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Abstract

In this tutorial we present the system SUBSEXPL that is used for simulating and comparing explicit
substitutions calculi. This framework was developed in Ocaml, a language of the ML family, and it allows
the manipulation of expressions of the A-calculus and of several styles of explicit substitutions calculi.
Applications of this framework include: the visualisation of the contractions of the A-calculus, and of
guided one-step reductions and normalisation via each of the associated substitution calculi. Many useful
facilities are available: reductions can be easily recorded and stored into files, latex output and useful
examples for dealing with, among other things, arithmetic operations and computational operators such
as conditionals and repetitions in the A-calculus. The current implementation of SUBSEXPL includes
treatment of three different calculi of explicit substitutions: the Ao, the As., the suspension calculus and
a refinement of the suspension calculus called combining suspension calculus which allows for combination
of steps of (B-contraction; other explicit substitutions calculi can be easily incorporated into the system.
An implementation of the n-reduction is provided for each of these explicit substitutions calculi. This
system has been of great help for systematically comparing explicit substitutions calculi, as well as for
understanding properties of explicit substitutions such as the Preservation of Strong Normalisation. In
addition, it has been used for teaching basic properties of the A-calculus such as: computational adequacy,
the importance of de Bruijn’s notation and of making explicit substitutions in real implementations based
on the A-calculus.

Keywords: A-Calculus, Explicit Substitutions, Visualisation of - and n-Contraction and Normalisation.

1 Introduction

In the last decade, a number of explicit substitutions calculi have been developed. Most of these calculi have
been claimed to be useful for practical notions such as the implementation of typed functional programming
languages and higher-order proof assistants. We describe SUBSEXPL, a system developed in Ocaml, a
language of the ML family, which allows for the manipulation of expressions of the A-calculus and of three
different calculi of explicit substitutions:

1. The Ao-style [ACCL91] which introduces two different sets of entities: one for terms and one for
substitutions.
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2. The As-style [KR95] which is based on the philosophy of de Bruijn’s Automath [NGdV94] elaborated
in the new item notation [KN96]. In this framework, a term is a sequence of items, which can be
an application item, an abstraction item, a substitution item or an updating item. The advantages of

building the explicit substitutions calculus in this framework include remaining as close as possible to
the familiar A-calculus (cf. [KRO00]).

3. The suspension calculus [Nad99], which introduces three different sets of entities: terms, environments
and lists of environments.

4. The “combining suspension calculus” [NaQi03, LNQO4], which is a refinement of the suspension cal-
culus, that allows for combinations of steps of (3-contraction.

Each of these different styles has plus and minus points. Although various attempts have been made at
comparing these styles (cf. [AMKO05, KR00]), a lot remains to be explained. A better understanding of the
similarities and differences of these styles may lead on one hand to solving the remaining open questions
related to the various calculi, and on the other hand, to a more inclusive calculus and implementations which
combine the advantages in one system.

Through SUBSEXPL, we attempt to understand the working of the rewrite rules of these calculi. We
develop a full scale Ocaml implementation of the three calculi where contractions in all these calculi (including
those in the type free A-calculus) can be visualised in a step-wise fashion and where the behaviour of
the reduction paths can be analysed. Especially, we concentrate on the one-step guided reductions and
normalisation via each of the associated substitution calculi.

SUBSEXPL has been successfully used for teaching our students basic properties of the A-calculus such as:
computational adequacy, the importance of de Bruijn’s notation and of making explicit substitutions in real
implementations based on the A-calculus. SUBSEXPL has also been of great importance for systematically
comparing these three calculi of explicit substitutions.

Furthermore, SUBSEXPL includes adequate implementations of the rules of n-reduction for the three cal-
culi as well as a clean implementation for the As.-calculus (cf. [AMKO5]) in the sense that no other rewriting
rules than the ones strictly involved in the Eta-contraction' are included in one-step Eta-contraction. Work
on higher-order unification (HOU) in Ao and As. established the importance of combining Eta-reduction or
contraction (as well as expansion) with explicit substitutions. This has provided extensions of Ao and As.
with Eta-reduction rules also referred to by Ao and As. (cf.[DHK00, ARKO01]). Eta reduction (as well as
expansion) is necessary for working with functions and programs, since one needs to express functional or
extensional equality, i.e., when the application of two A-terms to any term yields the same result, then they
should be considered equal. This led to various extensions of explicit substitutions calculi with an Eta rule
even before this was applied to HOU [Har92, Rio93, Bri95, Kes00].

