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Motivation: generation of simple pieces of secure software/hardware

PVS

What is PVS?

The Prototype Veri�cation System (PVS), developed by SRI
International Computer Science Laboratory, is a interactive
theorem prover which consists of

1 a speci�cation language:

based on higher-order logic;
a type system based on Church's simple theory of types
augmented with subtypes and dependent types.

2 an interactive theorem prover:

based on sequent calculus; that is, goals in PVS are sequents
of the form � ` �, where � and � are �nite sequences of
formulae, with the usual Gentzen semantics.
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

182 A.L. Galdino, C. Muñoz, and M. Ayala-Rincón

Listing 1.1. The functions kb2d and recovery

kb2d(sx,sy,vox,voy,vix,viy ,e) : [real,real] =
let (vx, vy) = (vox − vix, voy − viy) in
let (q′

x, q′
y) = (Q(sx,sy ,e),Q(sy ,sx,−e)) in

let t′q = contact time(sx,sy ,q′
x,q′

y ,vx,vy ,e) in
if t′q > 0 then ((q′

x − sx)/t′q + vix , (q′
y − sy)/t′q + viy)

elsif t′q = 0 then(vix,viy)
else (0,0)
endif

recovery(sx,sy,vox,voy ,vix,viy ,t′′,e) : [real,real,real] =
let (vx, vy) = (vox − vix, voy − viy) in
let (s′′

x, s′′
y ) = (sx + t′′vx, sy + t′′vy) in

let (v′
ox,v′

oy) = kb2d(sx,sy,vox,voy,vix,viy ,e) in
let (v′

x, v′
y) = (v′

ox − vix, v′
oy − viy) in

let t′ = switching time(sx,sy,s′′
x,s′′

y ,v′
x,v′

y ,e) in
if t′ > 0 AND t′′ − t′ > 0 then

(t′, (t′′vx − t′v′
x)/(t′′ − t′) + vix,(t′′vy − t′v′

y)/(t′′ − t′) + viy)
else (0,0,0)
endif

alpha(sx,sy) : real = D2/(sx
2 + sy

2)

beta(sx,sy) : real = D
√

sx
2 + sy

2 −D2/(sx
2 + sy

2)

Q(sx,sy,e):real = alpha(sx,sy)sx + e beta(sx,sy)sy

contact time(sx,sy,qx,qy ,vx,vy ,e) : real =
let d = vx(qx − sx) + vy(qy − sy) in

if d 6= 0 then ((qx − sx)2 + (qy − sy)2)/d
else 0
endif

switching time(sx,sy,s′′
x,s′′

y ,v′
x,v′

y ,e) : real =

if s′′
x
2

+ s′′
y
2

> D2 then
let (q′′

x , q′′
y ) = (Q(s′′

x,s′′
y ,−e),Q(s′′

y ,s′′
x,e)) in

let (ux, uy) = (q′′
x − s′′

x, q′′
y − s′′

y) in
let d = v′

yux − v′
xuy in

if d 6= 0 then ((sx − s′′
x)uy + (s′′

y − sy)ux)/d
else 0
endif

else 0
endif

KB2D [GnAR07] improves
NIA/NASA's KB3D
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

The Problem: Basic De�nition and concepts

5 mn

aircraft

Avoidance Region: circle centered in the aircraft.

Con
ict: two aircraft are said to be in con
ict when their
avoidance regions overlap.
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

The Problem: Basic de�nitions and concepts

2.5

5 mn

Protected Zone

2.5
ownship intruder

Protected Zone: circle twice as big as the avoidance region.
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

The Problem: Basic de�nitions and concepts
tp

Original Course

Protected Zone

tpp

Intruder
vi

Ownship
t=0 vo

s

Recovery Course

vppo

Resolution Course

vpo

Switch Point

sp

A con
ict is the incursion of the ownship in the intruder's
protected zone.
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

Con
ict Detection and Resolution Algorithm

KB3D (Gilles Dowek, C�esar Mu~noz, and Alfons Geser)

3-Dimensional con
ict detection and resolution algorithm
(CD&R) which allows either changes of

- vertical speed only

- horizontal speed only

- heading only

of horizontal speed
- KB2D combines changes and

of heading

KB2D is a 2-Dimensional CD&R.
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ict Detection and Resolution Algorithm

KB3D (Gilles Dowek, C�esar Mu~noz, and Alfons Geser)

3-Dimensional con
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of heading

KB2D is a 2-Dimensional CD&R.
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

KB2D: Inputs
tp

Original Course

Protected Zone

tpp

Intruder
vi

Ownship
t=0 vo

s

Recovery Course

vppo

Resolution Course

vpo

Switch Point

sp

s −→
vo −→
vi −→
tpp−→

KB2D

s: ownship's relative position

vo: ownship's velocity

vi: intruder's velocity

tpp: Required Time of Arrival
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

