphs.E_head|const
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.dir_BD_to_Hall|fact
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Theorem 4 (Hall - graph-theoretical version). Let G = ⟨X,Y,E⟩ be a
directed bipartite digraph. G contains a perfect matching covering the set of ver-
tices X if and only if for all finite Xs ⊂ X the induced bipartite digraph has a
perfect matching.

These theorems are usually stated for finite graphs only. Also, in contrast to
proofs presented in classical textbooks on (finite) graph theory (e.g., [38], [10]),
their formalisations, given as the theorems Hall digraph, at the end of this sec-
tion, and Hall Graph, in subsection 3.3, apply the combinatorial set-theoretical
version of this theorem, obtained through application of the compactness theo-
rem for propositional logic, extended for countable sets and published in [32].

The formalisation of Theorem 3 uses the Theorem 1 proved in Isabelle/HOL
as described in Subsection 3.1 as theorem dir BD to Hall and that states the
correctness of the reduction of a directed bipartite digraph G = ⟨X,Y,E⟩ with
a perfect matching E, to the family of neighbourhoods of vertices X, concluding
that the operator E head indeed builds an SDR from the perfect matching E.

The formalisation is based on applying two auxiliary lemmas relating the
marriage condition for directed bipartite digraphs to perfect matchings.

The first auxiliary lemma, marriage necessary graph2, states that if a
directed bipartite graph has a perfect matching, then the marriage condition
holds. Indeed, this lemma holds for arbitrary infinite graphs. Furthermore, re-
laxing the restriction on countable families to infinite families is possible since
the lemma is proved as a consequence of the mechanisation of the fact that
the existence of an SDR for arbitrarily infinite indexed families of finite sets im-
plies the marriage condition. The last result was formalised through the theorem
marriage necessity2 part of the mechanisation reported in [32].

lemma marriage_necessary_graph2:

assumes "(dirBD_perfect_matching G X Y E)" and
"∀ i∈X. finite (neighbourhood G i)"

shows "∀ J⊆X. finite J −→ (card J) ≤ card (
⋃

(neighbourhood G ‘ J))"

Applying the transformation (system representatives (neighbourhood G) X
(E head G E)) through theorem dir BD to Hall is the tricky part of this lemma.
So, from the SDR, one obtains an injective function R from any subset J to
their representatives in the union of neighbourhoods of elements j ∈ J such
that: card J ≤ card (

⋃
j∈J N(j)). The injectivity of R, guaranteed by theorem

dir BD to Hall, implies the desired inequation.
The second auxiliary lemma, marriage sufficiency graph2 below, states

that if the marriage condition holds for a countable directed bipartite graph,
then there exists a perfect matching.

lemma marriage_sufficiency_graph2:

fixes G :: "(’a, ’b) pre_digraph" and X:: "’a set"

assumes "dir_bipartite_digraph G X Y" and
"∀ i∈X. finite (neighbourhood G i)"

and "∃ g. enumeration (g:: nat ⇒ ’a)"

https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.marriage_necessary_graph|fact
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem.html#Hall_Theorem.marriage_necessity|fact
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.marriage_necessary_graph|fact
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.marriage_sufficiency_graph|fact
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.marriage_sufficiency_graph|fact
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and "∃ h. enumeration (h:: nat ⇒ ’b)"

shows
"(∀ J⊆X. finite J −→ (card J) ≤ card (

⋃
(neighbourhood G ‘ J))) −→

(∃ E. dirBD_perfect_matching G X Y E)"

This lemma applies the formalisation of the countable set-theoretical version
of Hall’s theorem ([32]) to infer the existence of an SDR R for the countable
indexed family of sets {N(i)}i∈X . Applying the lemma is possible since the
marriage condition for this family of sets is the premise of the target implication.
From the system of representatives, it is possible to build the perfect matching
as the set of arcs {(i, R(i))}i∈X . Through two additional auxiliary lemmas, it
is proved that this set covers the set of vertices X (lemma perfect2) and is
indeed a matching (lemma dirBD matching2). Therefore, one concludes that
(dirBD perfect matching G X Y {(i, R(i))}i∈X).

