
Submitted to:
LSFA 2024

© M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida
This work is licensed under the
Creative Commons Attribution License.

Nominal Equational Rewriting and Narrowing

Mauricio Ayala-Rincón
University of Brasília, Brazil

Maribel Fernández
King’s College London, UK

Daniele Nantes-Sobrinho
University of Brasília, Brazil

Imperial College London, UK

Daniella Santaguida
University of Brasília, Brazil

Narrowing is a well-known technique that adds to term rewriting mechanisms the required power to
search for solutions to equational problems. Rewriting and narrowing are well-studied in first-order
term languages, but several problems remain to be investigated when dealing with languages with
binders using nominal techniques. Applications in programming languages and theorem proving re-
quire reasoning modulo α-equivalence considering structural congruences generated by equational
axioms, such as commutativity. This paper presents the first definitions of nominal rewriting and
narrowing modulo an equational theory. We establish a property called nominal E-coherence and
demonstrate its role in identifying normal forms of nominal terms. Additionally, we prove the nomi-
nal E-Lifting theorem, which ensures the correspondence between sequences of nominal equational
rewriting steps and narrowing, crucial for developing a correct algorithm for nominal equational uni-
fication via nominal equational narrowing. We illustrate our results using the equational theory for
commutativity.

1 Introduction

The nominal framework [15] has emerged as a promising approach for dealing with languages involving
binders such as lambda calculus and first-order logic. In this framework, equality coincides with the
α-equivalence relation, denoted as ≈α , and freshness constraints are integrated within the nominal rea-
soning rather than being relegated to the meta-language. For example, the expression a#M (“a is fresh
for M”) indicates that if a name a occurs in a term M, it must be abstracted by some binder, such as the
λ in the lambda calculus, or ∃,∀-quantification in first-order logic), i.e., a cannot occur free in M.

To enable reasoning within this framework, nominal unification [11, 22] was developed and for-
malised in proof assistants such as Isabelle [22], PVS [8] and Coq [4]. Nominal unification involves
finding a substitution σ that solves the problem s ?≈? t, meaning sσ ≈α tσ , where s and t are nominal
terms. It is well-known that unification is fundamental for automated reasoning, serving as the founda-
tion for resolution-based proof assistants, type inference, and numerous other applications. While these
applications are anticipated to extend to nominal unification, substantial work is required to verify this.

To pursue applications of the nominal framework, extensions of nominal unification with equational
theories have been investigated. Initial efforts included integrating the theories of Associativity (≈α,A),
Commutativity (≈α,C) and Associativity-Commutativity (≈α,AC) to α-equality [4]. Various algorithms
for nominal unification modulo commutativity (C-unification) and formalisations of their correctness
in proof assistants PVS and Coq have been developed [1, 2, 7, 5]. These development efforts reveal
significant differences between first-order and nominal languages, such as the theory of C-unification,
which has nullary unification type if α-equivalence is considered [1], contrasting with the finitary type
of first-order C-unification [10].

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Nominal Commutative Rewriting and Narrowing

Further investigations into nominal unification include exploring a letrec constructor and extensions
involving atom variables [21]. Another example is the development of an algorithm for nominal C-

matching [3], a special case of nominal C-unification (dealing with problems s ?
C
≈? t where the substi-

tution σ only applies in one side: sσ ≈α,C t). Recently, a naive nominal extension of the Stickel-Fages
first-order AC-unification algorithm introduced cyclicity in solutions produced by translations of unifi-
cation problems to Diophantine systems as reported in [9], and this differs from the original (first-order)
approach which has a terminating algorithm.

These developments underline the complexity of extending equational unification algorithms to the
nominal framework, and new methods need to be proposed to obtain the desired extensions. An al-
ternative approach to solving nominal unification problems modulo equational theories (i.e., nominal
E-unification problems), developed in [6], involves the use of nominal narrowing1. This technique can
be used when the equational theory E is presented by a convergent nominal rewriting system [14, 12].
Different extensions are needed for rewriting modulo E when such a presentation is impossible. How-
ever, nominal techniques modulo an equational theory E, and in particular, nominal E-rewriting, remain
unexplored.

This work represents the first step towards developing nominal E-techniques, when using a con-
vergent nominal rewrite system equivalent to the theory E is not possible. In first-order term lan-
guages [18, 23, 13], the standard technique is to split a set of identities T into a term rewriting system
R and an equational part E, so that T = R∪E, considering the rewriting relation generated by R on the
equivalence classes of terms generated by E. We propose extending this technique to nominal languages
by adapting the notions of nominal rewriting [14, 20, 19] and nominal narrowing [6] to work modulo E,
incorporating the relation ≈α,E. These extensions result in the first definitions of nominal R/E-rewriting
(Definition 3.1) and R,E-rewriting (Definition 3.2) as well as E-narrowing (Definition 3.8).

Nominal R/E-rewriting applies rules from R in the equivalence class modulo ≈α,E of a nominal term
t, while R,E-rewriting uses nominal E-matching to determine if a rule in R applies to a nominal term, say
t. This nominal term t may have variables, thus the definition of the relations R/E and R,E also feature
freshness conditions. We prove that it is possible to identify the normal form of a nominal term, say t,
with respect to the relation R/E (denoted t ↓R/E) to the normal form of the same term, but with respect
to the relation R,E (that is, t ↓R,E), when the relation R,E has a property called nominal E-coherence,
whose extension from a corresponding property in first-order term language [17] is established here.

Proving the correspondence between sequences of nominal R,E-rewriting steps and E-narrowing
steps (Nominal E-Lifting Theorem 4.6) is essential to develop an algorithm for nominal T-unification
via nominal E-narrowing. Since the decidability of nominal T-unification relies on the decidability
of nominal E-unification and E-matching, and so far, the only equational theory for which a nominal
unification algorithm exists is commutativity C, a corollary of our developments is that the nominal C-
Lifting Theorem holds. Finally, due to the volume of extensions that were necessary to establish nominal
E-narrowing and rewriting, the final goal of using E-narrowing as a sound and complete procedure for
solving nominal T-unification, remains ongoing work.

Summarising, our main contributions are:

1. We extend the definitions and concepts regarding rewriting modulo E to the nominal framework.
For instance, we have nominal versions of the relations →R,E and →R/E for rewriting, and⇝R,E

for nominal E-narrowing.

1Roughly, nominal narrowing is a generalisation of nominal rewriting by using nominal unification instead of nominal
matching in its definition.

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 3

2. We prove technical auxiliary results relating →R,E and →R/E. These required the establishment of
the nominal E-coherence property for R,E.

3. We prove the nominal E-Lifting Theorem (cf. Theorem 4.6) that establishes a correspondence
between sequences of nominal E-narrowing⇝R,E and nominal R,E-rewriting →R,E.

4. Since C is the only equational theory for which a nominal unification algorithm exists, we illustrate
our results using nominal R,C-rewriting and narrowing.

Organisation. In §2 we present the background necessary to read the paper. Novel material starts in §3,
where we extend the notions of rewriting and narrowing modulo an equational theory E to the nominal
framework and provide some examples. In §4 we present the classical Lifting Theorem, extended to the
nominal framework, taking into account an equational E for which a nominal E-unification algorithm
exists. §5 concludes the paper.

2 Preliminaries

While we assume the reader’s familiarity with nominal techniques, we briefly recap some basic defini-
tions. For more details, we refer to [14]. In this (and the following) section(s), we will use ≡ for syntactic
equality, = for definitions and ≈α for α-equality.

Syntax. Fix countable infinite pairwise disjoint sets of atoms A = {a,b,c, . . .} and variables X =
{X ,Y,Z, . . .}. Atoms follow the atom convention: atoms a,b,c, . . . over A represent different names. Let
Σ be a finite set of term-formers disjoint from A and X such that for each f ∈ Σ, a unique non-negative
integer n (arity of f) is assigned. A permutation π is a bijection on A with finite domain, i.e., the set
dom(π) = {a ∈ A | π(a) ̸= a} is finite. The identity permutation is denoted id. The composition of
permutations π and π ′ is denoted π ◦π ′ and π−1 denotes the inverse of the permutation π .

Nominal terms are defined inductively by the grammar:

s, t,u ::= a | π ·X | [a]t | f (t1, . . . , tn),

where a is an atom, π ·X is a (moderated/suspended) variable, [a]t is the abstraction of a in the term
t, and f (t1, . . . , tn) is a function application with f ∈ Σ and f : n. We abbreviate id ·X as X . A term is
ground if it does not contain (moderated) variables. A position C is defined as a pair (s,_) of a term
and a distinguished variable _ ∈ X that occurs exactly once in s. We write C[s′] for C[_ 7→ s′] and if
s ≡ C[s′], we say that s′ is a subterm of s with position C. The root position will be denoted by C= [_].

Remark 2.1 (Positions). Our definition of ‘position’ is equivalent to the standard notion of a point in the
abstract syntax tree of a term, as defined, for example, in [10]. It is more convenient for us to identify
this with the corresponding ‘initial segment’ of a nominal term, in which the ‘hole’ is a variable in X ;
thus positions of a term can be expressed within our language.

A permutation action of π on a term t is defined by induction on the term structure as expected:

π ·a= π(a) π ·(π ′ ·X)= (π ◦π
′) ·X π · [a]t = [π ·a](π ·t) π · f (t1, . . . , tn)= f (π ·t1, . . . ,π ·tn).

The difference set of two permutations ds(π,π ′) := {n | π ·n ̸= π ′ ·n}. So ds(π,π ′)#X represents the
set of constraints {n#X | n ∈ ds(π,π ′)}. For example, if π = (a b)(c d) and π ′ = (c b), then ds(π,π ′) =

4 Nominal Commutative Rewriting and Narrowing

(# atom)
∆ ⊢ a#b ∆ ⊢ a#t1 · · · ∆ ⊢ a#tn (# app)

∆ ⊢ a# f (t1, · · · , tn)

(# a[a])
∆ ⊢ a#[a]t

∆ ⊢ a#t (# a[b])
∆ ⊢ a#[b]t

(π−1 ·a#X) ∈ ∆
(# var)

∆ ⊢ a#π ·X
(≈α atom)

∆ ⊢ a ≈α a ∆ ⊢ s1 ≈α t1 · · · ∆ ⊢ sn ≈α tn (≈α app)
∆ ⊢ f (s1, · · · ,sn) ≈α f (t1, · · · , tn)

∆ ⊢ s ≈α t
(≈α [aa])

∆ ⊢ [a]s ≈α [a]t
∆ ⊢ s ≈α (a b) · t ∆ ⊢ a#t

(≈α [ab])
∆ ⊢ [a]s ≈α [b]t

ds(π,π ′)#X ∈ ∆
(≈α var)

∆ ⊢ π ·X ≈α π ′ ·X

Figure 1: Rules for # and ≈α

{a,b,c,d} since π and π ′ act differently in each atom: note that π(a) = b and π ′(a) = a. In addition,
ds(π,π ′)#X = {a#X ,b#X ,c#X ,d#X}.

A substitution θ is a mapping from a finite set of variables to terms. The substitution action tθ is
defined as follows:

aθ = a (π ·X)θ = π · (Xθ) ([a]t)θ = [a](tθ) f (t1, . . . , tn)θ = f (t1θ , . . . , tnθ).

The domain of a substitution θ is written as dom(θ), and the image is denoted as Im(θ). Therefore, if
X ̸∈ dom(θ) then Xθ = X . Also, if we restrict the domain to a certain set V ⊆ X of variables, we obtain
the substitution θ |V , the restriction of θ to V . The identity substitution is denoted Id. The composition
of two substitutions θ1 and θ2 will be denoted by simple juxtaposition as θ1θ2 and it applies to a term as
tθ1θ2 = (tθ1)θ2.