KB2D: Outputs
tp

Original Course

Protected Zone

sp

tpp

Intruder
vi

Ownship
t=0 vo

s

Recovery Course

vppo

Resolution Course

vpo

Switch Point

s −→
vo −→
vi −→
tpp−→

KB2D
−→vpo−→vppo
−→tp

vpo: Resolution velocity

vppo: Recovery velocity

tp: Time of switch
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

The Algorithm (Geometric Solution)

Ownship's relative velocity

Tangent points

Relative resolution velocities

Absolute resolution velocities

D

D

−vi

vp

vo

v

vi

Q

Q

s

vp
v − vp

v − vp

O=(0,0)
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

The Algorithm (Geometric Solution)

1. Ownship's relative velocity: v

Tangent points

Relative resolution velocities

Absolute resolution velocities

D

D

−vi

vp

vo

v

vi

Q

Q

s

vp
v − vp

v − vp

O=(0,0)
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

The Algorithm (Geometric Solution)

1. Ownship's relative velocity: v

2. Tangent points: Q1 and Q−1
Relative resolution velocities

Absolute resolution velocities
Q1

−vi

D

O=(0,0)

vp

vo

v

vi
s

vp
v − vp

v − vp

D

Q−1
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

The Algorithm (Geometric Solution)

1. Ownship's relative velocity: v

2. Tangent points: Q1 and Q−1
3. Relative resolution velocities: vp1 and vp−1

Absolute resolution velocities

vp−1

1vp

Q−1Q−1

vp−1

1vp

Q1

−vi

D

O=(0,0)
vo

v

vi
s

v − vp

v − vp

D

−vi

D

O=(0,0)
vo

v

vi
s

v − vp

v − vp

D
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

The Algorithm (Geometric Solution)

1. Ownship's relative velocity: v

2. Tangent points: Q1 and Q−1
3. Relative resolution velocities: vp1 and vp−1
4. Absolute resolution velocities: vpo1 and vpo−1

Q−1

vp−1

1vp

1vpo

Q1

−1vpo

−vi

D

O=(0,0)
vo

v

vi
s

v − vp

v − vp

D

−vi

−vi
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Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

The Algorithm (Geometric Solution)

1. Ownship's relative velocity: v

2. Tangent points: Q1 and Q−1
3. Relative resolution velocities: vp1 and vp−1
4. Absolute resolution velocities: vpo1 and vpo−1

vp−1

1vp

Q−1Q−1

vp−1

1vp

Q1

B1

B−1

D

O=(0,0)
v

vi
s

D

D

O=(0,0)
v

vi
s

D

A
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

Computing the tangent points

O=(0,0)

D

s=(sx,sy)

Q=(Qx,Qy)

{
sx .Qx + sy .Qy = D2

Qx2 + Qy2 = D2
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

Computing the relative resolution velocities

D

−vi

D

O=(0,0)

vp

vo

v

vi

Q

Q

s

vp
vp − v

v − vp

{
vp = k · (Q − s)

vp · (vp − v) = 0



Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

Geometric and Analytic Solution (Recovery)

vp−1

1vp

−1vppQ1

Q−1 Qp
1

v

sp

tp

tpp

t=0

vi

s

Qp

1vpp

−1

−1tp

1

s + tp vp + (tpp − tp)vpp = sp = s + tpp v

=⇒ vpp = 1
tpp−tp (tpp v − tp vp)
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

Optimality (2D)

D

O=(0,0)−vi

D

vp

vo

v

vi

Q

Q

v − vp

v − vp

s

vp
vq B

A

C

E

Theorem
The relative resolution velocity is optimal; i.e., it requires the least

e�ort, among all vectors on the whole universe of possible solutions

on the same side of the circle.
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

Coordination

vpb

s

D

D

Protected zone

Protected zone

aircraft B
va

vb
vpa

aircraft A −s

BUMM!!!!!

Let A and B be two con
icting aircrafts.
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

Coordination

vpb

D

D

Protected zone

Protected zone

aircraft B
va

vb
vpa

aircraft A

BUMM!!!!!

The relative positions computed by each aircraft are opposite.

The time of loss of separation is the same for both aircrafts.
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Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

Coordination

vpb

D

D

Protected zone

Protected zone

aircraft B
va

vb
vpa

aircraft A

BUMM!!!!!
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

Coordination

D

D

Protected zone

Protected zone

aircraft A aircraft B
va

vb
vpa

vpb
BUMM!!!!!

Lemma
For all eps = ± 1, vpa and vpb are parallel.
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

Coordination

D

D

Protected zone

Protected zone

aircraft A aircraft B
va

vb
vpa

vpb
BUMM!!!!!