Finally, the countable graph-theoretical version of Hall’s theorem (Theorem
3), specified as theorem Hall digraph2, is formalised as below. The use of
necessity and sufficiency auxiliary lemmas is highlighted in the mechanisation.

theorem Hall_digraph2:

fixes G :: "(’a, ’b) pre_digraph" and X:: "’a set"

assumes "dir_bipartite_digraph G X Y"

and "∀ i∈X. finite (neighbourhood G i)"

and "∃ g. enumeration (g:: nat ⇒ ’a)"

and "∃ h. enumeration (h:: nat ⇒ ’b)"

shows "(∃ E. dirBD_perfect_matching G X Y E) ←→
(∀ J⊆X. finite J −→ card J ≤ card (

⋃
(neighbourhood G ‘ J)))"

proof
assume hip1: " ∃ E. dirBD_perfect_matching G X Y E"

show"∀ J⊆X. finite J −→ card J ≤ card
⋃

(neighbourhood G ‘ J)"

using hip1 assms(1-2) marriage_necessary_graph[of G X Y] by auto

next
assume hip2 :"∀ J⊆X.finite J −→ card J ≤card

⋃
(neighbourhood G ‘ J)"

show"∃ E.dirBD_perfect_matching G X Y E"

using assms marriage_sufficiency_graph[of G X Y] hip2

proof-
have"∀ J⊆ X.finite J−→ card J ≤ card

⋃
(neighbourhood G ‘ J)

−→ (∃ E. dirBD_perfect_matching G X Y E)"

using assms marriage_sufficiency_graph[of G X Y] by auto

thus ?thesis using hip2 by auto

qed
qed

3.3 Alternative formalisation using Isabelle locales

Locales are an extension of Isabelle (Isar) that provide support for modular rea-
soning allowing dependent typing in a straight forward manner. Locales were
initially developed by Kammüller [22] to support reasoning in abstract algebra,
but are applied in a variety of domains [6,7]. This section discusses the formal-

https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.perfect|fact
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.dirBD_matching|fact
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.Hall_digraph|fact
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.Hall_digraph|fact
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isation of the difficult direction of the graph version of Hall’s theorem directly
over graph notions, as stated by Theorem 4, using locales.

Initially, locales are used to specify an indexed family of sets from which the
notion of SDR is specified providing an injective function repr from the set of
indices I to distinct elements in each set of the family.

locale set_family2 =

fixes I :: "’a set" and X :: "’a ⇒ ’b set"

locale sdr2 = set_family +

fixes repr :: "’a ⇒ ’b"

assumes inj_repr: "inj_on repr I" and
repr_X: "x ∈ I =⇒ repr x ∈ X x"

Then, the notions of bipartite digraph and countable bipartite digraph G =
⟨X,Y,E⟩ with finite sets of neighbourhoods for each vertex x ∈ X are defined
as below.

locale bipartite_digraph2 =

fixes X :: "’a set" and Y :: "’b set" and E :: "(’a × ’b) set"

assumes E_subset: "E ⊆ X × Y"

locale Count_Nbhdfin_bipartite_digraph2 =

fixes X :: "’a:: countable set" and Y :: "’b:: countable set"

and E :: "(’a × ’b) set"

assumes E_subset: "E ⊆ X × Y"

assumes Nbhd_Tail_finite: "∀ x ∈ X. finite {y. (x, y) ∈ E}"

In the sequel, matching over bipartite digraphs and perfect matching are
specified using locales. The succinctness of locales is observed clearly in the
definition of perfect matching. For this, it is only required to add to the notion
of matching the assumption that the matching covers the set of vertices X.

locale matching = bipartite_digraph2 +

fixes M :: "(’a × ’b) set"

assumes M_subset: "M ⊆ E"

assumes M_right_unique: "(x, y) ∈ M =⇒ (x, y’) ∈ M =⇒ y = y’"

assumes M_left_unique: "(x, y) ∈ M =⇒ (x’, y) ∈ M =⇒ x = x’"

locale perfect_matching2 = matching +

assumes M_perfect: "fst ‘ M = X"

Then, using the locales for systems of distinct representatives, sdr, and for
perfect matchings, respectively, two lemmas can be easily established, proving
how a perfect matching can be built from an SDR, and how a perfect matching
gives rise to an SDR. The former lemma uses the injective function repr in the
locale for sdr, building the perfect matching as the set of edges {(x, repr x) | x ∈
I}. The latter lemma uses the set M ⊆ E in the locale for perfect matching
to build the SDR using as a set of indices the vertices X, as the family of
indexed sets the function mapping indices into their finite neighbourhoods, x ∈
X, λx.{y |(x, y) ∈ E}, and as injective function λx.{y | (x, y) ∈ M}.

https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.set_family|locale
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.sdr|locale
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.bipartite_digraph|locale
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.Count_Nbhdfin_bipartite_digraph|locale
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.matching|locale
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.perfect_matching|locale
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lemma (in sdr) perfect_matching2:

"perfect_matching I (
⋃
i∈I. X i) (Sigma I X) {(x, repr x)|x. x ∈ I}"

lemma (in perfect_matching) sdr2:

"sdr X (λx. {y. (x,y) ∈ E}) (λx. the_elem {y. (x,y) ∈ M})"