Nominal Constraints, Judgements and Rewriting. There are two kinds of constraints: s ≈α t is an
(alpha-)equality constraint and a#t is a freshness constraint which means that a cannot occur unabstracted
in t. Primitive constraints have the form a#X and ∇,∆ denote finite sets of primitive constraints. We will
use the abbreviation a,b,c#X to denote the set of freshness constraints {a#X ,b#X ,c#X}. Judgements
have the form ∆ ⊢ s ≈α t and ∆ ⊢ a#t and are derived using the rules in Figure 1. A context ∆ is called
consistent if it is a finite set of freshness constraints that do not reduce, via bottom-up application of the
rules in Figure 1, to constraints of the form a#a.

Given a finite set of freshness constraints ∆ and a substitution θ , ∆θ consists of the set of constraints
{a#Xθ | a#X ∈ ∆} and ⟨∆θ⟩n f consists of the freshness context obtained after applying the rules from
Figure 1 in ∆θ , in a bottom-up manner. A problem Pr is a set of constraints, and we write ∆ ⊢ Pr when
for all P ∈ Pr there is a derivation proof using the rules in Figure 1, taking elements of the context ∆ as
assumptions.

Example 2.1. Let Σλ = {lam,app} denote the signature whose function symbols have arities lam : 1
and app : 2. Let Pr = lam[a]app(a,X)≈α lam[b]app(b,(a c) ·X) be a problem and ∆ = {a,b,c#X} be a
context. We verify the derivability of ∆ ⊢ lam[a]app(a,X)≈α lam[b]app(b,(a c) ·X):

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 5

(≈α atom)
∆ ⊢ a ≈α a

a,b,c#X ∈ ∆
(≈α var)

∆ ⊢ X ≈α (a b)(a c) ·X
(≈α app)

∆ ⊢ app(a,X)≈α app(a,(a b)(a c) ·X)

(# atom)
∆ ⊢ a#b

c#X ∈ ∆ (# var)
∆ ⊢ a#(a c) ·X

(# app)
∆ ⊢ a#app(b,(a c) ·X)

(≈α [ab])
∆ ⊢ [a]app(a,X)≈α [b]app(b,(a c) ·X)

(≈α app)
∆ ⊢ lam[a]app(a,X)≈α lam[b]app(b,(a c) ·X)

A term in context ∆ ⊢ t expresses that the term t has the freshness constraints imposed by ∆. For
example, a#X ⊢ f (X ,h(b)) expresses that a cannot occur fresh in instances of X . Nominal rewriting
rules can be defined under freshness constraints, i.e., ∇ ⊢ l → r denotes a nominal rewriting rule. We
denote by R, a finite set of nominal rewriting rules.

The nominal rewriting relation →R is defined as in [14]:

s ≡ C[s′]∧∆ ⊢ ∇θ ∧ s′ ≈α π · (lθ)∧ t ≈α C[π · (rθ)]

∆ ⊢ s →R t

for a substitution θ , a subterm s′ of s, a position C and a nominal rule ∇ ⊢ l → r ∈ R. We will omit the
subscript R and write only ∆ ⊢ s → t when there is no ambiguity.

Equality modulo an equational theory E. A nominal identity is a pair in context ∇ ⊢ (l,r) of nominal
terms l and r under a (possibly empty) freshness context ∇. We denote such identity as ∇ ⊢ l ≈ r. A set
E of identities induces an equational theory, which we will also denote as E.

The nominal algebra equality modulo E, denoted ∆ ⊢ s ≈α,E t, is the least transitive reflexive sym-
metric relation such that for any (∇ ⊢ l ≈ r) ∈ E, position C, permutation π , substitution θ , and fresh
context Γ (so if a#X ∈ Γ then a is not mentioned in ∆,s, t):

∆,Γ ⊢
(
∇θ , s ≈α C[π · (lθ)], C[π · (rθ)]≈α t

)
(AxE)

∆ ⊢ s ≈α,E t
Remark 2.2. We can also define ≈α,E by extending the rules of Figure 1 with the dedicated rules for the
identities defining E. For example, the identity expressing the commutativity of a function symbol fC is
C= {⊢ fC(X ,Y)≈ fC(Y,X)}. In this case, we need to add the following rule:

∆ ⊢ s0 ≈α,C ti ∆ ⊢ s1 ≈α,C t1−i i = 0,1 fC ∈ Σ
C

∆ ⊢ fC(s0,s1) ≈α,C fC(t0, t1)
(≈α,C C)

where ΣC denotes a signature of commutative function symbols. Rule (≈α app) only applies when the
function symbol f is not commutative. In addition, we need to modify the rules in Figure 1 to use ≈α,C

instead of ≈α .
Note that if we define an equational theory E using the rule (AxE), the equational theory is a congru-

ence relation, and ⊢ is compatible with substitutions by definition. However, this rule generates a lot of
redundant derivations. To avoid this, we will use specific rules for each E, as for the commutative rule in
Remark 2.2. This choice comes with a cost, e.g. the rule (≈α,C C) is not closed by substitutions, and we
need to prove the compatibility of ⊢ by substitution.

Definition 2.3 (E-Compatibility of ⊢ by substitutions). An equational theory E is compatible with ⊢ by
substitutions iff the following hold, whenever ∆ and ∆θ are consistent.

1. If ∆ ⊢ a#t then ⟨∆θ⟩n f ⊢ a#(tθ).

2. If ∆ ⊢ s ≈α,E t then ⟨∆θ⟩n f ⊢ (sθ)≈α,E (tθ).

6 Nominal Commutative Rewriting and Narrowing

3. If ∆ ⊢ Pr then ⟨∆θ⟩n f ⊢ Prθ .

The next proposition guarantees the compatibility of judgments by substitutions when the theory C
for commutativity is considered. This proposition is technical and will be used in the correspondence of
one-step narrowing to one-step rewriting in Lemma 4.2.

Proposition 2.4. The equational theory C is compatible with substitutions.

Proof. By induction on the derivation of ∆ ⊢ a#t or ∆ ⊢ s ≈α,C t, using the rules of Fig. 1 extended for
≈α,C-equality.

Nominal C-unification algorithm. We consider the rule-based algorithm for nominal C-unification,
introduced in [2] and defined by the rules presented in Figure 2. The rules act on triples P = (∆,θ ,Pr),
where ∆ is a freshness context, θ is a substitution and Pr is a C-problem, i.e., a set of freshness and
≈α,C-equality constraints. We will denote the triples by P,Q,S , · · · .

Definition 2.5. (C-solution) A C-solution for a triple P = (∆,δ ,Pr) is a pair (∆′,θ) where the following
conditions are satisfied:

1. ∆′ ⊢ ∆θ ;

2. ∆′ ⊢ a#tθ , if a#t ∈ Pr;

3. ∆′ ⊢ sθ ≈α,C tθ , if s ≈α,C t ∈ Pr;

4. there is a substitution θ ′ such that ∆′ ⊢ δθ ′ ≈α,C θ .

If there is no (∆′,θ), then we say that the problem P is unsolvable. Also UC(P) denotes the set of all
C-solutions of the triple P .

Let (∆1,θ1) and (∆2,θ2) be solutions in UC(P). We say that (∆1,θ1) is more general than (∆2,θ2),
and denote it as (∆1,θ1)≤C (∆2,θ2), if there exists a substitution θ ′ such that ∆2 ⊢ Xθ1θ ′ ≈α,C Xθ2, for
all X ∈ X and ∆2 ⊢ ∆1θ ′. We write ≤V

C for the restriction of ≤C to a set V of variables.

Definition 2.6. (Nominal C-unification problem) A nominal C-unification problem (in context) is a pair

(∇ ⊢ l) ?
C
≈? (∆ ⊢ s). The pair (∆′,θ) is an C-solution, or C-unifier, of (∇ ⊢ l) ?

C
≈? (∆ ⊢ s) iff (∆′,θ) is

a C-solution of the triple P = ({∇,∆},Id,{l ≈α,C s}), that is, conditions (1)-(4) of Definition 2.5 are

satisfied. UC(∇ ⊢ l,∆ ⊢ s) denotes the set of all C-solutions of (∇ ⊢ l) ?
C
≈? (∆ ⊢ s). If ∇ and ∆ are empty

we write simply UC(l,s). A subset V ∈ UC(P) is said to be a complete set of C-solutions of P if for
all (∆1,θ1) ∈ UC(P), there exists (∆2,θ2) ∈ V such that (∆2,θ2)≤C (∆1,θ1).

The following example illustrates the use of the nominal C-unification algorithm to solve a nominal
C-unification problem.

Example 2.2. Let Σ = {h : 1, fC : 2,⊕ : 2} be a signature, where fC and ⊕ are commutative symbols,
i.e., and C = { ⊢ f C(X ,Y) ≈ fC(Y,X), ⊢ X ⊕Y ≈ Y ⊕X} be the axioms defining the theory. Con-

sider the C-unification problem (/0 ⊢ h(Y)) ?
C
≈? (/0 ⊢ h(fC([b][a]X ,X))) which has the associated triple

(/0,Id,{h(Y) ?
C
≈? h(fC([b][a]X ,X))}). By applying the rules from Figure 2 we get the following:

(/0,Id,{h(Y) ?
C
≈? h(f C([b][a]X ,X))}) =⇒(≈α,C app) (/0,Id,{Y ?

C
≈? f C([b][a]X ,X)})

=⇒(≈α,C inst) (/0,θ0 = [Y 7→ f C([b][a]X ,X)],{ f C([b][a]X ,X) ?
C≈? f C([b][a]X ,X)})

=⇒(≈α,C refl) (/0,θ0 = [Y 7→ f C([b][a]X ,X)], /0)

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 7

(# ab) (∆,θ ,Pr⊎{a#b}) =⇒ (∆,θ ,Pr)
(# app) (∆,θ ,Pr⊎{a# f (t1, · · · , tn)}) =⇒ (∆,θ ,Pr∪{a#t1, · · · ,a#tn})
(# a[a]) (∆,θ ,Pr⊎{a#[a]t}) =⇒ (∆,θ ,Pr)
(# a[b]) (∆,θ ,Pr⊎{a#[b]t}) =⇒ (∆,θ ,Pr∪{a#t})
(# var) (∆,θ ,Pr⊎{a#π ·X}) =⇒ ({(π−1 ·a)#X}∪∆,θ ,Pr)

(≈α,C refl) (∆,θ ,Pr⊎{s ≈α,C s}) =⇒ (∆,θ ,Pr)
(≈α,C app) (∆,θ ,Pr⊎{ f (s)n ≈α,C f (t)n}) =⇒ (∆,θ ,Pr∪

⋃
{si ≈α,C ti})

(≈α,C C) (∆,θ ,Pr⊎{ f Cs ≈α,C f Ct}) =⇒ (∆,θ ,Pr∪{s ≈α,C v}),where s = (s0,s1)

and t = (t0, t1), v = (ti, t(1−i), i = 0,1
(≈α,C [aa]) (∆,θ ,Pr⊎{[a]s ≈α,C [a]t}) =⇒ (∆,θ ,Pr∪{s ≈α,C t})
(≈α,C [ab]) (∆,θ ,Pr⊎{[a]s ≈α,C [b]t}) =⇒ (∆,θ ,Pr∪{s ≈α,C (a b) · t,a#t})
(≈α,C inst) (∆,θ ,Pr⊎{π ·X ≈α,C t}) =⇒ (∆,θ ′,Pr[X 7→ π−1 · t]∪

⋃
Y∈dom(θ ′),

a#Y∈∆

{a#Y θ ′}),

let θ ′ := θ [X 7→ π−1 · t],
if X ̸∈Var(t)

(≈α,C inv) (∆,θ ,Pr⊎{π ·X ≈α,C π ′ ·X}) =⇒ (∆,θ ,Pr∪{(π ′)−1 ◦π ·X ≈α,C X})
if π ′ ̸= Id

Figure 2: Simplification rules for # and ≈α,C. ⊎ denotes disjoint union

Thus, we get the C-solution (/0,θ0).