Lemma
For all eps = ± 1, vpa and vpb are parallel.
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Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Con
icts

Formal Veri�cation (An Example)

Theorem (kb2d correct)

For all s, v = vo − vi , T > 0, D > 0, vp, vpo, eps = ±1,
con
ict?(s, v , T) and

s2x + s2y > D2 and

vpo = kb2d(sx,sy ,vox,voy,vix,viy ,eps) and

vp = vpo - vi and vpo 6= 0
implies

separation?(s,vp).
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Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Formal methods in cryptography

Why proving mathematically security requirements?

Authentication protocol of Needham-Schroeder

was considered during 17 years to be secure.
but Lowe detected a \man-in-the-middle" vulnerability in this
protocol [Low95,Low96].

Example: formalisation of the security of the Dolev-Yao
two-party cascade protocol [DY83].

To be published 6th Computability in Europe [NNdMAR10].
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Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Cryptographic operations over monoids

Any user u ∈ U owns Eu and Du.

E = {Eu | u ∈ U}
D = {Du | u ∈ U}

� = E ∪ D
�∗ set of words over �.

Monoid freely generated by � and congruences:

EuDu = λ DuEu = λ, ∀u ∈ U (1)

Eu(Du(M)) = Du(Eu(M)) = M,∀M plain text.
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Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Formalisation: normalisation property

Rewriting rules:

EuDu → λ DuEu → λ, ∀u ∈ U (2)

Canonical form: ∀δ ∈ �∗, δ is such that

δ →∗ δ

and δ is irreducible.

∀u ∈ U, E c
u = Du e Dc

u = Eu.
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Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Speci�cation of the Protocol Step

De�nition (Protocol Step: αβ : U × U → �∗)

∀x , y ∈ U | x 6= y :

1. αβ(x , y) 6= λ

2. αβ(x , y) = αβ(x , y)

3. αβ(x , y) ∈ �(x , y)∗ �(x , y) = {Dx ,Ex ,Ey}
4. ∀u, v ∈ U :
4.1. |αβ(x , y)| = |αβ(u, v)|
4.2. ∀0 ≤ j < |αβ(x , y)| :
4.2.1. αβ(x , y)[j] = Ex i� αβ(u, v)[j] = Eu

4.2.2. αβ(x , y)[j] = Ey i� αβ(u, v)[j] = Ev

4.2.3. αβ(x , y)[j] = Dx i� αβ(u, v)[j] = Du

4.2.4. αβ(x , y)[j] = Dy i� αβ(u, v)[j] = Dv
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Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

PVS speci�cation of the Protocol Step

PVS Protocol Step
alphabeta welldef?(ab : alphabeta, x, y : U) : bool =

ab(x,y)'length > 0 AND
normalseq?(ab(x,y)) AND
( FORALL(j : nat | j < ab(x,y)'length) :
member(ab(x,y)(j),validSetxy(x,y)) ) AND
abUsers?(ab, x, y)

Protocol Step is the same for each pair of users
abUsers?(ab : alphabeta, x, y : U) : bool =

FORALL(u, v : U) :
ab(x,y)`length = ab(u,v)`length AND
FORALL(i : nat | i < ab(x,y)`length) :
(user(ab(x,y)(i)) = x OR user(ab(x,y)(i)) = y) AND
(crTyp(ab(x,y)(i)) = crTyp(ab(u,v)(i))) AND
(user(ab(x,y)(i)) = x IFF user(ab(u,v)(i)) = u) AND
(user(ab(x,y)(i)) = y IFF user(ab(u,v)(i)) = v)
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Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Speci�cation of Cascade Protocols

Nonempty sequence of protocol steps, ∀x , y ∈ U.

Protocol steps alternate between x and y .

De�nition (Cascade Protocol)

∀0 ≤ i < |P| e ∀x , y ∈ U:

1. Pi (x , y), for i even
2. Pi (y , x), for i odd
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Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Functionality - Cascade Protocol

x → y represents submission of message from x to y x , y ∈ U.

Communication between users x , y ∈ U

x → y : P0M = αβ0(x , y)M
y → x : P1P0M = αβ1(y , x)αβ0(x , y)M

...
x → y : P|P|−1...P0M = αβ|P|−1(x , y)...αβ0(x , y)M, if |P| > 2 odd

or

y → x : P|P|−1...P0M = αβ|P|−1(y , x)...αβ0(x , y)M, if |P| > 2 even
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Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Speci�cation of the adversary Admissible Language

De�nition (Adversary Admissible Language)

(�∗1(z) ∪ �2)
∗, where:

�1(z) = E ∪ {Dz}, and
�2 = {Pi (x , y) | 1 ≤ i < |P| and x , y ∈ U, x 6= y}

An adversary z can:

Observe all the tra�c in the communication net;
Do all things an honest user can do;
Create, intercept, destroy and modify messages.
Supplant other users.