Finally, the difficult direction of Hall’s theorem, as stated by Theorem 4,
for countable infinite graphs is specified using the locale for countable bipartite
digraphs with finite neighbourhoods for all vertices x ∈ X. The theorem below
formalises that if the subgraph induced by any finite subsetXs ofX has a perfect
matching, then the whole graph has a perfect matching.

theorem (in Count_Nbhdfin_bipartite_digraph) Hall_Graph2:

shows "(∀ Xs ⊆ X. (finite Xs) −→
(∃ Ms. perfect_matching Xs

{y. x ∈ Xs ∧ (x,y) ∈ E}

{(x,y). x ∈ Xs ∧ (x,y) ∈ E}

Ms))

−→ (∃ M. perfect_matching X Y E M)"

The proof uses the hypotheses of the existence of a perfect matching, MS ,
for each bipartite digraph induced by any finite XS ⊂ X. Using the previ-
ous lemma (in perfect matching) sdr, it is possible to construct an SDR for
the associated family of sets of neighbourhoods of vertices incident to ver-
tices in XS . Then, the existence of different images of the injective function
to the distinct representatives, repr in the locales for sdr, permits inferring that
|XS | ≤ ∪x∈Xs{y | (x, y) ∈ E}. Notice that this condition corresponds to the
set-theoretical marriage condition. Thus, applying the set-theoretical version of
Hall’s theorem2 one concludes that the whole digraph has an SDR. Finally, the
existence of a perfect matching for the whole digraph is concluded by applying
the previous lemma (in sdr) perfect matching.

Notice that the other direction of Theorem 4 is easy; indeed, the restriction of
the perfect matching of the whole graph to the subgraph induced by any subset
XS ⊂ X is a perfect matching of the induced subgraph.

4 Related Work

4.1 Automation versus interactive comprehensive proofs

As mentioned in the abstract, our primary interest in developing such a detailed
formalisation is to provide insight to Mathematicians and Computer Scientists
about the usefulness of proof assistants. So, the high granularity used in pre-
senting definitions and proof steps is essential. Using the Isabelle Sledgehammer
[26,37] the user may infer proofs without having a clear idea of how these proofs
are obtained, which is not our objective. To summarise the steps inferred by
the Sledgehammer, it is recommended to restrict it to isar proofs. Such an al-

https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.sdr.perfect_matching|fact
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.perfect_matching.sdr|fact
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem_Graphs.html#Hall_Theorem_Graphs.Count_Nbhdfin_bipartite_digraph.Hall_Graph|fact
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/Hall_Theorem.html#Hall_Theorem.Hall|fact
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ternative approach, oriented towards automation, is presented at the end of the
formalisation using locales [6,7].

In synthesis, our educational goal prioritises the application of proof assis-
tants as interactive theorem provers and not as automated theorem provers. This
is the spirit we have followed teaching for years computer science and Math
students in our institutions as reported in [4] (on the adequate application of
interactive theorem provers to motivate mathematicians), [3] (on the application
of the proof assistant PVS to teach computer science, mathematicians, and en-
gineering students to verify algorithms), and in [5] (on teaching computational
logic to computer science, engineering and mathematics students, illustrating
the application of the Gentzen’s sequent-style calculus implemented in the proof
assistant PVS).

4.2 On Hall’s theorem and other combinatorial theorems

Extensions to the infinite case from theorems equivalent to Hall’s marriage the-
orem in the finite case are generally not straightforward. In addition to the
infinite version of Hall’s marriage theorem, our development includes formali-
sations of infinite versions of De Bruijn-Erdös graph colouring theorem ([11])
and König lemma ([23]), obtained from the compactness theorem for predicate
logic (theorems available through the links k coloring2 and Koenig Lemma2,
respectively). Moreover, even such extensible theorems would not necessarily be
proven by the compactness theorem and elementary techniques. An example is
König’s duality theorem, proved by Aharoni [1], and subsequently studied in
detail by Aharoni et al. [2]. This theorem states that in every bipartite graph
G = ⟨X,Y,E⟩, there exists a matching M ⊆ E such that selecting one vertex
from each arc in M one has a cover of the graph. König duality theorem is a
strong form of the finite, well-known König-Egerváry theorem that states that
in a finite bipartite graph, the size of a maximal matching is equal to the size
of a minimal cover [24]. The vital difference of the duality theorem is that such
a cover of the graph cannot be extracted from an arbitrary matching. Indeed,
from a matching, it is possible to build a cover of the same cardinality as the
cardinality of the matching, but not that it covers the graph. So, the notion of
König cover came to arise, which is defined as a cover of the graph that consists
of a selection of one vertex from each arc of a matching.