Now consider the C-unification problem (/0 ⊢ fC([a][b]Z,Z)) ?
C
≈? (/0 ⊢ fC([b][a]X ,X)), which has the

associated triple (/0,Id,{ fC([a][b]Z,Z)) ?
C
≈? fC([b][a]X ,X)}). Using the Nominal C-unification algo-

rithm we get the following:

(/0,Id,{ f C([a][b]Z,Z)) ?
C≈? f C([b][a]X ,X)}) =⇒(≈α,C C)

=⇒(≈α,C C) (/0,Id,{[a][b]Z ?
C
≈? [b][a]X ,Z ?

C
≈? X})

=⇒(≈α,C inst) (/0,θ1 = [Z 7→ X],{[a][b]X ?
C≈? [b][a]X ,X ?

C≈? X})

=⇒(≈α,C refl) (/0,θ1,{[a][b]X ?
C
≈? [b][a]X})

=⇒(≈α,C [ab]) (/0,θ1,{[b]X ?
C≈? (a b) · [a]X ,a#[a]X})

=⇒(# a[a]) (/0,θ1,{[b]X ?
C≈? [b](a b) ·X})

=⇒(≈α,C [bb]) (/0,θ1,{X ?
C≈? (a b) ·X}) (Fixed-point problem)

Observe that the first step uses the rule (≈α,C C), which yields two branches, but here, we are interested
in analysing only one branch.

The fixed-point problem has infinite solutions, for example:
• ({a#X ,b#X},ρ1 = Id):

(/0,Id,{X ?
C≈? (a b) ·X}) =⇒(inverse ≈α var)

=⇒(inverse ≈α var) (/0,Id,{ds(id,(a b))#X})
=⇒2

(# var) ({a#X ,b#X},Id, /0)

• (/0,ρ2 = [X 7→ a⊕b]): X [X 7→ a⊕b] = a⊕b ≈α,C b⊕a = (a b) ·X [X 7→ a⊕b]

8 Nominal Commutative Rewriting and Narrowing

• (/0,ρ3 = [X 7→ (a⊕b)⊕ (a⊕b)]):

X [X 7→ (a⊕b)⊕(a⊕b)]= (a⊕b)⊕(a⊕b)≈α,C (b⊕a)⊕(b⊕a)= (a b)·X [X 7→ (a⊕b)⊕(a⊕b)]

3 Nominal E-rewriting and E-narrowing.

In this section, we introduce our novel definitions of equational nominal rewriting systems (ENRS) and
nominal equational narrowing, sometimes abbreviated to nominal E-rewriting systems and nominal E-
narrowing.

3.1 Nominal E-rewriting

An equational nominal rewrite system (ENRS) is a set of (nominal) identities T that can be split into a
set R of nominal rewrite rules and a set E of identities. Sometimes, we will denote this decomposition as
R∪E. Below, [t]E, denotes the equivalence class of the nominal term t modulo E, i.e., [t]E= {t ′ | t ′≈α,E t}.

Definition 3.1 (Nominal R/E-rewriting). Let T = R∪E be an ENRS. The relation →R/E is induced by
the composition ≈α,E ◦ →R ◦ ≈α,E. A nominal term-in-context ∆ ⊢ s reduces with →R/E, when its
equivalence class modulo E reduces via →R/E as below:

∆ ⊢ ([s]E →R/E [t]E) iff there exist s′, t ′ such that ∆ ⊢ (s ≈α,E s′ →R t ′ ≈α,E t).

The following example illustrates an ENRS for the set of identities that define the prenex normal
form of a first-order formula. We consider the commutativity of the connectives ∧ and ∨.

Example 3.1 (Prenex normal form rules). Consider the signature for the first-order logic Σ= {∀,∃,¬,∧,∨},
let C= { ⊢ P∨Q ≈ Q∨P, ⊢ P∧Q ≈ Q∧P} be the commutative theory. The prenex normal form rules
can be specified by the following set R of nominal rewrite rules:

a#P ⊢ P∧∀[a]Q →∀[a](P∧Q)
a#P ⊢ P∨∀[a]Q →∀[a](P∨Q)
a#P ⊢ P∧∃[a]Q →∃[a](P∧Q)
a#P ⊢ P∨∃[a]Q →∃[a](P∨Q)

⊢ ¬(∃[a]Q)→∀[a]¬Q
⊢ ¬(∀[a]Q)→∃[a]¬Q

Note that in Definition 3.1, the relation →R/E deals with α,E-congruence classes and they are always
infinite due to the availability of names for α-renaming. Although the pure ≈α relation is decidable,
when ≈α is put together with an equational theory E which contains infinite congruence classes, the
relation →R/E may not be decidable (as in first-order). We will define the nominal relation →R,E that
deals with nominal E-matching instead of inspecting the whole α,E-congruence class of a term.

Definition 3.2 (Nominal R,E-rewriting). The one-step E-rewrite relation ∆⊢ s→R,E t is the least relation
such that for any R = (∇ ⊢ l → r) ∈ R, position C, term s′, permutation π , and substitution θ ,

s ≡ C[s′] ∆ ⊢
(
∇θ , s′ ≈α,E π · (lθ), C[π · (rθ)]≈α t

)
∆ ⊢ s →R,E t

The E-rewrite relation ∆ ⊢ s→∗
R,E t is the least relation that includes →R,E and is closed by reflexivity

and transitivity of →R,E, i.e., it satisfies:

1. for all ∆,s,s′ we have ∆ ⊢ s →∗
R,E s′ if ∆ ⊢ s ≈α s′;

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 9

2. for all ∆,s, t,u we have that ∆ ⊢ s →∗
R,E t and ∆ ⊢ t →∗

R,E u implies ∆ ⊢ s →∗
R,E u.

If ∆ ⊢ s →∗
R,E t and ∆ ⊢ s →∗

R,E t ′, then we say that R is E-confluent when there exists a term u such that
∆ ⊢ t →∗

R,E u and ∆ ⊢ t ′ →∗
R,E u. Also, R is said to be E-terminating if there is no infinite →R,E sequence.

R is called E-convergent if it is E-confluent and E-terminating.

A term t is said to be in R,E-normal form (R/E-normal form) whenever one cannot apply another
step of →R,E (→R/E).

Example 3.2 (Cont. Example 3.1). This example illustrates the one-step C-rewrite:

a#P′ ⊢ S′∨ (∃[a]Q′∨P′)→R,C S′∨ (∃[a](P′∨Q′))

with the rule a#P ⊢ P∨∃[a]Q →∃[a](P∨Q). In fact,

• ∆ = {a#P′} and ∇ = {a#P};

• s = S′∨ (∃[a]Q′∨P′)≡ C[∃[a]Q′∨P′]≡ C[s′];
If we fix π = id and θ = [P 7→ P′,Q 7→ Q′] we have:

• ∆ = a#P′ ⊢ a#P′ = (a#P)[P 7→ P′,Q 7→ Q′] = ∇θ ;

• s′ = ∃[a]Q′∨P′ ≈α,C (P∨∃[a]Q)[P 7→ P′,Q 7→ Q′] = lθ = π · (lθ);
• C[π · (rθ)] = C[rθ] = C[(∃[a](P ∨ Q))[P 7→ P′,Q 7→ Q′]] = C[∃[a](P′ ∨ Q′)] = S′ ∨ (∃[a](P′ ∨

Q′))≈α t

Thus, a#P′ ⊢ S′∨ (∃[a]Q′∨P′)→R,C S′∨ (∃[a](P′∨Q′)).
Since ∨ is a commutative symbol, we could reduce the initial term to three other possible terms

because we have two occurrences of the disjunction. Thus, we can “permute” the subterms inside the
rewriting modulo C.

Remark 3.3. Following the approach by Jouannaud et al. [18], E-confluence is a consequence of relating
→R/E and →R,E, which relies on a property called E-coherence which will be extended here, to the
nominal framework.

Definition 3.4 (Nominal E-Coherence). The relation ∆ ⊢ _ →R,E _ is called E-coherent iff for all t1, t2, t3
such that ∆ ⊢ t1 ≈α,E t2 and ∆ ⊢ t1 →R,E t3, there exist t4, t5, t6 such that ∆ ⊢ t3 →∗

R/E t4, t2 →R,E t5 →∗
R/E t6

and ∆ ⊢ t4 ≈α,E t6, for some ∆.

The diagram above illustrates nominal E-coherence: the dashed lines represent existentially quanti-
fied reductions.

Definition 3.5. An equational theory E is called a first-order equational theory iff E is defined via a set
of first-order axioms, i.e., identities of the form /0 ⊢ l = r, where l,r are first-order terms. First-order
terms do not contain atoms, abstractions and suspended permutations on variables.

Theorem 3.6. Let E be a first-order theory and R be a nominal rewrite system that is E-confluent and
E-terminating. Then the R,E- and R/E-normal forms of any term t are E-equal iff →R,E is E-coherent.

10 Nominal Commutative Rewriting and Narrowing

Proof. The proof is in the Appendix (see A.1).

In first-order rewriting, it is known that R,E-reducibility is decidable if E-matching is decidable.
Following Jouannaud et al. [18], the existence of a finite and complete E-unification algorithm is a suffi-
cient condition for that decidability. However, solving nominal E-unification problems has the additional
complication of dealing with α-equality, which significantly impacts obtaining finite and complete sets
of nominal E-unifiers.
Remark 3.7. Nominal C-unification is not finitary when one uses freshness constraints and substitutions
for representing solutions [2], but the type of problems that generate an infinite set of C-unifiers are fixed-

point equations π ·X?
C
≈?X . For example, the nominal C-unification problem (a b) ·X?

C
≈?X has solutions

[X 7→ a⊕ b], [X 7→ (a⊕ b)⊕ (a⊕ b)], . . . (Example 2.2). However, these problems do not appear in
nominal C-matching, which is finitary [3]. Thus, the relation →R,C is decidable.

3.2 Nominal E-narrowing

Now we define the nominal narrowing relation modulo E, extending previous works [6].

Definition 3.8 (Nominal E-narrowing). The one-step E-narrowing relation (∆ ⊢ s)⇝R,E (∆′ ⊢ t) is the
least relation such that for any (∇ ⊢ l → r) ∈ R, position C, term s′, permutation π , and substitution θ ,

s ≡ C[s′] ∆′ ⊢
(
∇θ , ∆θ , s′θ ≈α,E π · (lθ), (C[π · r])θ ≈α t

)
.

(∆ ⊢ s)⇝θ

R,E (∆′ ⊢ t)

where (∆′,θ) ∈ UE(∇ ⊢ l,∆ ⊢ s′). We will write only (∆ ⊢ s)⇝R,E (∆′ ⊢ t), omitting the θ , when it is
clear in the context.

The nominal E-narrowing relation (∆ ⊢ s)⇝∗
R,E (∆′ ⊢ t) is the least relation that includes⇝R,E and

is closed by reflexivity and transitivity of⇝R,E, i.e., it satisfies:

1. for all ∆,s,s′ we have (∆ ⊢ s)⇝∗
R,E (∆ ⊢ s′) if ∆ ⊢ s ≈α s′;

2. for all ∆,∆′,∆′′,s, t and u: if (∆ ⊢ s)⇝∗
R,E (∆′ ⊢ t) and (∆′ ⊢ t)⇝∗

R,E (∆′′ ⊢ u) then (∆ ⊢ s)⇝∗
R,E

(∆′′ ⊢ u).

The permutation π and substitution θ in the definition above are found by solving the nominal E-

unification problem (∇ ⊢ l) ?
E
≈? (∆ ⊢ s′).