But z is limited by cryptographic primitives.
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Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

De�nition secure cascade protocol

De�nition (Secure Cascade Protocol)

P is secure whenever for all x , y , z ∈ U, ∀γ ∈ (�∗1(z) ∪ �2)
∗ and

0 ≤ i < |P|, it holds:

γPi ...P0 6= λ
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Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Security characterisation: Initial Condition of Security

De�nition (Initial Condition of Security)

∀x , y ∈ U:

P0(x , y) ∩ {Ex ,Ey} 6= φ

Without this condition, P0(x , y) = Dk
x (k ∈ N∗).
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Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Security characterisation: Balancing Property

De�nition (Balancing Property (BP))

Let δ ∈ �∗. δ satis�es BP w.r.t. z ∈ U, whenever:

∃0 ≤ i < |δ| : δi = Dz =⇒ ∃0 ≤ j < |δ| : δj = Ez
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Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Balancing Property for a cascade protocol P

De�nition (BP Cascade Protocol)

A cascade protocol P is balanced whenever:

∀x , y ∈ U and ∀0 < i < |P|:

Pi (x , y) satis�es BP w.r.t. x, if i even

Pi (y , x) satis�es BP w.r.t. y , if i odd

Example:

Let P2 the third step of a cascade protocol P, such that

P2(x , y) = EyDxEy , then, P is not balanced.
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Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Formalisation of security for cascade protocols

Theorem (Characterisation of security)

A cascade protocol P is secure i�,

(i) it satis�es the initial security property and

(ii) it is balanced.

Formalisation in PVS
theorem1 : THEOREM FORALL (prot : welldefined protocol,

x : U, y : U | x /= y, z : U | z /= x AND z /= y) :
secure protocol?(prot, x, y, z) IFF
( alpha0ContainsE?(prot, x, y) AND balanced cascade protocol?(prot) )



Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Sketch of the formalisation

Let P be a cascade protocol.

Necessity, by contraposition:
¬(i) ∨ ¬(ii) =⇒ P insecure.

Su�ciency, by contradiction:
(i) ∧ (ii) ∧ P insecure =⇒
P secure.

Theorem of Security
A cascade protocol P is secure i�

(i) it satis�es the security initial
condition
(ii) it is balanced.

Su�ciency : one assumes, by contradiction, that P is insecure.

PVS formalisation divided in 9 sub-theories.
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Case study: Formalisation of the Security of Cryptographic Protocols

Structure of the PVS formalisation
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Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Necessity

A) ¬(i) =⇒ P insecure

P0(x , y) = Dk
x (k ∈ N∗).

γ = E k
x , so that γP0 = λ

B) ¬(ii) =⇒ P insecure
By lemma of extraction of private operator :

u, v ∈ U | u 6= v

Step protocol αβ(u, v) unbalanced.

∃τ1, τ2 ∈ �∗1 (v), such that τ1αβ(u, v)τ2 = Du.

By induction in the length of
P0(x , y) = {Dx ,Ex ,Ey}P0(x , y)[1,|P0|−1]

Induction step: eliminate Dx applying Ex ∈ �∗1 (z) and
eliminate {Ex ,Ey} applying lemma above.
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Case study: Formalisation of the Security of Cryptographic Protocols

Su�ciency

(i) ∧ (ii) ∧ P insecure =⇒ P secure

Lemma (Admissible language is balanced)

Let P be a balanced cascade protocol. For any z ∈ U,

∀γ ∈ (�∗1(z) ∪ �2)
∗ and ∀a ∈ U | a 6= z, it holds: γ satis�es BP

w.r.t. a.
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Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Su�ciency

Since P is insecure, ∃γ ∈ (�∗1(z) ∪ �2)
∗ such that

γc = P0(x , y).

Contradiction is obtained considering γc = P0(x , y) .

Ey ∈ P0(x , y):

Since γc = P0(x , y), then Dy ∈ γ.
γ is balanced: Ey ∈ γ
Thus, Dy ∈ P0(x , y). CONTRADICTION.

Ey /∈ P0(x , y):

Since P0(x , y) balanced, then Dy /∈ P0(x , y).
P0(x , y) = E k

x (k ∈ N∗)
Thus, γ = Dk

x . CONTRADICTION, since γ satis�es BP
w.r.t. x .



Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Type Inference and Deductions

Types

Discrimination of classes of objects

Implicitly used in intuitive systems

- Euclid Elements

Neccesity of an explicit de�nition for abstract systems
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Neccesity of an explicit de�nition for abstract systems
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Formal proofs

Type Inference and Deductions

History of types

Treatment of paradoxes an inconsistencies in the formalization
of mathematics:

- Auto-reference, auto-reproduction

Simple Types in the λ-calculus [Alonzo Church 1940]

Implicit Types [Haskell Curry 1958]

Type-free languages: LISP [John McCarthy 1956-9]

Typed languages: Fortran, Algol,...