Lifting results from the finite to the infinite through the application of com-
pactness (of König’s lemma) corresponds to a recursive construction of a pro-
cedure that produces the target solution in the degree of unsolvability of the
halting problem [2]. Such a recursive construction is possible for Dilworth’s the-
orem (restricting the maximal anti-chains in infinite partial ordered sets to be
finite - [12], see also Sec. 2.5 in [19]) but not for König’s duality theorem. Indeed,
Aharoni et al. [2] proved that the complexity of constructing covers exceeds the
complexity of the halting problem; it is even a problem of higher complexity
than answering all first-order questions about arithmetic. Also, they proved that
the compactness theorem and König’s lemma do not suffice to prove the duality
theorem and other related results in matching theory.

https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/k_coloring.html#k_coloring
https://mat.unb.br/~ayala/HallTheorem/HallTheorem4InfiniteGraphs/KoenigLemma.html#KoennigLemma
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The first formalisation of the finite version of Hall’s Theorem was developed
in Mizar by Romanowicz and Grabowski [29]. Also, there are formalisations
in Isabelle/HOL by Jiang and Nipkow [21]. These formalisations follow Rado’s
proof [27], but the last one also includes a mechanisation based on Halmos and
Vaughan’s proof [18]. In addition, Coq has a formalisation that uses formali-
sations of Dilworth’s decomposition theorem and bi-partitions in graphs [34].
An earlier formalisation of Dilworth’s theorem in Mizar is presented in [30]. Re-
cently, Gusakov, Mehta and Miller [16] presented three different proofs of the
finite version of Hall’s theorem in Lean in terms of indexed families of finite
subsets, of the existence of injections that saturate binary relations over finite
sets and of matchings in bipartite graphs. Related combinatorial results are re-
ported in recent works by Doczkal et al. in their graph theory Coq library (e.g.,
[13], [15], and [14]). Additionally, Singh and Natarajan formalised in Coq other
combinatorial results as the perfect graph theorem and a weak version of this
theorem (e.g., [35], [36]).

Known mechanisations of the enumerable version of the set-theoretical ver-
sion of Hall’s theorem appear in the formalisation used in the authors’ work,
previously discussed, [32], and in Gusakov, Mehta, and Miller’s work [16]. The
former work uses the compactness theorem for predicate logic. In the latter work,
the authors apply an inverse limit version of the König’s lemma. This lemma
states that if {Xi}i∈N is an indexed family of nonempty finite sets with functions
fi : Xi+1 → Xi, for each i ∈ N, then there exists a family of elements x ∈

∏
i Xi

such that xi = fi(xi+1), for all i ∈ N. König’s lemma follows from this infinite
limit version by choosing as set Xi the paths of length i from the root vertex v0
in a tree. So, the function fi maps paths in Xi+1 into the paths without their last
arc that belong to Xi. The inverse limit consists of the infinite chain of functions
f1, f2, . . .. König’s lemma is applied to prove the enumerable version of Hall’s
theorem by taking Mn as the set of all matchings on the first n indices of I
(i.e., the set of all possible SDRs for the sets S1, . . . , Sn), and fn : Mn+1 → Mn

as the restriction of a matching to a smaller set of indices. Since the marriage
condition holds for the finite indexed families, each Mn is nonempty, and by
König’s lemma, an element of the inverse limit gives a matching on I.

5 Conclusions and Future Work

This paper presented two formalisations in Isabelle/HOL of the graph-theoretical
version of Hall’s theorem for countable (infinite) graphs. The prominent feature
of the first formalisation is following a presentation close to pen-and-paper proofs
but dissecting all minimal required steps in the assisted proof. Exhibiting min-
imal details, usually omitted in practice, is relevant to highlight to Math and
CS students and professionals the relevance of mechanised proofs. On the other
hand, the second one is more succinct and uses Locales, which are powerful
mechanisms to deal with parametric theories in Isabelle/HOL.

These developments will enable other mechanisations of infinite combina-
torial, set-theoretical, and graph-theoretical results related to the compactness
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theorem for predicate logic and its derivations, such as König lemma, Hall’s
marriage theorem, and de Bruijn-Erdös k-colouring theorem, as well as general-
isations of Dilwort’s theorem.

An exciting challenge for future research consists in developing the required
formal background in proof assistants to enable the formalisation of other theo-
rems which do not extend straightforwardly from the results mentioned above,
such as the König duality theorem, among others.

Acknowledgements We want to thank Cezary Kaliszyk, René Thiemann,
Fabian Huch, and Yutaka Nagashima, who kindly shared their expertise on Is-
abelle/HOL.
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