Remark 3.9. Note that decidability of ⇝R,E relies on the existence of an algorithm for nominal E-
unification that generates a finite minimal set of solutions. In this work, we will focus our illustrations
on the theory C, for which a nominal unification algorithm exists.

Since nominal C-narrowing uses nominal C-unification, which is not finitary when we use pairs
(∆′,θ) of freshness contexts and substitutions to represent solutions, following Remark 3.7, we conclude
that our nominal C-narrowing trees are infinitely branching. The following example illustrates these
infinite branches.

Example 3.3 (Cont. Example 2.2). Consider the signature Σ = {h : 1, fC : 2,⊕ : 2}, where fC and ⊕
are commutative symbols. Let R = { ⊢ h(Y) → Y, ⊢ fC([a][b] · Z,Z) → fC(h(Z),h(Z))} be a set of
rewrite2 rules. Let ⊢ h(fC([b][a]X ,X)) be a nominal term that we want to apply nominal C-narrowing
to. Observe that we can apply one step of narrowing, and then we obtain a branch that yields infinite
branches due to the fixed-point equation (see Figure 3).

2⊢ l → r denotes /0 ⊢ l → r.

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 11

Figure 3: Infinitely branching tree

The first narrowing step is /0⊢ h(fC([b][a]X ,X))⇝R,C /0⊢ fC([b][a]X ,X), using the rule ⊢ h(Y)→Y .
The substitution θ0 = [Y 7→ fC([b][a]X ,X)] was computed in Example 2.2 when solving the C-unification

problem (/0 ⊢ h(Y)) ?
C
≈? (/0 ⊢ h(fC([b][a]X ,X))).

The other infinite narrowing steps are generated due to the fixed-point equation found in the pro-

cess of solving the C-unification problem (/0 ⊢ fC([a][b]Z,Z)) ?
C
≈? (/0 ⊢ fC([b][a]X ,X)), computed in

Example 2.2. Composing the fixed-point solutions with (/0,θ1) that we had, we get the substitutions
θ1 = [Z 7→ X], θ2 = [Z 7→ X][X 7→ a⊕b] and θ3 = [Z 7→ X][X 7→ (a⊕b)⊕(a⊕b)] of our narrowing steps
in Figure 3.

The following proposition shows that each nominal narrowing step corresponds to a nominal rewrit-
ing step, using the same substitution θ .

Proposition 3.10. Let E be an equational theory for which a complete E-unification algorithm exists.
(∆0 ⊢ s0)⇝θ

R,E (∆1 ⊢ s1) implies ∆1 ⊢ (s0θ)→R,E s1.

Proof. Indeed, suppose we have (∆0 ⊢ s0)⇝θ

R,E (∆1 ⊢ s1). The narrowing step guarantees that for a
substitution θ , some permutation π , and a rule ∇ ⊢ l → r ∈ R, the following holds:

• s0 ≡ C[s′0] and ∆1 ⊢
(
∇θ , ∆0θ , s′0θ ≈α,E π · (lθ), (C[π · r])θ ≈α s1

)
.

From the items above, it is easy to verify the following:

• s0θ ≡ Cθ [s′0θ]; and ∆1 ⊢ (∇θ ′,s′0θ ≈α,E π · (lθ ′),Cθ [π · (rθ ′)]≈α s1),

and by the definition of rewrite modulo E, it implies that ∆1 ⊢ s0θ →R,E s1. We need to fix the substitution
θ used in the narrowing step as θ ′, and the result follows.

4 Nominal Lifting Theorem modulo E

In this section, we assume R∪E an ENRS such that R= {∇i ⊢ li → ri} is E-convergent NRS, E is com-
patible with ⊢ and substitutions and that there exists a complete E-unification algorithm. We want to
extend Proposition 3.10 and establish correspondence between finite sequences of nominal E-narrowing
steps and sequences of nominal E-rewriting steps. This result corresponds to the classical Lifting Theo-
rem ([16, 18, 6]) which will be extended to the nominal relations⇝R,E and →R,E. The Lifting Theorem
relates narrowing steps to rewriting steps. It is fundamental to guarantee that one can use the narrowing
relation to solve T-unification problems when T is a convergent equational theory. The extension to the
R∪E-Lifting Theorem would allow us to solve nominal unification problems modulo R∪E.

We start by defining a normalised substitution with respect to the relation →R,E:

12 Nominal Commutative Rewriting and Narrowing

Figure 4: Illustration of Example 4.1

Definition 4.1 (Normalised substitution w.r.t →R,E). A substitution θ is normalised in ∆ with relation
to →R,E if ∆ ⊢ Xθ is a R,E-normal form for every X . A substitution θ satisfies the freshness context ∆

iff there exists a freshness context ∇ such that ∇ ⊢ a#Xθ for each a#X ∈ ∆. In this case, we say that θ

satisfies ∆ with ∇. The minimal such ∇ is ⟨∆θ⟩n f .

The following example illustrates the technique used in the proof of Lemma 4.2.

Example 4.1. Consider the rules R3 : a#P ⊢ P∧∃[a]Q →∃[a](P∧Q) and R6 : /0 ⊢ ¬(∀[a]Q)→∃[a]¬Q.
Let (∆0 ⊢ s0)⇝

θ0
R6

(∆1 ⊢ s1)⇝
θ1
R3

(∆2 ⊢ s2) be a narrowing derivation, illustrated in Figure 4 such
that:

• ∆0 ≡ /0 and s0 ≡ P1 ∧¬(∀[b]Q1)

• ∆1 ≡ {a#Q1} and s1 ≡ P1 ∧∃[a](¬(a b) ·Q1)

• ∆2 ≡ {a#Q1,a#P1} and s2 ≡ ∃[a](P1 ∧¬(a b) ·Q1)

Let ρ be a substitution that satisfies ∆2 with ∆. Then, there exists a rewriting derivation

∆ ⊢ s0ρ0 →R,C s1ρ1 →R,C s2ρ

where ∆ ⊢ ∆0ρ0, ∆ ⊢ ∆1ρ1 and ρ0 = θ0θ1ρ , ρ1 = θ1ρ .
Supposing that ρ = [Q1 7→ ∀[a]R,P1 7→ R], and ∆ = {a#R}, we have

• ∆ ⊢ ∆2ρ = {a#Q1,a#P1}ρ = {a#∀[a]R,a#R}= {a#R}
• θ0 = [Q 7→ (a b) ·Q1] and θ1 = [P′ 7→ P1,Q′ 7→ ¬((a b) ·Q1)]

• ρ1 = θ1ρ = [P′ 7→ R,Q′ 7→ ¬((a b) · ∀[a]R),Q1 7→ ∀[a]R,P1 7→ R]

• ρ0 = θ0ρ1 = [Q 7→ (a b) · ∀[a]R,P′ 7→ R,Q′ 7→ ¬((a b) · ∀[a]R),Q1 7→ ∀[a]R,P1 7→ R]

• ∆ ⊢ ∆1ρ1 = (a#Q1)ρ1 = a#∀[a]R = /0 and ∆ ⊢ ∆0ρ0 = /0

Lemma 4.2. (⇝R,E to →R,E) Let (∆0 ⊢ s0)⇝θ

R,E (∆1 ⊢ s1). Then, for any substitution ρ that satisfies ∆1
with ∆, the following holds

∆ ⊢ (s0θ)ρ →R,E s1ρ

In particular, ∆ will be ⟨∆1ρ⟩n f .

Proof. From Proposition 3.10: (∆0 ⊢ s0)⇝θ

R,E (∆1 ⊢ s1) implies ∆1 ⊢ (s0θ)→R,E s1. Applying Proposi-
tion 2.4 in ∆1 ⊢ s0θ →R,E s1 gives:

• (s0θ)ρ ≡ (Cθ [s′0θ])ρ = Cθρ[(s′0θ)ρ]

• ∆1 ⊢ ∇θ implies ⟨∆1ρ⟩n f ⊢ ∇θρ

• ∆1 ⊢ s′0θ ≈α,E π · (lθ) implies ⟨∆1ρ⟩n f ⊢ s′0θρ ≈α,E (π · (lθ))ρ = π · (lθρ)

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 13

• ∆1 ⊢ Cθ [π · (rθ)]≈α s1 implies ⟨∆1ρ⟩n f ⊢ Cθρ[π · (rθρ)] = (Cθ [π · (rθ)])ρ ≈α s1ρ

which implies that ⟨∆1ρ⟩n f ⊢ (s0θ)ρ →R,E s1ρ . Note that we need ρ satisfying ∆1 with ∆ to guarantee
that when we instantiate ∆1 we do not have any inconsistency with the freshness constraints in ∆1.

The following result (correctness) states that a finite sequence of rewriting steps exists for each finite
sequence of narrowing steps.

Lemma 4.3. (⇝∗
R,E to →∗

R,E) Let (∆0 ⊢ s0)⇝∗
R,E (∆n ⊢ sn) be a nominal E-narrowing derivation. Let ρ

be a substitution satisfying ∆n with ∆.

(∆0 ⊢ s0)⇝
θ0
R,E (∆1 ⊢ s1)⇝

θ1
R,E . . .⇝θn−1

R,E (∆n ⊢ sn)

Then, there exists a nominal E-rewriting derivation

∆ ⊢ s0ρ0 →R,E . . .→R,E siρi →R,E . . .→R,E sn−1ρn−1 →R,E snρ

such that ∆ ⊢ ∆iρi and ρi = θi . . .θn−1ρ , for all 0 ≤ i < n. In other words, ∆ ⊢ (s0θ)ρ →∗
R,E snρ where

θ = θ0θ1 . . .θn−1.

Proof. By induction on the length n ≥ 1 of the narrowing derivation (∆0 ⊢ s0)⇝n
R,E (∆n ⊢ sn), using the

one-step result proved in Lemma 4.2. (We start the induction for n = 1 because the case for n = 0 holds
trivially and gives no additional insight.)

• Base Case: For n = 1, we have (∆0 ⊢ s0)⇝R,E (∆1 ⊢ s1) and by Lemma 4.2, for any ρ satisfying
∆1 with ∆ we have ∆ ⊢ (s0θ0)ρ →R,E s1ρ . Since ∆ ⊢ ∆1ρ , and by the narrowing step ∆1 ⊢ ∆0θ0,
we get ∆ ⊢ ∆0θ0ρ . Taking ρ0 = θ0ρ , we have the result ∆ ⊢ s0ρ0 →R,E s1ρ such that ∆ ⊢ ∆0ρ0.

• Induction Step: Assume that the result holds for n > 1. Then (∆0 ⊢ s0)⇝n
R,E (∆n ⊢ sn) implies

that there exists a rewriting derivation ∆ ⊢ s0ρ0 →n
R,E snρ , for some ρ satisfying ∆n with ∆ and

Figure 5 illustrates this setting.
We want to show that the result follows for n+1. Consider the narrowing step

(∆n ⊢ sn)⇝
θn
R,E (∆n+1 ⊢ sn+1).

By Lemma 4.2, for any substitution, let’s name it σ , that satisfies ∆n+1 with ∆ (H1) we have

∆ ⊢ (snθn)σ →R,E sn+1σ (1)

Take ρ = θnσ . Note that ρ satisfies ∆n with ∆:
(H1) ∆ ⊢ ∆n+1σ .
(H2) By Definition 3.8: ∆n+1 ⊢ ∆nθn.
(H3) From (H2) and Proposition 2.4(1) generalised to E: ⟨∆n+1σ⟩n f ⊢ ∆nρ .
Thus, from (H1) and (H3) it follows that ∆ ⊢ ∆nρ . By the induction hypothesis, we have

∆ ⊢ s0θ0 . . .θn−1ρ →n
R,E snρ

with ∆ ⊢ ∆iρi and ρi = θi . . .θn−1ρ , for every i = 1, . . . ,n. Hence,

∆ ⊢ s0θ0 . . .θn−1θnσ →n
R,E snθnσ

(1)→R,E sn+1σ ,

and the result follows.