Languages with types �a la Curry: ML [Robin Milner 1980]
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Formal proofs

Type Inference and Deductions

Simple Types

SYNTAX

TYPES A ::= K |A→ B
TERMS a ::= x | (a a) |λx :B.a

- A λ-term a has type B, denoted a : B

- Context � = {x1:A1, x2:A2, . . . , xn:An}

- A λ-term a has type B under context �

� ` a : B︸ ︷︷ ︸
Type Judgment
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Simple Types

SYNTAX

TYPES A ::= K |A→ B
TERMS a ::= x | (a a) |λx :B.a
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Formal proofs

Type Inference and Deductions

Simple Types

Examples

(
(λx .x λx .x)→β λx .x auto-aplication

(λx .(x x) λx .(x x)) →β (λx .(x x) λx .(x x)) auto-reproduction| {z }
Paradoxal Argumentation

Auto-aplication makes sense:

(

(A→A)→A→Az }| {
λx :A→A.x

A→Az }| {
λx :A.x)→β

A→Az }| {
λx :A.x

Polymorphism!
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Formal proofs

Type Inference and Deductions

Simple Types

Examples

(
(λx .x λx .x)→β λx .x auto-aplication

(λx .(x x) λx .(x x)) →β (λx .(x x) λx .(x x)) auto-reproduction| {z }
Paradoxal Argumentation

Auto-reproduction doesn't make sense:

(λx :τ1 .(x x) λx :τ2 .(x x))→β (λx :τ3 .(x x) λx :τ4 .(x x))

Acceptable term, but non typable!
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Formal proofs

Type Inference and Deductions

TAλ: the simply typed λ-calculus

x /∈ �
x : A, � ` x : A

(Start)
x /∈ � � ` a : B
x : A, � ` a : B (Weak)

x : A, � ` a : B
� ` λx :A.a : A→ B

(Abs)
� ` a : B → A � ` b : B

� ` (a b) : A
(App)

Table: TAλ
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Formal proofs

Type Inference and Deductions

Example: type inference (auto-aplication)

Example (Type inference (auto-aplication))

x : A ` x : A
(Start)

` λx :A.x : A→ A
(Abs)

x : A→ A ` x : A→ A
(Start)

` λx :A→A.x : (A→ A)→ (A→ A)
(Abs)

� ` (λx :A→A.x λx :A.x) : A→ A
(App)
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Formal proofs

Type Inference and Deductions

Relevant problems in type theory

Veri�cation: given M and A determine whether there exists �
s.t. � ` M : A.

Inference: given M determine � and A s.t. � ` M : A.

Inhabitation: given a type A. There exist inhabitants inside
the context � i� there exists a λ-term M s.t. � ` M : A.

Subject reduction: do preserve types all computations?

Pincipal Typing: for all term M there exists a more general

typing (�,A), s.t. � ` M : A.
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Formal proofs

Type Inference and Deductions

Revisiting relevant problems in type theory

�︸︷︷︸
variable declarations

` M︸︷︷︸
λ-term or program

: A︸︷︷︸
type

Type veri�cation: are correct the designed types for the
program?

Type inference: Is the program correct?

Existence of inhabitants: extraction of a program from a
proof.
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Formal proofs

Curry-Howard isomorphism - programs as proofs

proofs as programs - Curry-Howard isomorphism

Relation between proofs and programs was detected by Haskell
Curry [1934-1942], but was only applied until the 1960s by N.G. de
Bruijn and William Howard.

Type Theory versus Intiutionistic Logic︸ ︷︷ ︸
Luitzen Egbertus Jan Brouwer [1920]

Typing rules from the simple typed λ-calculus correspond 1-1 to
the deductive rules of the minimal intuitionistic logic: typing rules
are logical rules decorated with typed λ-terms.



Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Curry-Howard isomorphism - programs as proofs

proofs as programs - Curry-Howard isomorphism

Implicational intuitionistic logic
Implicational formulas are built from propositional variables

(denoted by A,B,C , . . .) using only implication →:
Thus, if σ and τ are implicational formulas, then (σ → τ) is also
an implicational formula.
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Formal proofs

Curry-Howard isomorphism - programs as proofs

proofs as programs - Curry-Howard isomorphism

A judgment in the intuitionistic logic, written as 
 `I A , means
that \A is a logic consequence of 
".