The output of A-terms is a difficult point because A-expressions may become big very quickly. In order
to ease reading the output of the system, we provided the latex output which can be generated at any step
of the reduction and, moreover, the generated file can be easily edited according to the user’s requirement.

SUBSEXPL has been used as a tool for understanding properties of explicit substitutions calculi. Desired
properties of an explicit substitutions calculus include:

(a) Simulation of one step (-reduction: whenever a reduces to b in the A-calculus using one step (-
reduction, we have that a reduces to b in the explicit substitutions calculus using one step of the
explicit B-reduction (starting rule) and the substitution rules.

(b) Confluence (CR): confluence is the property that establishes that reductions do not depend on reduction
strategies or in other words, that whenever a term can be reduced in two different ways, the obtained
terms can be joined by rewriting into a common term. CR is considered for two classes of terms:

(b.1) Ground terms: these are the usual terms of the A-calculus built from variables, applications and
abstractions.

IWe use the Greek letter 7 to refer only to the “n-rule” of the pure A-calculus, and its name “Eta” to refer to the corresponding
rule in the explicit substitutions calculi.



(b.2) Open terms: in this case, the language of the explicit substitutions calculus is expanded with
a new class of variables, known as meta-variables. In this setting, open terms can be seen as
contexts and meta-variables as place-holders. Open terms are essential in higher-order unification
algorithms that uses explicit substitutions [DHK00, ARKO01].

(c) Strong normalisation (SN) of the underlying calculus of explicit substitutions: this property asserts
about the termination of the explicit substitutions calculi without the explicit S-reduction rule; i.e.,
without the rule that starts the simulation of the §-reduction.

(d) Preservation of SN (PSN): whenever all possible reductions starting from a pure A-term are terminating
in the A-calculus, there are no possible infinite reductions starting from this term in the explicit
substitutions calculus.

Without Eta, Ao satisfies (a), (b.1), (c) and satisfies (b.2) only when the set of open terms is restricted to
those which admit meta-variables of sort terms. Without Eta, As satisfies (a)..(d) but not (b.2). However,
As has an extension As. (again without Eta) for which (a), (b.1) and (b.2) holds, but (d) fails and (c) is
unknown. The suspension calculus (which does not have Eta) satisfies (a) and when restricted to well formed
terms it also satisfies (b.1), (b.2) and (c), but (d) is unknown.

SUBSEXPL has been used as a tool for examining the PSN property of two of the three calculi we consider.
The system allows us to follow the counter-examples of Mellies ([Mel95]) and Guillaume ([Gui00]) for proving
that neither Ao- nor As.-calculi preserve SN. By examining these counter-examples in our system, firstly, one
can animate the generation of an infinite derivation in the substitution calculi starting from a well typed term
of the pure A-calculus; afterwards, one can try to generate infinite derivations of S-reductions from these \-
terms; finally, one can conclude that this is impossible. In this way it is possible to simultaneously understand
the importance of the PSN property as well as why it does not hold in these two calculi. The animated
generation of the initial steps of these infinite derivations inside each calculus gives an easy-to-understand
and more intuitive insight about why the PSN property fails. Consequently, we believe SUBSEXPL is an
adequate and useful tool for intuitively understanding the details and difficulties concerned with general
properties of the A-calculus as well as of explicit substitutions calculi.

In section 2 we briefly describe the system and its usage. In section 3 we present the applications of the
system.

2 Description of SUBSEXPL

SUBSEXPL is an implementation of the rewriting rules of the three treated calculi of explicit substi-
tutions. SUBSEXPL is an open source software, runs over GNU/Linux platforms and is available at
www.mat.unb.br/~ayala/TCgroup/.

2.1 General details of the implementation

SUBSEXPL was developed in OCAML since it provides a natural environment for pattern-matching and
rewriting. Moreover, there exists an active OCAML group around the world always ready to collaborate
with implementational questions. Since SUBSEXPL does not use specific object tools of Ocaml it is easily
adapted to any other language of the ML family such as Caml and SML.