14 Nominal Commutative Rewriting and Narrowing

Figure 5: Corresponding Narrowing to Rewriting Derivations

The proof of the converse (completeness) is more challenging. Nevertheless, for one-step rewriting
to one-step narrowing, the result holds with no further problems:

Lemma 4.4. (→R,E to ⇝R,E) Let ∆0 ⊢ s0 be a nominal term in context and V0 a finite set of variables
containing V = V (∆0,s0). Let ρ0 be a R,E-normalised substitution, with dom(ρ0) ⊆ V , that satisfies ∆0
with ∆ and

∆ ⊢ s0ρ0 = t0 →R,E t1.

Then, there exists a nominal R,E-narrowing step

(∆0 ⊢ s0)⇝
θ

R,E (∆1 ⊢ s1),

for a substitution θ , a finite set of variables V1 ⊇ V (s0), and a R,E-normalised substitution ρ1 with ∆

such that

(i) ∆ ⊢ s1ρ1 ≈α,E t1 (ii) dom(ρ1)⊆V1 (iii) ∆ ⊢ ρ0|V ≈α,E θρ1|V

Proof. Suppose that the one-step rewriting is done in a position C0 of t0, with substitution σ and rule
R0 = ∇0 ⊢ l0 → r0 ∈ R:

(*)
t0 ≡ C0[t ′0] ∆ ⊢ ∇0σ , t ′0 ≈α,E π · (l0σ), C0[π · (r0σ)]≈α t1

∆ ⊢ t0 →[C0,R0],E t1

The following hold:

(H1) The variables of R0 are renamed with respect to t0 = s0ρ0 and ∆ (to avoid conflicts). Thus, V (R0)∩
V (∆, t0) = /0 and dom(σ)∩V0 = /0.

(H2) By hypothesis, ∆ ⊢ ∆0ρ0

(H3) Since ρ0 is normalised in ∆ and ∆ ⊢ s0ρ0 →R,E t1, there must exist a non-variable position C′
0 and

a subterm s′0 of s0 such that s0 ≡ C′
0[s

′
0] and ∆ ⊢ s′0ρ0 ≈α,E t ′0 ≈α,E π · (l0σ).

Define (H4) θ = ρ0σ . Then, we have the following:

(H5) ∆ ⊢ ∆0θ : from (H2) it follows that ∆ ⊢ ∆0ρ0 and σ does not affect ∆0 since dom(σ) =V (R0).

(H6) Note that s′0θ = s′0ρ0σ = s′0ρ0 from (H1). Therefore, ∆ ⊢ s′0θ ≈α,E π · (l0θ) and ∆ ⊢ ∇0θ , and

(∆,θ) is a solution for the nominal E-unification problem (∆0 ⊢ s′0) ?
E
≈? (∇0 ⊢ π · l0). That is,

(∆,θ) ∈ UE(∆0 ⊢ s′0,∇0 ⊢ π · l0).

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 15

Figure 6: Proposition by Jouannaud [18] used in Lemma 4.5

Define s1 as s1 =C′
0[π · r0]θ and ∆1 = ∆. Conditions (H4) to (H6) imply the existence of the follow-

ing nominal E-narrowing step:
(∆0 ⊢ s0)⇝

θ

R,E (∆1 ⊢ s1).

Also ∆ ⊢ s1 = C′
0[π · r0]θ = (C′

0[π · r0])ρ0σ ≈α (C′
0ρ0)[π · r0]ρ0

(∗)
≈α t1. Take ρ1 = Id as the identity

substitution, and items (i) and (ii) follow with dom(ρ1) = /0 and V1 =V (s0). Finally, it is trivial to check
(iii): ∆ ⊢ Xρ0 ≈α,E Xθρ1 ≡ Xρ0σId, for all X ∈V , and the result follows.

Lemma 4.5. Let R∪E be an ENRS such that R is E-convergent and →R,E is E-coherent. Let V0 be a
finite set of variables containing V =V (∆0,s0). Then, for any R,E-derivation

∆ ⊢ t0 = s0ρ0 →R,E t1 →R,E . . .→R,E tn = t0↓

to any of its R,E-normal forms, say t0↓, where dom(ρ0) ⊆ V (s0) ⊆ V0 and ρ0 is a R,E-normalised sub-
stitution that satisfies ∆0 with ∆, there exist a R,E-narrowing derivation

(∆0 ⊢ s0)⇝
θ0
R,E (∆1 ⊢ s1)⇝

θ1
R,E . . .⇝θn−1

R,E (∆n ⊢ sn)

for each i, 0 ≤ i < n, substitutions ρ and ρi normalised in ∆ w.r.t →R,E such that

(1) ∆ ⊢ ∆iρi; (2) ∆ ⊢ siρi ≈α,E ti; (3) ∆ ⊢ ρ0|V ≈α,E θρn|V .

where ρi = θi . . .θn−1ρ and θ = θ0θ1 . . .θn−1.

Proof. By induction on the number of steps n applied in the derivation ∆ ⊢ t0 = s0ρ0 →∗
R,E t0↓.

• Base Case: For n = 1 the result follows directly from Lemma 4.4.

16 Nominal Commutative Rewriting and Narrowing

• Induction Step: Let n > 1 and assume that the result holds for sequences of n−1 rewriting steps.
Then,

∆ ⊢ t0 = s0ρ0 →R,E t1
n−1︷ ︸︸ ︷→R,E . . .→R,E tn = t0↓

Now using Lemma 4.4 on the rewrite step ∆ ⊢ t0 →R,E t1. Then, we get that (∆0 ⊢ s0)⇝
θ0
R,E (∆1 ⊢

s1), where ρ0 is a R,E-normalised substitution that satisfies ∆0 with ∆, and
(H1) ∆ ⊢ s1ρ1 = t ′1 ≈α,E t1; and
(H2) ∆ ⊢ ρ0|V ≈α,E θρ1|V .
Now consider the sequence to any of the normal forms of t1:

∆ ⊢ t1
n−1︷ ︸︸ ︷→R,E . . .→R,E tn = t1↓R,E

By the induction hypothesis, there exists a narrowing sequence

(∆1 ⊢ s1)⇝
θ1
R,E . . .⇝θn−1

R,E (∆n ⊢ sn)

with θ = θ1 . . .θn−1, a normalised substitution ρn such that
(H3) ∆ ⊢ ∆iρi;
(H4) ∆ ⊢ siρi = t ′i ≈α,E ti, for every i;
(H5) ∆ ⊢ ρ0|V ≈α,E θρn|V .
Note that from (H4), ∆ ⊢ snρn = t ′n ≈α,E tn. Since R is E-convergent and →R,E is E-coherent, it
follows from Theorem 3.6, that all the normal forms of t0 are ≈α,E-equivalent. That is, ∆ ⊢ t ′n ≈α,E

t1 ↓R,E≈α,E t0 ↓R,E= tn. Therefore, there exists a nominal E-narrowing sequence

(∆0 ⊢ s0)⇝
θ0
R,E (∆1 ⊢ s1)⇝

θ1
R,E . . .⇝θn−1

R,E (∆n ⊢ sn).

The diagram that illustrates this proof is analogous to the diagram of the corresponding proof in first-
order rewriting and presented in Figure 7.

As a consequence of Lemmas 4.5 and 4.3 we obtain:
Theorem 4.6 (E-Lifting Theorem). To each finite sequence of nominal E-rewriting steps corresponds a
finite sequence of nominal E-narrowing steps, and vice versa.

Since there exists an algorithm for nominal C-unification and C is compatible with substitutions
(Proposition 2.4), we have the following result.
Corollary 4.7. The C-Nominal Lifting theorem holds.

5 Conclusion and Future Work

In this work, we proposed definitions for nominal R,E-rewriting and R,E-narrowing and proved some
properties relating them, obtaining the proof of the E-Lifting Theorem, in the case R is an E-convergent
NRS, →R,E is E-coherent and a complete algorithm for nominal E-unification exists. As C is the only
equational theory for which a complete algorithm for nominal unification exists, we illustrate our results
using this theory. Also, since the nominal C-unification problem (when using freshness constraints) only
is finitary, our nominal C-narrowing tree is infinitely branching. In future work, we plan to investigate
alternative approaches to nominal C-unification for which the representation of solutions is finite, such
as the approach using fixed-point constraints.

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 17

References

[1] Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández & Daniele Nantes-Sobrinho
(2017): Nominal C-Unification. In Fabio Fioravanti & John P. Gallagher, editors: Logic-Based Program
Synthesis and Transformation - 27th International Symposium, LOPSTR 2017, Namur, Belgium, October
10-12, 2017, Revised Selected Papers, Lecture Notes in Computer Science 10855, Springer, pp. 235–251,
doi:10.1007/978-3-319-94460-9_14. Available at https://doi.org/10.1007/978-3-319-94460-9_
14.

[2] Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández & Daniele Nantes-Sobrinho
(2017): On Solving Nominal Fixpoint Equations. In Clare Dixon & Marcelo Finger, editors: Frontiers of
Combining Systems - 11th International Symposium, FroCoS 2017, Brasília, Brazil, September 27-29, 2017,
Proceedings, Lecture Notes in Computer Science 10483, Springer, pp. 209–226, doi:10.1007/978-3-319-
66167-4_12. Available at https://doi.org/10.1007/978-3-319-66167-4_12.

[3] Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández & Daniele Nantes-Sobrinho
(2018): A Formalisation of Nominal C-Matching through Unification with Protected Variables. In Beniamino
Accattoli & Carlos Olarte, editors: Proceedings of the 13th Workshop on Logical and Semantic Frameworks
with Applications, LSFA 2018, Fortaleza, Brazil, September 26-28, 2018, Electronic Notes in Theoretical
Computer Science 344, Elsevier, pp. 47–65, doi:10.1016/j.entcs.2019.07.004. Available at https://doi.
org/10.1016/j.entcs.2019.07.004.

[4] Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández, Daniele Nantes-Sobrinho &
Ana Cristina Rocha Oliveira (2019): A formalisation of nominal α-equivalence with A, C, and AC function
symbols. Theor. Comput. Sci. 781, pp. 3–23, doi:10.1016/j.tcs.2019.02.020. Available at https://doi.
org/10.1016/j.tcs.2019.02.020.

[5] Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández, Gabriel Ferreira Silva &
Daniele Nantes-Sobrinho (2021): Formalising nominal C-unification generalised with protected variables.
Math. Struct. Comput. Sci. 31(3), pp. 286–311, doi:10.1017/S0960129521000050. Available at https:
//doi.org/10.1017/S0960129521000050.

[6] Mauricio Ayala-Rincón, Maribel Fernández & Daniele Nantes-Sobrinho (2016): Nominal Narrowing. In
Delia Kesner & Brigitte Pientka, editors: 1st International Conference on Formal Structures for Computation
and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal, LIPIcs 52, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, pp. 11:1–11:17, doi:10.4230/LIPIcs.FSCD.2016.11. Available at https://doi.
org/10.4230/LIPIcs.FSCD.2016.11.

[7] Mauricio Ayala-Rincón, Maribel Fernández & Daniele Nantes-Sobrinho (2018): Fixed-Point Constraints
for Nominal Equational Unification. In Hélène Kirchner, editor: 3rd International Conference on Formal
Structures for Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, LIPIcs 108, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, pp. 7:1–7:16, doi:10.4230/LIPIcs.FSCD.2018.7. Available at
https://doi.org/10.4230/LIPIcs.FSCD.2018.7.