,A `I A
(Axiom)


,A `I B

 `I A→ B

(Intro)

 `I A→ B 
 `I A


 `I B
(Elim)

Deduction rules of the minimal intuitionistic logic

A formel A is a tautology if, and only if the judgment `I A is
provable.
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Formal proofs

Curry-Howard isomorphism - programs as proofs

proofs as programs - Curry-Howard isomorphism

Example (A→ ((A→ B)→ B) is a tautology)

A,A→ B `I A→ B
(Axiom)

A,A→ B `I A
(Axiom)

A,A→ B `I B
(Elim)

A `I (A→ B)→ B
(Intro)

`I A→ ((A→ B)→ B)
(Intro)

In the context of λ-calculos it holds:

` λx :A.λy :A→B .(y x) : A→ ((A→ B)→ B)
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Formal proofs

Curry-Howard isomorphism - programs as proofs

proofs as programs - Curry-Howard isomorphism

Example. Peirce's Law: (PL) ((A→ B)→ A)→ A

Holds in the classical logic, but not in the intuitionistic logic!
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Formal proofs

Curry-Howard isomorphism - programs as proofs

proofs as programs - Curry-Howard isomorphism

Isomorphism (Curry-Howard)


 `I A is provable in the minimal intuitionistic logic if, and only if

� ` M : A is a valid type judgment in the simple typed λ-calculus,
where � is a list of declarations for propositional variables, s in 
.
The term M is a λ-term that represents the derivation of the proof.

References: [Hin97], , [Sim00], ...
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Formal proofs

Curry-Howard isomorphism - programs as proofs

Natural deduction

Table: Natural deduction: inference rules

introduction elimination

ϕ ψ

ϕ ∧ ψ (∧i) ϕ ∧ ψ
ϕ (∧er )

ϕ ∧ ψ
ψ

(∧el)

ϕ

ϕ ∨ ψ (∨ir ) ψ

ϕ ∨ ψ (∨il) ϕ ∨ ψ

[ϕ]u

...
χ

[ψ]v

...
χ

χ (∨e), u, v

[ϕ]u

...
ψ

ϕ→ ψ
(→ i), u

ϕ ϕ→ ψ

ψ
(→ e)
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Formal proofs

Curry-Howard isomorphism - programs as proofs

Natural deduction

Table: Natural deduction: inference rules

introduction elimination

[ϕ]u

...
⊥
¬ϕ (¬i), u

ϕ ¬ϕ
⊥ (¬e)

⊥
ϕ (⊥e)
¬¬ϕ
ϕ (¬¬)

t = t
(= i)

t1 = t2 ϕ[x/t1]

ϕ[x/t2]
(= e)
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Formal proofs

Curry-Howard isomorphism - programs as proofs

Natural deduction

Table: Natural deduction: inference rules

introduction elimination

y independente

...
ϕ[x/y ]

∀x ϕ (∀i) ∀x ϕ
ϕ[x/t]

(∀e)

ϕ[x/t]

∃x ϕ (∃i) ∃x ϕ

[ϕ[x/y ]]u

y indep.

...
χ

χ (∃e), u
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Formal proofs

Curry-Howard isomorphism - programs as proofs

An example of natural deduction

1 �1:
[¬ϕ[x/y ]]v
∃x¬ϕ (∃i)

[¬∃x¬ϕ]u
⊥ (¬e)

ϕ[x/y ]
(PBC), v

∀x ϕ (∀i)
[¬∀x ϕ]w

⊥ (¬e)
∃x ¬ϕ (PBC), u

¬∀x ϕ→ ∃x ¬ϕ (→ i),w

2 �2:
[∀x ϕ]v
ϕ[x/y ]

(∀e)
[¬ϕ[x/y ]]w
⊥ (¬e)

[∃x ¬ϕ]u
⊥ (∃e),w
¬∀x ϕ (¬i), v

∃x ¬ϕ→ ¬∀x ϕ (→ i), u
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Formal proofs

Curry-Howard isomorphism - programs as proofs

Gentzen Systems

Table: Gentzen Systems: inference rules

Left rules Right rules
Axioms

A ` A (Ax) ⊥ ` (L⊥)

Structural rules

� ` �
A, � ` �

(LW )
� ` �

� ` �,A
(RW )

A,A, � ` �

A, � ` �
(LC)

� ` �,A,A

� ` �,A
(RC)
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Formal proofs

Curry-Howard isomorphism - programs as proofs

Gentzen Systems

Table: Gentzen Systems: inference rules

Left rules Right rules
Logical rules

Ai , � ` �

A0 ∧ A1, � ` �
(L∧), (i = 0, 1)

� ` �,A � ` �,B

� ` �,A ∧ B (R∧)

A, � ` � B, � ` �

A ∨ B, � ` �
(L∨) � ` �,Ai

� ` �,A0 ∨ A1
(R∨), (i = 0, 1)