The three explicit substitutions calculi considered in the previous section use A-terms in de Bruijn nota-
tion, which is important for computational implementations of the A-calculus since every a-equivalent term
has a unique representation in this notation. SUBSEXPL accepts both pure and non pure A-terms in de
Bruijn notation as input. A pure A-term is built solely with applications and abstractions (hence a term
of the unextended A-calculus). A non pure A-term includes some internal operators of one of the explicit
substitutions calculi. The terms of the three calculi are implemented in SUBSEXPL as follows:
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Figure 1: Structure of the system SUBSEXPL.

1. Ao-terms of the form 1, AM, (M N) and M|S] are respectively represented as One, L(M), A(M,N) and
Sb(M,S); Ao-substitutions of the form id, T, M.S and S o T are respectively represented as Id, Up,
Pt(M,S) and Cp(S,T).

2. Ase-terms of the form n, AM, (M N), M o' N and ¢} M, where k > 0 and ¢ > 1 are respectively
represented as n, L(M), A(M,N), S(i,M,N) and P(i,k,M).

3. Asugp-terms of the form n, AM, (M N) and [M,1, j, e1] are respectively represented as n, L(M), A(M,N)
and Sp(M,1i,j,el); Agsp-environments of the form nil, et :: e; and {e1,,7,ea} as Nil, Con(et,el)
and Ck(el,i,j,e2); Asysp-environments terms of the form @i, (M,4) and {(et, 4, j,e1)) are respectively
represented as Ar i, Paar(M,i) and LG(et,i,j,el).

4. Since the combining suspension calculus is a refinement of the suspension calculus, its terms are es-
sentially Agygp-term as above without environments of the form {ey, 4, j, e} and without environments
terms of the form ((et, 4, j, e1)).

For example, the As.-term (\1)o!(23) is represented in the internal language of SUBSEXPL as S(1,L(1),
A(2,3)). The system allows, for each calculus, the generation of a latex output given together with the
original grammar.

The current structure of the system is intended to allow a simpler way to include new calculi. The general
structure of the system is represented in Figure 1. A stepwise description on how to include a new calculi
can be found in the file adding-a-new-calculi distributed with the source code of the system. A more
detailed description of the dependencies of the files in the current implementation is given in Figure 2; the
complete documentation related to each of these files can be found in the doc directory which is included in
the file that contains the source code of the system.

For each implemented calculi, there are two main parts: matching and reduction. The matching part
is responsible for collecting all the existing redexes, for each rewriting rule of the calculus, of the current
A-term and to store the positions of these redexes into a list. The functions responsible for this work are
implemented in the files sematch(d.m1 (where O ranges over 1s, lse and sus for the Ao-, As.- and the
suspension calculus, respectively). The reduction part contains the implementations of the rewriting rules of
the considered calculus. The files with these functions are named seredd.ml (where O is as above).

2.2 Use of the system

Installation instructions are included in the README file distributed with the source code of the system?.
In fact, there is no installation, since the user can just download the executable file, named subsexpl.bin,

2The README file is also available for online reading at www.mat.unb.br/~flavio



pl
St ‘
(s Commn Com
ypes

Sety

Figure 2: Dependencies amongst the files.

and run the system. Optionally, the user can download the source code of the system, included in the file
subsexpl.tar.gz and compile its own executable as explained in the README file. In addition, the file
subsexpl.tar.gz also contains some examples which can be used with the system.

To start the system, execute the file subsexpl.bin (by typing ./subsexpl.bin). We recommend the
use of the line editor ledit?:
./ledit.out ./subsexpl.bin.

Alternatively, the user can run SUBSEXPL inside a shell in the emacs editor so that (s)he can easily
cut and paste and check the balance of expressions. To do so just type within emacs M-x shell and then
./subsexpl to start SUBSEXPL.

The first screen is as below where option 4 gives a brief grammatical description of the input and output
for each calculus.

skokokokokokokokkokokokkkk SUBSEXPL kokokok ok okok sk sk sk ok ok ok ok 5k

SELECT the calculus

TYPE

for the Pure lambda-calculus

for the Lambda sigma calculus

for the Lambda s_e calculus

for the Suspension calculus

for the Combining Suspension calculus

for the Grammatical description IN/OUT (and internal)
for quit

o WO

Option 0 allows the user to simulate one-step (-reduction and n-reduction as well as normalisations in
the pure A-calculus, while options 1, 2, 3 and 4 perform simulations of reductions and normalisations in Ao,
ASe, suspension calculus and combining suspension calculus, respectively.