[8] Mauricio Ayala-Rincón, Maribel Fernández & Ana Cristina Rocha Oliveira (2015): Completeness in PVS
of a Nominal Unification Algorithm. In Mario R. F. Benevides & René Thiemann, editors: Proceedings of
the Tenth Workshop on Logical and Semantic Frameworks, with Applications, LSFA 2015, Natal, Brazil,
August 31 - September 1, 2015, Electronic Notes in Theoretical Computer Science 323, Elsevier, pp. 57–74,
doi:10.1016/J.ENTCS.2016.06.005. Available at https://doi.org/10.1016/j.entcs.2016.06.005.

[9] Mauricio Ayala-Rincón, Maribel Fernández, Gabriel Ferreira Silva, Temur Kutsia & Daniele Nantes-
Sobrinho (2023): Nominal AC-Matching. In Catherine Dubois & Manfred Kerber, editors: Intelligent Com-
puter Mathematics - 16th International Conference, CICM 2023, Cambridge, UK, September 5-8, 2023,
Proceedings, Lecture Notes in Computer Science 14101, Springer, pp. 53–68, doi:10.1007/978-3-031-42753-
4_4. Available at https://doi.org/10.1007/978-3-031-42753-4_4.

[10] Franz Baader & Tobias Nipkow (1998): Term rewriting and all that. Cambridge University Press.

https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1016/j.entcs.2019.07.004
https://doi.org/10.1016/j.entcs.2019.07.004
https://doi.org/10.1016/j.entcs.2019.07.004
https://doi.org/10.1016/j.tcs.2019.02.020
https://doi.org/10.1016/j.tcs.2019.02.020
https://doi.org/10.1016/j.tcs.2019.02.020
https://doi.org/10.1017/S0960129521000050
https://doi.org/10.1017/S0960129521000050
https://doi.org/10.1017/S0960129521000050
https://doi.org/10.4230/LIPIcs.FSCD.2016.11
https://doi.org/10.4230/LIPIcs.FSCD.2016.11
https://doi.org/10.4230/LIPIcs.FSCD.2016.11
https://doi.org/10.4230/LIPIcs.FSCD.2018.7
https://doi.org/10.4230/LIPIcs.FSCD.2018.7
https://doi.org/10.1016/J.ENTCS.2016.06.005
https://doi.org/10.1016/j.entcs.2016.06.005
https://doi.org/10.1007/978-3-031-42753-4_4
https://doi.org/10.1007/978-3-031-42753-4_4
https://doi.org/10.1007/978-3-031-42753-4_4

18 Nominal Commutative Rewriting and Narrowing

[11] Christophe Calvès & Maribel Fernández (2010): Matching and alpha-equivalence check for nominal terms.
J. Comput. Syst. Sci. 76(5), pp. 283–301, doi:10.1016/J.JCSS.2009.10.003. Available at https://doi.
org/10.1016/j.jcss.2009.10.003.

[12] Jesús Domínguez & Maribel Fernández (2019): Nominal Syntax with Atom Substitutions: Matching, Unifica-
tion, Rewriting. In Leszek Antoni Gasieniec, Jesper Jansson & Christos Levcopoulos, editors: Fundamentals
of Computation Theory - 22nd International Symposium, FCT 2019, Copenhagen, Denmark, August 12-14,
2019, Proceedings, Lecture Notes in Computer Science 11651, Springer, pp. 64–79, doi:10.1007/978-3-030-
25027-0_5. Available at https://doi.org/10.1007/978-3-030-25027-0_5.

[13] Santiago Escobar, José Meseguer & Ralf Sasse (2008): Variant Narrowing and Equational Unification.
In Grigore Rosu, editor: Proceedings of the Seventh International Workshop on Rewriting Logic and
its Applications, WRLA 2008, Budapest, Hungary, March 29-30, 2008, Electronic Notes in Theoreti-
cal Computer Science 238, Elsevier, pp. 103–119, doi:10.1016/j.entcs.2009.05.015. Available at https:
//doi.org/10.1016/j.entcs.2009.05.015.

[14] Maribel Fernández & Murdoch Gabbay (2007): Nominal rewriting. Inf. Comput. 205(6), pp. 917–965,
doi:10.1016/j.ic.2006.12.002. Available at https://doi.org/10.1016/j.ic.2006.12.002.

[15] Murdoch Gabbay & Andrew M. Pitts (2002): A New Approach to Abstract Syntax with Variable Binding.
Formal Aspects Comput. 13(3-5), pp. 341–363, doi:10.1007/s001650200016. Available at https://doi.
org/10.1007/s001650200016.

[16] Jean-Marie Hullot (1980): Canonical Forms and Unification. In Wolfgang Bibel & Robert A. Kowalski,
editors: 5th Conference on Automated Deduction, Les Arcs, France, July 8-11, 1980, Proceedings, Lecture
Notes in Computer Science 87, Springer, pp. 318–334, doi:10.1007/3-540-10009-1_25. Available at https:
//doi.org/10.1007/3-540-10009-1_25.

[17] Jean-Pierre Jouannaud (1983): Confluent and Coherent Equational Term Rewriting Systems: Application to
Proofs in Abstract Data Types. In Giorgio Ausiello & Marco Protasi, editors: CAAP’83, Trees in Algebra and
Programming, 8th Colloquium, L’Aquila, Italy, March 9-11, 1983, Proceedings, Lecture Notes in Computer
Science 159, Springer, pp. 269–283, doi:10.1007/3-540-12727-5_16. Available at https://doi.org/10.
1007/3-540-12727-5_16.

[18] Jean-Pierre Jouannaud, Claude Kirchner & Hélène Kirchner (1983): Incremental Construction of Unification
Algorithms in Equational Theories. In Josep Díaz, editor: Automata, Languages and Programming, 10th
Colloquium, Barcelona, Spain, July 18-22, 1983, Proceedings, Lecture Notes in Computer Science 154,
Springer, pp. 361–373, doi:10.1007/BFb0036921. Available at https://doi.org/10.1007/BFb0036921.

[19] Kentaro Kikuchi (2022): Ground Confluence and Strong Commutation Modulo Alpha-Equivalence in Nom-
inal Rewriting. In Helmut Seidl, Zhiming Liu & Corina S. Pasareanu, editors: Theoretical Aspects of Com-
puting - ICTAC 2022 - 19th International Colloquium, Tbilisi, Georgia, September 27-29, 2022, Proceed-
ings, Lecture Notes in Computer Science 13572, Springer, pp. 255–271, doi:10.1007/978-3-031-17715-6_17.
Available at https://doi.org/10.1007/978-3-031-17715-6_17.

[20] Kentaro Kikuchi & Takahito Aoto (2020): Confluence and Commutation for Nominal Rewriting Systems
with Atom-Variables. In Maribel Fernández, editor: Logic-Based Program Synthesis and Transformation -
30th International Symposium, LOPSTR 2020, Bologna, Italy, September 7-9, 2020, Proceedings, Lecture
Notes in Computer Science 12561, Springer, pp. 56–73, doi:10.1007/978-3-030-68446-4_3. Available at
https://doi.org/10.1007/978-3-030-68446-4_3.

[21] Manfred Schmidt-Schauß, Temur Kutsia, Jordi Levy, Mateu Villaret & Yunus D. K. Kutz (2022): Nominal
Unification and Matching of Higher Order Expressions with Recursive Let. Fundam. Informaticae 185(3),
pp. 247–283, doi:10.3233/FI-222110. Available at https://doi.org/10.3233/FI-222110.

[22] Christian Urban, Andrew M. Pitts & Murdoch Gabbay (2004): Nominal unification. Theor. Comput. Sci.
323(1-3), pp. 473–497, doi:10.1016/j.tcs.2004.06.016. Available at https://doi.org/10.1016/j.tcs.
2004.06.016.

[23] Emanuele Viola (2001): E-unifiability via Narrowing. In Antonio Restivo, Simona Ronchi Della Rocca
& Luca Roversi, editors: Theoretical Computer Science, 7th Italian Conference, ICTCS 2001, Torino,

https://doi.org/10.1016/J.JCSS.2009.10.003
https://doi.org/10.1016/j.jcss.2009.10.003
https://doi.org/10.1016/j.jcss.2009.10.003
https://doi.org/10.1007/978-3-030-25027-0_5
https://doi.org/10.1007/978-3-030-25027-0_5
https://doi.org/10.1007/978-3-030-25027-0_5
https://doi.org/10.1016/j.entcs.2009.05.015
https://doi.org/10.1016/j.entcs.2009.05.015
https://doi.org/10.1016/j.entcs.2009.05.015
https://doi.org/10.1016/j.ic.2006.12.002
https://doi.org/10.1016/j.ic.2006.12.002
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/3-540-10009-1_25
https://doi.org/10.1007/3-540-10009-1_25
https://doi.org/10.1007/3-540-10009-1_25
https://doi.org/10.1007/3-540-12727-5_16
https://doi.org/10.1007/3-540-12727-5_16
https://doi.org/10.1007/3-540-12727-5_16
https://doi.org/10.1007/BFb0036921
https://doi.org/10.1007/BFb0036921
https://doi.org/10.1007/978-3-031-17715-6_17
https://doi.org/10.1007/978-3-031-17715-6_17
https://doi.org/10.1007/978-3-030-68446-4_3
https://doi.org/10.1007/978-3-030-68446-4_3
https://doi.org/10.3233/FI-222110
https://doi.org/10.3233/FI-222110
https://doi.org/10.1016/j.tcs.2004.06.016
https://doi.org/10.1016/j.tcs.2004.06.016
https://doi.org/10.1016/j.tcs.2004.06.016

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 19

Italy, October 4-6, 2001, Proceedings, Lecture Notes in Computer Science 2202, Springer, pp. 426–438,
doi:10.1007/3-540-45446-2_27. Available at https://doi.org/10.1007/3-540-45446-2_27.

A Appendix

Lemma A.1. Substitution and permutation commute, that is, π · (tθ) = (π · t)θ .

Proof. The proof is by induction on the structure of t.
Base Case.

• If t ≡ a: the result is trivial since the substitution does not affect atoms;

• If t ≡ π ′ ·X :
π · ((π ′ ·X)θ) = π · (π ′ · (Xθ))

= (π ◦π ′) · (Xθ)
= ((π ◦π ′) ·X)θ
= (π · (π ′ ·X))θ ;

Inductive Step.

• If t ≡ [a]t ′:
π · (([a]t ′)θ) = π · ([a](t ′θ))

= [π ·a](π · (t ′θ))
IH
= [π ·a]((π · t ′)θ)
= ([π ·a](π · t ′))θ
= (π · ([a]t ′))θ ;

• If t ≡ f (t1, . . . , tn):

π · (f (t1, . . . , tn)θ) = π · (f (t1θ , . . . , tnθ))
= f (π · (t1θ), . . . ,π · (tnθ))
IH
= f ((π · t1)θ , . . . ,(π · tn)θ)
= f (π · t1, . . . ,π · tn)θ
= (π · f (t1, . . . , tn))θ .

Lemma A.2. Consider Pr and Pr′ problems.

(1) ⟨Pr∪Pr′⟩n f = ⟨Pr⟩n f ∪⟨Pr′⟩n f . If Pr ⊆ Pr′ then ⟨Pr⟩n f ⊆ ⟨Pr′⟩n f .

(2) Assume Pr ∗
=⇒ Pr′. Then Γ ⊢ Pr if and only if Γ ⊢ Pr′.

(3) Γ ⊢ Pr if and only if Γ ⊢ ⟨Pr⟩n f .

Proof. The proof can be found in [14], Corollary 12 and Lemma 15.

Lemma A.3. (Compatibility of ⊢ by substitutions) Suppose ∆ and ∆θ are consistent.

1. If ∆ ⊢ a#t then ⟨∆θ⟩n f ⊢ a#(tθ).

2. If ∆ ⊢ s ≈α,C t then ⟨∆θ⟩n f ⊢ (sθ)≈α,C (tθ).

3. If ∆ ⊢ Pr then ⟨∆θ⟩n f ⊢ Prθ .

https://doi.org/10.1007/3-540-45446-2_27
https://doi.org/10.1007/3-540-45446-2_27

20 Nominal Commutative Rewriting and Narrowing

Proof. We work by induction on the derivation of ∆ ⊢ a#t or ∆ ⊢ s ≈α,C t.

