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The Problem
The Centrality of SAT

SAT is a central problem in Computer Science, with both
theoretical and practical interests

SAT was the 1st NP-complete problem

SAT received a lot of attention [1960-now]

SAT has very efficient implementations

SAT has become the “assembly language” of hard-problems

SAT is logic
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The Setting: the language

Atoms: P = {p1, . . . , pn}

Literals: pi and ¬pj

p̄ = ¬p, ¬p = p

A clause is a set of literals. Ex: {p, q̄, r} or p ∨ q̄ ∨ r

A formula C is a set of clauses
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The Setting: semantics

Valuation for atoms v : P → {0, 1}

An atom p is satisfied if v(p) = 1

Valuations are extended to all formulas

v(λ̄) = 1 ⇔ v(λ) = 0

A clause c is satisfied (v(c) = 1) if some literal λ ∈ c is
satisfied

A formula C is satisfied (v(C ) = 1) if all clauses in C are
satisfied
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A formula C is satisfiable if exits v , v(C ) = 1.

Otherwise, C is unsatisfiable
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The Problem

A formula C is satisfiable if exits v , v(C ) = 1.

Otherwise, C is unsatisfiable

The SAT Problem

Given a formula C , decide if C is satisfiable.

Witnesses: If C is satisfiable, provide a v such that v(C ) = 1;
otherwise, give a proof that C is unsatisfiable.
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An NP Algorithm for SAT

NP-SAT(C)

Input: C , a formula in clausal form

Output: v , if v(C ) = 1; no, otherwise.

1: Guess a v

2: Show, in polynomial time, that v(C ) = 1
3: return v

4: if no such v is guessable then

5: return no
6: end if
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A Näıve SAT Solver

NaiveSAT(C)

Input: C , a formula in clausal form

Output: v , if v(C ) = 1; no, otherwise.

1: for every valuation v over p1, . . . , pn do

2: if v(C ) = 1 then

3: return v

4: end if

5: end for

6: return no
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A Brief History of SAT Solvers

[Davis & Putnam, 1960; Davis, Longemann & Loveland,
1962] The DPLL Algorithm, a complete SAT Solver
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A Brief History of SAT Solvers

[Davis & Putnam, 1960; Davis, Longemann & Loveland,
1962] The DPLL Algorithm, a complete SAT Solver

[Tseitin, 1966] DPLL has exponential lower bound

[Cook 1971] SAT is NP-complete
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Incomplete SAT methods

Incomplete methods compute valuation if C is SAT; if C is unSAT,
no answer.

[Selman, Levesque & Mitchell, 1992] GSAT, a local search
algorithm for SAT
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Incomplete SAT methods

Incomplete methods compute valuation if C is SAT; if C is unSAT,
no answer.

[Selman, Levesque & Mitchell, 1992] GSAT, a local search
algorithm for SAT

[Mitchell, Levesque & Selman, 1992] Hard and easy SAT
problems

[Kautz & Selman, 1992] SAT planning

[Kautz & Selman, 1993] WalkSAT Algorithm

[Gent & Walsh, 1994] SAT phase transition

[Shang & Wah, 1998] Discrete Lagrangian Method (DLM)
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DPLL: Second Generation

Second Generation of DPLL SAT Solvers: Posit [1995], SATO
[1997], GRASP [1999]. Heuristics but no learning.
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DPLL: Second Generation

Second Generation of DPLL SAT Solvers: Posit [1995], SATO
[1997], GRASP [1999]. Heuristics but no learning.

SAT competitions since 2002:
http://www.satcompetition.org/

Aggregation of several techniques to SAT, such as learning,
unlearning, backjumping, watched literal, special heuristics.

Very competitive SAT solvers: Chaff [2001], BerkMin
[2002],zChaff [2004].

Applications to planning, microprocessor test and verification,
software design and verification, AI search, games, etc.

Some non-DPLL SAT solvers incorporate all those techniques:
[Dixon 2004]
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DPLL Through Examples

p ∨ q

p ∨ q̄

p̄ ∨ t ∨ s

p̄ ∨ t̄ ∨ s

p̄ ∨ s̄

p̄ ∨ s ∨ ā
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Initial Simplifications

Delete all clauses that contain λ, if λ̄ does not occur.

p ∨ q

p ∨ q̄

p̄ ∨ t ∨ s

p̄ ∨ t̄ ∨ s

p̄ ∨ s̄

p̄ ∨ s ∨ ā////////////
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Construction of a Partial Valuation

Choose a literal: s. V = {s}
Propagate choice: Delete clauses containing s. Delete s̄ from other
clauses.

p ∨ q

p ∨ q̄

p̄ ∨ t ∨ s////////////

p̄ ∨ t̄ ∨ s////////////

p̄ ∨s̄///
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Unit Propagation

Enlarge the partial valuation with unit clauses.
V = {s, p̄}
Propagate unit clauses as before.

p∨////q

p∨//// q̄

p̄/

Another propagation step leads to V = {s, p̄, q, q̄}
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Backtracking

Unit propagation may lead to contradictory valuation:
V = {s, p̄, q, q̄}
Backtrack to the previous choice, and propagate: V = {s̄}

p ∨ q

p ∨ q̄

p̄ ∨ t ∨s///

p̄ ∨ t̄ ∨s///

p̄ ∨ s̄///////
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New Choice

When propagation finishes, a new choice is made: p.
V = {s̄,p}.
This leads to an inconsistent valuation: V = {s̄,p, t, t̄}
Backtrack to last choice: V = {s̄, p̄}

p∨//// q

p∨//// q̄

p̄ ∨ t///////

p̄ ∨ t̄///////

Propagation leads to another contradiction: V = {s̄, p̄, q, q̄}
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SAT Solvers