As a complete example, we will show how to operate with the Church’s numerals (see f. ex.[Bar84))
whose description can be found in the Examples file distributed with the source code. Consider the reduction
A;C1Cy = Cy, which evaluates “1 + 17 in the A-calculus, where Ay = Azypq.((z p)((y p) ¢)) and C; =
Afx.fx. The A, operator is written in de Bruijn notation as

A =2AAN\((42)(32) 1)

Shttp://cristal.inria.fr/~ddr



which is translated to the SUBSEXPL language as
L(L(L(L(A(A(4,2), A(A(3,2),1))))))

Applying this operator to the Church number C, written as L(L(A(2,1))), twice, gives the expression
corresponding to A, C1C4 in the SUBSEXPL grammar:
AAL(L(L(L(ACA(4,2),A(A(3,2),1)))))),
L(L(A(2,1)))),L(L(AC2,1))))

After choosing option 0 in the first screen of the system, we type the above expression:
*okkkokkkkkkkkkkk SUBSEXPL  #kkokkkkokokkkkokokk

SELECT the calculus

TYPE

for the Pure lambda-calculus

for the Lambda sigma calculus

for the Lambda s_e calculus

for the Suspension calculus

for the Combining Suspension calculus

for the Grammatical description IN/OUT (and internal)
for quit

DU WN PO

OR
>0
Give an expression (or quit): A(A(L(L(L(L(A(A(4,2),
A(A(3,2),1)))))),L(L(A(2,1)))),L(L(A(2,1))))

After typing the expression, type ENTER. The next screen will output the current expression and the
available redexes for the rules:

Expression: A(A(L(L(L(L(ACA(4,2),A(A(3,2),1)))))),
L(L(A(2,1)))),L(L(A(2,1))))

. Beta: 1

. Eta: 121 21

. Leftmost/outermost normalisation.
. Rightmost/innermost normalisation.
. Back one step.

. See history.

. Latex output.

. Save current reduction.

9. Restart current reduction.

10. Restart SUBSEXPL.

11. Quit.

Give the number:

W ~NO U WN -

To select B-reduction, type 1 and then type 1 again to select the redex at position 1. Now the current
screen is:

Expression: A(L(L(L(ACA(L(L(A(2,1))),2),A(A(3,2),1))))),
L(L(AC2,1))))

. Beta: 0 11111

. Eta: 1111111 21

. Leftmost/outermost normalisation.
. Rightmost/innermost normalisation.
. Back one step.

. See history.

. Latex output.

. Save current reduction.

. Restart current reduction.

10. Restart SUBSEXPL.

11. Quit.

Give the number:

© o0 ~NOOd WN -

Note that we have two options to apply B-reduction. One at the root position of the term, written as 0,
and another at position 11111. To reduce the term at position 11111, first type 1 to select Beta and then
type the position. Continue the reduction until you get a normal term:



Expression: L(L(A(2,A(2,1))))

. Beta:

. Eta:

. Leftmost/outermost normalisation.
. Rightmost/irmermost normalisation.
. Back one step.

. See history.

. Latex output.

. Save current reduction.

9. Restart current reduction.

10. Restart SUBSEXPL.

11. Quit.

Give the number:

W ~NOO s WN -

The additional options of the system are:

3. Leftmost/outermost normalisation.: Normalises the given term choosing always the leftmost redex.
4. Rightmost/innermost normalisation.: Normalises the given term choosing always the rightmost
redex.

5. Back one step: Allows the user to return to the previous step in the current derivation.

6. See history: Shows in the current screen the list of all expressions generated in the current reduction.
7. Latex Output: Generates automatically a file with the latex code of the current reduction and display
the .dvi file on the screen*

8. Save current reduction.: Allows the user to save the current reduction into a simple text file, say
my-reduction. To load this reduction the user should restart the system giving this file as argument:
./ledit.out ./subsexpl.bin my-reduction.

9. Restart current reduction: Allows the user to restart the current reduction from the beginning after
asking if the user wants to save the current reduction.