1. We consider all rules in Figure 1, by analysing the last rule applied in ∆ ⊢ a#t.

• Suppose the derivation concludes with (# atom). Then we have the trivial derivation
(# atom)

∆ ⊢ a#b
Notice that applying the rule (# atom) again and that a#bθ ≡ a#b we have

(# atom)
⟨∆θ⟩n f ⊢ a#b

and the result follows.
• Suppose the derivation concludes with (# var), thus ∆ ⊢ a#π ·X , and consequently, π−1 ·

a#X ∈ ∆. Therefore, π−1 · a#Xθ ∈ ∆θ . By Lemma A.2 we have ⟨∆θ ∪{π−1 · a#Xθ}⟩n f =
⟨∆θ⟩n f ∪⟨{π−1 ·a#Xθ}⟩n f . Since {π−1 ·a#Xθ} ⊆ ∆θ , one has ⟨{π−1 ·a#Xθ}⟩n f ⊆ ⟨∆θ⟩n f .
Thus, ⟨∆θ⟩n f ⊢ ⟨{π−1 ·a#Xθ}⟩n f . From Lemma A.2 ⟨∆θ⟩n f ⊢ π−1 ·a#Xθ .

• Suppose the derivation concludes with (# a[a]). Then we have the trivial derivation
(# a[a])

∆ ⊢ a#[a]t

Notice that applying the rule (# a[a]) again and that [a](tθ)≡ ([a]t)θ we have
(# a[a])

⟨∆θ⟩n f ⊢ a#[a](tθ)

• Suppose the derivation concludes with (# a[b]). Then t = [b]t ′ and there exists a derivation Π

such that
Π

∆ ⊢ a#t ′ (# a[b])
∆ ⊢ a#[b]t ′

By the induction hypothesis, there exists a derivation Π′ of ⟨∆θ⟩n f ⊢ a#t ′θ . Now we can
apply (# a[b]) again and obtain

Π′

⟨∆θ⟩n f ⊢ a#t ′θ
(# a[b])

⟨∆θ⟩n f ⊢ a#[b](t ′θ)

Observing that [b](t ′θ)≡ ([b]t ′)θ = tθ , the result follows.
• Suppose the derivation concludes with (# app), that is, t = f (t1, . . . , tn) and ∆⊢ a# f (t1, . . . , tn).

Thus, there exist derivations Π1, . . . ,Πn such that

Π1

∆ ⊢ a#t1 · · ·
Πn

∆ ⊢ a#tn (# app)
∆ ⊢ a# f (t1, . . . , tn)

By the induction hypothesis, there exist derivations Π′
1, . . . ,Π

′
n for ⟨∆θ⟩n f ⊢ a#(t1θ), · · · ,

⟨∆θ⟩n f ⊢ a#(tnθ), respectively. Now, we can apply the rule (# app) again and obtain

Π′
1

⟨∆θ⟩n f ⊢ a#(t1θ) · · ·
Π′

n

⟨∆θ⟩n f ⊢ a#(tnθ)
(# app)

⟨∆θ⟩n f ⊢ a# f (t1θ , . . . , tnθ)

Since f (t1θ , . . . , tnθ) ≡ f (t1, . . . , tn)θ , we obtain ⟨∆θ⟩n f ⊢ a# f (t1, . . . , tn)θ , and the result
follows.

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 21

2. We consider all rules in Figure 1 for α-equivalence modulo C with addition of rule (≈α,C C), by
analysing the last rule applied in ∆ ⊢ s ≈α,C t.

• Suppose the derivation concludes with (≈α,C atom). Then we have the trivial derivation
(≈α,C atom)

∆ ⊢ a ≈α,C a

Notice that applying the rule (≈α,C atom) again and that aθ ≈α,C aθ ≡ a ≈α,C a we have
(≈α,C atom)

⟨∆θ⟩n f ⊢ a ≈α,C a

and the result follows.
• Suppose the derivation concludes with (≈α,C var), thus ∆ ⊢ π ·X ≈α,C π ′ ·X , and conse-

quently, ds(π,π ′)#X ∈ ∆. Therefore, for all a ∈ ds(π,π ′), we have that a#Xθ ∈ ∆θ . By
Lemma A.2 we have ⟨∆θ ∪{a#Xθ}⟩n f = ⟨∆θ⟩n f ∪⟨{a#Xθ}⟩n f . Since {a#Xθ} ⊆ ∆θ , one
has ⟨{a#Xθ}⟩n f ⊆ ⟨∆θ⟩n f . Thereby, ⟨∆θ⟩n f ⊢ ⟨{a#Xθ}⟩n f , for all a ∈ ds(π,π ′). From
Lemma A.2 ⟨∆θ⟩n f ⊢ a#Xθ , and consequently a#Xθ ∈ ⟨∆θ⟩n f , for all a ∈ ds(π,π ′). Apply-
ing the rule (≈α,C var) again the result follows.

• Suppose the derivation concludes with (≈α,C [aa]). Then s = [a]s′, t = [a]t ′ and there exists
a derivation Π such that

Π

∆ ⊢ s′ ≈α,C t ′
(≈α,C [aa])

∆ ⊢ [a]s′ ≈α,C [a]t ′

By the induction hypothesis, a derivation Π′ of ⟨∆θ⟩n f ⊢ s′θ ≈α,C t ′θ exists. Now we can
apply (≈α,C [aa]) again and obtain

Π′

⟨∆θ⟩n f ⊢ s′θ ≈α,C t ′θ
(≈α,C [aa])

⟨∆θ⟩n f ⊢ [a](s′θ)≈α,C [a](t ′θ)

Observing that [a](s′θ)≡ ([a]s′)θ = sθ and [a](t ′θ)≡ ([a]t ′)θ = tθ , the result follows.
• Suppose the derivation concludes with (≈α,C [ab]). So s = [a]s′, t = [b]t ′ and there exist

derivations Π1 and Π2 such that
Π1

∆ ⊢ s′ ≈α,C (a b) · t ′
Π2

∆ ⊢ a#t ′
(≈α,C [ab])

∆ ⊢ [a]s′ ≈α,C [b]t ′

By the induction hypothesis, there exists a derivation Π′
1 of ⟨∆θ⟩n f ⊢ s′θ ≈α,C (a b) · t ′θ and

by the first part of this Lemma there exists a derivation Π′
2 of ⟨∆θ⟩n f ⊢ a#t ′θ . Now we can

apply (≈α,C [ab]) again and obtain

Π′
1

⟨∆θ⟩n f ⊢ s′θ ≈α,C (a b) · t ′θ
Π′

2

⟨∆θ⟩n f ⊢ a#t ′θ
(≈α,C [ab])

⟨∆θ⟩n f ⊢ [a](s′θ)≈α,C [b](t ′θ)

Observing that [a](s′θ)≡ ([a]s′)θ = s and [b](t ′θ)≡ ([b]t ′)θ = t, and using Lemma A.1, i.e.,
((a b) · t ′)θ ≡ (a b) · (t ′θ), the result follows.

• Suppose the derivation concludes with (≈α,C app). Then s = f (s1, . . . ,sn), t = f (t1, . . . , tn)
and there exist derivations Π1, . . . , Πn of ∆ ⊢ s1 ≈α,C t1, · · · , ∆ ⊢ sn ≈α,C tn, respectively,
such that

22 Nominal Commutative Rewriting and Narrowing

Π1

∆ ⊢ s1 ≈α,C t1 · · ·
Πn

∆ ⊢ sn ≈α,C tn , f ̸∈ C (≈α,C app)
∆ ⊢ f (s1, . . . ,sn)≈α,C f (t1, . . . , tn)

By the induction hypothesis, there exist Π′
1, . . . , Π′

n for ⟨∆θ⟩n f ⊢ s1θ ≈α,C t1θ , · · · , ⟨∆θ⟩n f ⊢
snθ ≈α,C tnθ , respectively. Now we can apply the rule (≈α,C app) again and obtain

Π′
1

⟨∆θ⟩n f ⊢ s1θ ≈α,C t1θ · · ·
Π′

n

⟨∆θ⟩n f ⊢ snθ ≈α,C tnθ
, f ̸∈ C (≈α,C app)

⟨∆θ⟩n f ⊢ f (s1θ , . . . ,snθ)≈α,C f (t1θ , . . . , tnθ)

Observing that f (s1θ , . . . ,snθ)≡ f (s1, . . . ,sn)θ = sθ and also f (t1θ , . . . , tnθ)≡ f (t1, . . . , tn)θ
= tθ , the result follows.

• Suppose the derivation concludes with (≈α,C C). Then s = f (s0,s1), t = f (t0, t1) and there
exist derivations Π1 and Π2 of ∆ ⊢ s0 ≈α,C ti and ∆ ⊢ s1 ≈α,C t(i+1)mod2, respectively, i = 0,1,
such that

Π1

∆ ⊢ s0 ≈α,C ti
Π2

∆ ⊢ s1 ≈α,C t(i+1)mod2 , i = 0,1 (≈α,C C)
∆ ⊢ f (s0,s1)≈α,C f (t0, t1)

By the induction hypothesis, there exist derivations Π′
1 and Π′

2 for ⟨∆θ⟩n f ⊢ s0θ ≈α,C tiθ and
⟨∆θ⟩n f ⊢ s1θ ≈α,C t(i+1)mod2θ , respectively. Now we can apply the rule (≈α,C C) again and
obtain

Π′
1

⟨∆θ⟩n f ⊢ s0θ ≈α,C tiθ
Π′

2

⟨∆θ⟩n f ⊢ s1θ ≈α,C t(i+1)mod2θ
, i = 0,1 (≈α,C C)

⟨∆θ⟩n f ⊢ f (s0θ ,s1θ)≈α,C f (t0θ , t1θ)

Observing that f (s0θ ,s1θ) ≡ f (s0,s1)θ = s and f (t0θ , t1θ) ≡ f (t0, t1)θ = t, the result fol-
lows.

3. Since Pr is a set of freshness or α,C-equivalence constraints, by items (1) and (2), the result
follows.

Definition A.1. →R,E (or simply R,E) is said to be E-coherent iff: ∀t1, t2, t3 such that t1 ≈E t2 and
t1 →R,E t3, ∀t4, t5, t6 such that t3 →∗

R/E t4, t2 →R,E t5 →∗
R/E t6 and t4 ≈E t6.

We want to stress the abuse of notation above, since t3 →∗
R/E t4, for instance, should be written

[t3]≈E
→∗

R/E [t4]≈E
, and is acting as an abbreviation for t3 ≈E t ′3 →R t ′4 ≈E t4.

By definition R is E-confluent iff for all terms t, t1, t2 such that t →∗
R/E t1 and t →∗

R/E t2, there exist
t ′1, t

′
2 such that t1 →∗

R/E t ′1, t2 →∗
R/E t ′2 and t ′1 =E t ′2.

Lemma A.2. →R,E⊆→R/E.

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 23

Proof. Take (s, t) ∈→R,E. Then we have s ≡ C[s′], s′ =E lθ and C[rθ] = t, for some rule l →R r and a
substitution θ . Notice that from s′ =E lθ we may write C[s′] =E C[lθ] and with that

s ≡ C[s′] =E C[lθ]→R C[rθ] = t

That is,
s =E ◦→R ◦=E t =⇒ s →R/E t.

Lemma A.3. ∆ ⊢ _ →R,E _ ⊆ ∆ ⊢ _ →R/E _.