� ` �,A B, � ` �

A→ B, � ` �
(L→)

A, � ` �,B

� ` �,A→ B
(R →)
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Formal proofs

Curry-Howard isomorphism - programs as proofs

Gentzen Systems

Table: Gentzen Systems: inference rules

Left rules Right rules
Logical rules

A[x/t], � ` �

∀xA, � ` �
(L∀) � ` �,A[x/y ]

� ` �, ∀xA (R∀), y 6∈ FV (�,�)

A[x/y ], � ` �

∃xA, � ` �
(L∃), y 6∈ FV (�,�)

� ` �,A[x/t]

� ` �,∃xA (R∃)
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Formal proofs

Curry-Howard isomorphism - programs as proofs

An example of deduction �a la Gentzen

¬ϕ[x/y ] ` ¬ϕ[x/y ] (Ax)

¬ϕ[x/y ] ` ∃x ¬ϕ (R∃)

¬∃x ¬ϕ, ¬ϕ[x/y ] ` ∃x ¬ϕ LW
¬∃x ¬ϕ ` ¬∃x ¬ϕ (Ax)

¬∃x ¬ϕ, ¬ϕ[x/y ] ` ¬∃x ¬ϕ (LW )

¬∃x ¬ϕ, ¬ϕ[x/y ] ` ∃x ¬ϕ ∧ ¬∃x ¬ϕ (R∧)

¬∃x ¬ϕ ` ¬ϕ[x/y ]→ ⊥ (R →)

¬∃x ¬ϕ ` ∀x ϕ (R∀)

¬∀x ϕ, ¬∃x ¬ϕ ` ∀x ϕ (LW )
¬∀x ϕ ` ¬∀x ϕ (Ax)

¬∀x ϕ, ¬∃x ¬ϕ ` ¬∀x ϕ (LW )

¬∀x ϕ, ¬∃x ¬ϕ ` ∀x ϕ ∧ ¬∀x ϕ (R∧)

¬∀x ϕ ` ¬∃x ¬ϕ→ ⊥ (R →)

` ¬∀x ϕ→ ∃x ¬ϕ (R →)
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Formal proofs

Proofs in the Prototype Veri�cation System - PVS

The Prototype Veri�cation System - PVS

PVS is a veri�cation system, developed by the SRI International
Computer Science Laboratory, which consists of

1 a speci�cation language:

based on higher-order logic;
a type system based on Church's simple theory of types
augmented with subtypes and dependent types.

2 an interactive theorem prover:

based on sequent calculus; that is, goals in PVS are sequents
of the form � ` �, where � and � are �nite sequences of
formulae, with the usual Gentzen semantics.
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Formal proofs

Proofs in the Prototype Veri�cation System - PVS

Sequent calculus

Sequents of the form: � ` �.

Assuming � and � derivable.
A1,A2, ...,An ` B1,B2, ...,Bm interpreted as
A1 ∧ A2 ∧ ... ∧ An ` B1 ∨ B2 ∨ ... ∨ Bm.

Inference rules

Premises and conclusions are simultaneously constructed.

Example:
� ` �
�1 ` �1

Goal: ` �.
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Formal proofs

Proofs in the Prototype Veri�cation System - PVS

Sequent calculus in PVS

Representation of A1,A2, ...,An ` B1,B2, ...,Bm:
[-1] A1

.

.

.
[-n] An

|----------
[1] B1

.

.

.
[n] Bn

Proof tree: each node is labelled by a sequent.

A PVS proof command corresponds to the application of an
inference rule.

In general:
�1 ` �1...�n ` �n

� ` �
R
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Formal proofs

Proofs in the Prototype Veri�cation System - PVS

Some inference rules in PVS

Structural:

�1 ` �1

�2 ` �2
W, if �1 ⊆ �2 e �1 ⊆ �2

Propositional:

�,A ` A,�
Ax

�,FALSE ` �
FALSE`

� ` TRUE ,�
`TRUE
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Formal proofs

Proofs in the Prototype Veri�cation System - PVS

Some inference rules in PVS

Cut:

Corresponds to the case proof command.

�,A ` � � ` A,�
� ` �

Cut

Conditional: IF-THEN-ELSE.