The Problem History DPLL Resolution WatchLit Conclusion

The Formula is UnSAT

There is nowhere to backtrack to now!
The formula is unsatisfiable, with a proof sketched below.

s

p̄ (p̄ ∨ s̄)

q (p ∨ q)

q̄ (p ∨ q̄)

×

s̄

p

t (p̄ ∨ t ∨ s)

t̄ (p̄ ∨ t̄ ∨ s)

×

p̄

q (p ∨ q)

q̄ (p ∨ q̄)

×
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The Resolution Inference For Clauses

Usual Resolution

C ∨ λ λ̄ ∨ D

C ∨ D

Clauses as Sets

Γ ∪ {λ} {λ̄} ∪ ∆

Γ ∪ ∆

Note that, as clauses are sets

Γ ∪ {µ, λ} {λ̄, µ} ∪ ∆

Γ ∪ ∆ ∪ {µ}
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DPLL Proofs and Resolution

s
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p
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DPLL Proofs and Resolution

s̄

p

p ∨ q p ∨ q̄
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p
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DPLL Proofs and Resolution

⊥

s̄

p

p ∨ q p ∨ q̄

p̄ ∨ s̄ s

p̄ ∨ s

p̄ ∨ t ∨ s p̄ ∨ t̄ ∨ s

p

p ∨ q p ∨ q̄
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Conclusion

DPLL is isomorphic to (a restricted form of) resolution

DPLL inherits all properties of this (restricted form of
resolution

In particular, DPLL inherits the exponential lower bounds
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Enhancing DPLL

For the reasons discussed, DPLL needs to be improved to achieve
better efficiency. Several techniques have been applied:

Learning

Unlearning

Backjumping

Watched literals

Heuristics for choosing literals
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Watched Literals
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The Cost of Unit Propagation

Empirical measures show that 80% of time DPLL is doing
Unit Propagation

Propagation is the main target for optimization

Chaff introduced the technique of Watched Literals

Unit Propagation speed up
No need to delete literals or clauses
No need to watch all literals in a clause
Constant time backtracking (very fast)
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DPLL and 3-valued Logic

DPLL underlying logic is 3-valued

Given a partial valuation

V = {λ1, . . . , λk}

Let λ be any literal.

V (λ) =







1(true) if λ ∈ V

0(false) if λ 6∈ V

∗(undefined) otherwise
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The Watched Literal Data Structure

Every clause c has two selected literals: λc1, λc2

For each c, λc1, λc2 are dynamically chosen and varies with
time

λc1, λc2 are properly watched under partial valuation V if:

they are both undefined; or
at least one of them is true
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Dynamics of Watched Literals

Initially, V = ∅

A pair of watched literals is chosen for each clause. It is
proper.

Literal choice and unit propagation expand V

One or both watched literals may be falsified

If λc1, λc2 become improper then

The falsified watched literal is changed

if no proper pair of watched literals can be found, two things
may occur to alter V

Unit propagation (V is expanded)
Backtracking (V is reduced)
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Example

clause λc1 λc2

p ∨ q ∨ r p = ∗ q = ∗
p ∨ q̄ ∨ s p = ∗ q̄ = ∗
p ∨ r ∨ s̄ p = ∗ r = ∗

Initially V = ∅
A pair of literals was elected for each clause
All are undefined, all pairs are proper
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p̄ is chosen

V = {p̄}
All watched literals become (0, ∗), improper
New literals are chosen to be watched

clause λc1 λc2

p ∨ q ∨ r r = ∗ q = ∗
p ∨ q̄ ∨ s s = ∗ q̄ = ∗
p ∨ r̄ ∨ s̄ s̄ = ∗ r = ∗
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r̄ is chosen

V = {p̄, r̄}
WL in clauses 1,3 become improper
No other *- or 1-literal to be chosen
Unit propagation: q, s̄ become true

clause λc1 λc2

p ∨ q ∨ r r = 0 q = ∗/ 1

p ∨ q̄ ∨ s s = ∗ q̄ = ∗
p ∨ r̄ ∨ s̄ s̄ = ∗/ 1 r = 0
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Unit propagation leads to backtracking

V = {p̄, r̄, q, s̄}
WL in clause 2 becomes improper
No other *- or 1-literal to be chosen
No unit propagation is possible: clause 2 is false

clause λc1 λc2

p ∨ q ∨ r r = 0 q = 1
p ∨ q̄ ∨ s s = 0 q̄ = 0
p ∨ r ∨ s̄ s̄ = 1 r = 0
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Fast Backtracking

V is contracted to last choice point
V = {p̄, r̄, q, s̄}////////////// {p̄, r}

clause λc1 λc2

p ∨ q ∨ r r = 1 q = ∗
p ∨ q̄ ∨ s s = ∗ q̄ = ∗
p ∨ r ∨ s̄ s̄ = ∗ r = 1

Only affected WLs had to be recomputed
No need to reestablish previous context from a stack of contexts
Very quick backtracking
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DPLL is > 40 years old, but still the most used strategy for
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Conclusion of the Talk

DPLL is > 40 years old, but still the most used strategy for
SAT solvers

Use of smart techniques have improved DPLL’s performance:
N = 15 −→ N = 10 000

There are still very hard formulas that make DPLL exponential

Experiments show that these formulas do occur in practice

The future of SAT solvers lies in non-DPLL, non-clausal
methods

But the techniques learned from DPLL are incorporated in
new techniques
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