Proof. Take (s, t) ∈ ∆ ⊢ _ →R,E _. Then we have s ≡ C[s′], ∆ ⊢ ∇θ , ∆ ⊢ s′ ≈α,E π · (lθ) and ∆ ⊢ C[π ·
(rθ)] ≈α t, for some rule ∇ ⊢ l →R r, a permutation π and a substitution θ . Notice that from s′ ≈α,E

π · (lθ) we may write C[s′]≈α,E C[π · (lθ)] and with that

∆ ⊢ s ≡ C[s′]≈α,E C[π · (lθ)]→R C[π · (rθ)]≈α t

That is,
∆ ⊢ s ≈α,E ◦→R ◦ ≈α,E t =⇒ ∆ ⊢ s →R/E t.

Example A.1. Consider the theory E = { f (x,y) = f (y,x)} and the rewrite system R = { f (x,0) → x}.
Note that f (a,0) → a and f (a,0) =E f (0,a) but the latter does not reduce with R, but it reduces with
R,E.
Proposition A.1 (Jouannaud et al. [18]). Assume R is E-confluent and E-noetherian. Then R,E- and
R/E-normal forms of any term t are E-equal iff →R,E is E-coherent.

Proof. Let s1 = t↓R,E be the R,E-normal form of t. And let s2 = t↓R/E be the R/E-normal form of t.
(⇒) Suppose that s1 =E s2 (⋆).

We want to prove that →R,E is E-coherent. Let t = t1, t2, t3 be terms such that

I. Consider the case where t3 = s1 = t↓R,E:
Observe that we cannot have t2 = s1, because s1 is a R,E-normal form and it is not possible to have
t1 =E s1 and t1 →R,E s1.
Also note that we cannot have t2 = s2, because since →R,E⊆→R/E we could not give a R,E-step
from t1, which is one of the representatives of [s2]E, and that contradicts t1 →R,E t3.
We can conclude that t2 ̸= si, for i = 1,2, hence we can make a one-step R,E-reduction from t2,
that is, there exists a t5 such that

24 Nominal Commutative Rewriting and Narrowing

Now we consider the following cases:

a) If t5 = s1 then t5 = t3 which gives us t5 =E t3.
Now the diagram in Figure 7 degenerates to t1 = t2, t5 = t6 and t3 = t4 with zero steps of R/E
and the diagram becomes a line.

b) If t5 = s2 = t↓R/E then t5
(⋆)
=E t3, by the hypothesis. The diagram in Figure 7 here degenerates

to the square on the left, where t3 = t4 and t5 = t6.

c) If t5 ̸= si, for i = 1,2, then there exists a R/E-normal form of t5, named t6, such that t6 = s2,

and this gives us that t6
(⋆)
=E t3.

Here, note that t1 →R/E t6 and, by the hypothesis, s2 = t↓R/E. The diagram in Figure 7
degenerates to t3 = t4.

II. Consider the case where t3 is not a R,E-normal form of t. Then there exists a t4 = t↓R,E such that
t3 →∗

R,E t4 which implies t3 →∗
R/E t4 since R,E⊆ R/E:

For the same reasons as case I, we can have neither t2 = s1 nor t2 = s2. Therefore we must have
t2 ̸= si, for i = 1,2, hence we can make a one-step R,E-reduction from t2, that is, there exists a t5
such that

Now we consider the following cases:

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 25

Figure 7: Diagram for E-coherence.

a) If t5 = s1 then t5 = t4 which gives us t5 =E t4. The diagram in Figure 7 degenerates to t5 = t6
and t4 =E t6.

b) If t5 = s2 = t↓R/E then t5
(⋆)
=E t4. The diagram in Figure 7 also degenerates to t5 = t6 and

t4 =E t6.

c) If t5 ̸= si, for i = 1,2, then there exists a R/E-normal form of t5, named t6, such that t6 = s2,

and this gives us that t6
(⋆)
=E t4. This gives us exactly the diagram in Figure 7.

(⇐) Assume →R,E is E-coherent.

We want to prove that s1 =E s2.
Consider t1 = t, and suppose t =E t2 and t →R,E t3.

Consider the R,E-normal form of t3, s1 = t3↓R,E = t↓R,E (it is also a R,E-normal form of t).

26 Nominal Commutative Rewriting and Narrowing

By the E-coherence property, there exists a t5 such that

And from t =E t2 →R,E t5 we have t →R/E t5. Consider then the R/E-normal form of t5, s2 = t5↓R/E =
t↓R/E (it is also a R/E-normal form of t).

Since R,E⊆ R/E, we may write R/E instead of R,E in the step t3 →∗
R,E s1:

Now we can apply the E-coherence property and get the result we wanted, s1 =E s2:

Conjecture A.1. Let E be a first-order theory and R be a nominal rewrite system that is E-confluent and
E-terminating. Then the R,E- and R/E-normal forms of any term t are E-equal iff →R,E is E-coherent.

Proof. Let s1 ≡ t↓R,E be the R,E-normal form of ∆ ⊢ t. And let s2 ≡ t↓R/E be the R/E-normal form of
∆ ⊢ t.
(⇒) Suppose that ∆ ⊢E s1 ≈ s2 (⋆).

We want to prove that →R,E is E-coherent. Let t ≡ t1, t2, t3 be terms and ∆ be a context such that
∆ ⊢ t1 ≈α,E t2 (equivalently ∆ ⊢E t1 ≈ t2) and ∆ ⊢ t1 →R,E t3:

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 27

I. Consider the case where t3 ≡ s1 ≡ t↓R,E:

Observe that we cannot have t2 ≡ s1 because s1 is a R,E-normal form, and it is not possible to have
∆ ⊢ t1 ≈α,E s1 and ∆ ⊢ t1 →R,E s1.

Also note that we cannot have t2 ≡ s2, because since →R,E⊆→R/E we could not give a R,E-step
from ∆ ⊢ t1, which is one of the representatives of ∆ ⊢ [s2]E, and that contradicts ∆ ⊢ t1 →R,E t3.

We can conclude that t2 ̸≡ si, for i = 1,2, hence we can make a one-step R,E-reduction from ∆ ⊢ t2,
that is, there exists a t5 such that ∆ ⊢ t2 →R,E t5:

Now we consider the following cases:

a) If t5 ≡ s1 then t5 ≡ t3 which gives us ∆ ⊢ t5 ≈α,E t3.
Now the diagram in Figure 8 degenerates to t1 ≡ t2, t5 ≡ t6 and t3 ≡ t4 with zero steps of R/E
and the diagram becomes a line.

b) If t5 ≡ s2 ≡ t↓R/E then ∆ ⊢E t5
(⋆)
≈ t3, by the hypothesis. The diagram in Figure 8 degenerates

to the square on the left, where t3 ≡ t4 and t5 ≡ t6.

c) If t5 ̸≡ si, for i = 1,2, then there exists a R/E-normal form of ∆ ⊢ t5, named t6, such that

t6 ≡ s2, and this gives us that ∆ ⊢E t6
(⋆)
≈ t3.

Here, note that ∆ ⊢ t1 →R/E t6 and, by the hypothesis, s2 ≡ t↓R/E. The diagram in Figure 8
degenerates to t3 ≡ t4.

II. Consider the case where t3 is not a R,E-normal form of ∆ ⊢ t. Then there exists a t4 ≡ t↓R,E such
that ∆ ⊢ t3 →∗

R,E t4 which implies ∆ ⊢ t3 →∗
R/E t4 since R,E⊆ R/E:

28 Nominal Commutative Rewriting and Narrowing

Figure 8: Diagram for nominal E-coherence

For the same reasons as case I, we can have neither t2 ≡ s1 nor t2 ≡ s2. Therefore we must have
t2 ̸≡ si, for i = 1,2, hence we can make a one-step R,E-reduction from ∆ ⊢ t2, that is, there exists
a t5 such that ∆ ⊢ t2 →R,E t5:

Now we consider the following cases:
a) If t5 ≡ s1 then t5 ≡ t4 which gives us t5 ≈α,E t4. The diagram in Figure 8 degenerates to t5 ≡ t6

and t4 ≈α,E t6.

b) If t5 ≡ s2 ≡ t↓R/E then ∆ ⊢E t5
(⋆)
≈ t4. The diagram in Figure 8 also degenerates to t5 ≡ t6 and

t4 ≈α,E t6.

c) If t5 ̸≡ si, for i = 1,2, then there exists a R/E-normal form of ∆ ⊢ t5, named t6, such that

t6 ≡ s2, and this gives us that ∆ ⊢E t6
(⋆)
≈ t4. This gives us exactly the diagram in Figure 8.

(⇐) Assume →R,E is E-coherent.

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 29

We want to prove that ∆ ⊢E s1 ≈α,E s2.
Consider t1 ≡ t, and suppose ∆ ⊢ t ≈α,E t2 and ∆ ⊢ t →R,E t3.

Consider the R,E-normal form of ∆ ⊢ t3, s1 ≡ t3↓R,E ≡ t↓R,E (it is also a R,E-normal form of ∆ ⊢ t).

By the E-coherence property, there exists a t5 such that ∆ ⊢ t2 →R,E t5:

And from ∆ ⊢ t ≈α,E t2 →R,E t5 we have ∆ ⊢ t →R/E t5. Consider then the R/E-normal form of ∆ ⊢ t5,
s2 ≡ t5↓R/E ≡ t↓R/E (it is also a R/E-normal form of ∆ ⊢ t).

Since R,E⊆ R/E, we may write R/E instead of R,E in the step ∆ ⊢ t3 →∗
R,E s1:

Now we can apply the E-coherence property and get the result we wanted, ∆ ⊢E s1 ≈ s2:

30 Nominal Commutative Rewriting and Narrowing

Example A.2 (Cont. example 4.1). We present the computation of θ0 and θ1:

(/0,Id,{¬(∀[b]Q1) ?
C≈? ¬(∀[a]Q)}) =⇒(≈α,C app)

=⇒(≈α,C app) (/0,Id,{∀[b]Q1 ?
C
≈? ∀[a]Q})

=⇒(≈α,C app) (/0,Id,{[b]Q1 ?
C≈? [a]Q})

=⇒(≈α,C [ab]) (/0,Id,{(a b) ·Q1 ?
C
≈? Q,a#Q1})

=⇒(# var) ({a#Q1},Id,{(a b) ·Q1 ?
C≈? Q})

=⇒(≈α,C inst) ({a#Q1},θ0 = [Q 7→ (a b) ·Q1],{(a b) ·Q1 ?
C≈? (a b) ·Q1})

=⇒(≈α,C refl) ({a#Q1},θ0, /0)

({a#Q1,a#P′},Id,{P1 ∧∃[a](¬(a b) ·Q1) ?
C≈? P′∧∃[a]Q′}) =⇒(≈α,C C)

=⇒(≈α,C C) ({a#Q1,a#P′},Id,{P1 ?
C≈? P′,∃[a](¬(a b) ·Q1) ?

C≈? ∃[a]Q′})

=⇒(≈α,C app) ({a#Q1,a#P′},Id,{P1 ?
C
≈? P′, [a](¬(a b) ·Q1) ?

C
≈? [a]Q′})

=⇒(≈α,C [aa]) ({a#Q1,a#P′},Id,{P1 ?
C≈? P′,(¬(a b) ·Q1) ?

C≈? Q′})

=⇒2
(≈α,C inst) ({a#Q1,a#P1},θ1 = [P′ 7→ P1,Q′ 7→ ¬(a b) ·Q1],{P1 ?

C
≈? P1,

(¬(a b) ·Q1) ?
C
≈? (¬(a b) ·Q1)})

=⇒2
(≈α,C refl) ({a#Q1,a#P1},θ1, /0)

	Introduction
	Preliminaries
	Nominal E-rewriting and E-narrowing.
	Nominal E-rewriting
	Nominal E-narrowing

	Nominal Lifting Theorem modulo E
	Conclusion and Future Work
	Appendix