�,A,B ` � �,C ` A,�
�, IF(A,B,C ) ` �

IF `

�,A ` B,� � ` A,C ,�
� ` IF(A,B,C )�

` IF
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Formal proofs

Programs versus demonstrations in PVS

Programs versus demonstrations

Example: greatest common divisor gcd

Theorem [Euclid 320-275 BC]∀n ≥ 0,m > 0, gcd(n,m) = gcd(m, n MOD m)︸ ︷︷ ︸
idea

(Detail: \n MOD m" is computed as \(n −m) MOD m)

procedure gcd(m, n)
if m < n then gcd(n,m)
else (m ≥ n)

gcd(m − n, n)
End procedure︸ ︷︷ ︸

algorithm
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Formal proofs

Programs versus demonstrations in PVS

Programs versus demonstrations

gcd(6, 4)→ gcd(2, 4)→ gcd(4, 2)→ gcd(2, 2)→ gcd(0, 2)→ gcd(2, 0)→ · · ·| {z }
problem: in�nite loop

Proof of totality: Domain N (Type of the objects)
BI: gcd(0, n) unde�ned! De�ne gcd(0, n) = n.
PI: Suppose gcd(k, n) well-de�ned for all n and k < m, with m > 0.

⇒ gcd(m, n) well-de�ned:
Case 1: m > n. gcd(m, n) = gcd(m − n, n) Apply IH only if n > 0! De�ne
gcd(m, 0) = m.
Case 2: m ≤ n. gcd(m, n) = gcd(n,m) that is well-de�ned by IH.
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Formal proofs

Programs versus demonstrations in PVS

Programs versus demonstrations

procedure gcd(m, n)
if m = 0 then n
else (∗ ∗m > 0 ∗ ∗)

if m < n then gcd(n,m)
else (∗ ∗m > 0 & m ≥ n ∗ ∗)

if n = 0 then m
else (∗ ∗m > 0 & n > 0 & m ≥ n ∗ ∗)

gcd(m − n, n)
End procedure︸ ︷︷ ︸
Program extracted from the proved correct speci�cation
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Formal proofs

Programs versus demonstrations in PVS

Example in PVS: gcd extended to Z× Z

Theorem [Euclid 320-275 BC]∀n ≥ 0,m > 0, gcd(n,m) = gcd(m, n MOD m)︸ ︷︷ ︸
idea

Theorem [Euclid Z2]∀m, n 6= 0 ∈ Z, gcd(m, n) = gcd(m,m MOD n)︸ ︷︷ ︸
extension' idea

(Detail: \n MOD m" is computed as \(n −m) MOD m)



Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Programs versus demonstrations in PVS

Example in PVS: gcd extended to Z× Z

procedure gcd(m, n)
if |m| = |n| then |m|
else, if (m = 0 or n = 0) then |m + n|

else, if |n| > |m| then gcd(|n| − |m|, |m|)
else gcd(|m| − |n|, |n|)

End procedure︸ ︷︷ ︸
algorithm extended to Z2
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Formal proofs

Programs versus demonstrations in PVS

Example in PVS: gcd : Z× Z→ N Executable code

Speci�cation & veri�cation in PVS

Executable code extracted from the proved correct
speci�cation - Mu~noz's system PVSWhy
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Formal proofs

Programs versus demonstrations in PVS

Formalisation of the correctness of gcd

Quantitative Information

Theory L. Speci�cation L. Proof Theorems TCCs S. Speci�cation S. Proof

gcd 94 1665 21 6 3.2K 74k

94 1665 21 6 3.2K 74K
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Formal proofs

Programs versus demonstrations in PVS

Executable code for gcd in Z× Z extracted with PVSWhy
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Formal proofs

Formalisation of recon�gurable hardware - a simple example

Formalisation of the logical correctness of a simple 2D
convolution

Figure: Wong, Jasiunas & Kearney 2D convolution [WJK05]
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Formal proofs

Formalisation of recon�gurable hardware - a simple example

Formalisation of the logical correctness of a simple 2D
convolution

Implementation of WJK-Convolution in FPGAs
Departamento Engenharia Mecatrônica/UnB
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Formal proofs

Formalisation of recon�gurable hardware - a simple example

Formalisation of the logical correctness of an improved 2D
convolution

Implementation Y-Convolution in FPGAs
(J.Yudi) Departamento Engenharia Mecatrônica/UnB
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Formal proofs

Formalisation of recon�gurable hardware - a simple example

Formalisation of the logical correctness of a simple 2D
convolution

Quantitative Information

Theory L. Speci�cation L. Proof Theorems TCCs T. Speci�cation T. Proof

image masks 194 3788 75 64 7.8K 78K
fin seq extra 162 1612 62 29 7K 179k

356 5400 137 93 14.8K 257K
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Conclusions and Future Work

Nowadays formalising computational objects is essential in
order to produce certi�ed and robust products.

Each piece of software/hardware deserves a formal
mathematical treatment.

Advances in formal methods includes:

speci�cation and formalisation of mathematical theories and
proof technologies that can be applied to a particular style of
design (e.g. trs theory [GAR10]);
aplication of particular formalisation styles to the design and
production of speci�c technological tools: such as
cryptographic protocols (e.g. [SAR10]) and recon�gurable
hardware implementations (e.g. [ARLJH06]).
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