10. Restart SUBSEXPL: Restarts the system after asking if the user wants to save the current reduction.
11. Quit: Halts the system after asking if the user wants to save the current reduction.

To generate the latex output, which is possible to be generated even during the intermediate steps in a
reduction, just type 7 and then give a file name without any extension. For example, my _file. In this case,
the system will generate a dvi file named my_file.dvi. Note that in the latex output, all the redexes you
chose during the reduction will appear underlined:

An interesting exercise is to simulate such a derivation step by step using the Ao, the As. or the suspension
calculus. The current implementation has two normalisation strategies available: the leftmost/outermost
strategy or the strategy according to the order of the rules given on the screen of each calculi (we call this
strategy random’). A interesting fact is that the first step of the previous example when simulated in the
Ao-calculus using the random normalisation strategy generates some huge terms which exceeded the available
memory for the latex compilation. In fact, the simulation of the first S-reduction using the 'random’ strategy
is done in 236 steps, while the same simulation using the leftmost strategy is performed in only 45 steps!
The complete reduction using the leftmost/outermost strategy generated about 3 full pages of latex output
with small fonts. In the As. as well as in the suspension calculus, both strategies generate the output within
about 2 pages.

4We assume that the running system has latex and xdvi installed.



Terms with internal operators of the explicit substitutions calculi implemented in SUBSEXPL may be
given as input: as an example, take the Ao-term ((A1) 1[7])[1.¢d] which is written in SUBSEXPL as

Sb(A(L(1),Sb(0ne,Up)),Pt(One,Id))
Giving this term to the system we get the following screen:

Expression: Sb(A(L(One),Sb(0One,Up)),Pt(0One,Id))

. Beta: 1

. App: O

. Abs:

. Clos:

. VarCons:

. Id:

. Assoc:

. Map:

9. IdL:

10. IdR:

11. ShiftCons:

12. VarShift:

13. SComns:

14. Eta:

15. One beta full step (leftmost): 1
16. One beta full step (random): 1
17. Back one step.

18. See history.

19. Latex output.

20. Save current reduction.
21. Restart current reduction.
22. Restart SUBSEXPL.

23. Quit.

Give the number:

0N U WN -

And the reduction can be continued as usual.

2.3 Implementation of Eta contraction

SUBSEXPL includes implementations of the Eta rule for each of the three calculi of explicit substitutions
treated here. The implementation follows the notion of cleanness as defined in [AMKO5]. The intuitive idea
of a clean Eta implementation is that it does not mix isolated applications of Eta-reduction with applications
of other rules of the corresponding substitution calculi that the ones strictly involved in the Eta-reduction.
Clean implementations of the Eta rule allow us to reach good simulations of the Eta-contraction, which
implies the possibility of combining steps of Beta and Eta contraction between the languages of these calculi.

The suspension calculus did not originally have an Eta-rule. In [AMKO5] this calculus was enlarged with
an adequate Eta-rule in the so-called Agygp calculus. For the enlarged calculus Agygp, Ase and Ao we showed
that there exists a correspondence among their Eta-rules which means that, when applied to pure A-terms,
these rules behave similarly (cf. [AMKO5]).

Neither the suspension calculus nor the Ao-calculus has completely clean implementations of the Eta-
rule. In fact, in these calculi, the implementation of the Eta rule requires the application of some rewriting
rules, not directly related to Eta contraction, but which are necessary to normalise some simple terms.
Nevertheless, our implementation of the Eta-rule for As. is clean.

Eta-reduction is important to computational problems that arise in applications of the A-calculus. For
instance, in [DHK00, ARKO01] n-reduction is useful in the treatment of higher order unification via explicit
substitutions calculi (Ao and As,).

3 Applications
SUBSEXPL has been successfully used to teach computational notions of the A-calculus as well as to compare

and understand some properties of explicit substitutions calculi. In this way, SUBSEXPL can be seen as a
tool with both educational and research purposes. In this section we start by explaining how the system can



be used for educational purposes exploring some computability notions over the A-calculus. After that, we
explain how it can be used to compare calculi of explicit substitutions according to the computational effort
necessary to simulate one step of f-reduction and finally we show how SUBSEXPL can be used to follow the
counter-examples of Mellies and Guillaume that establish that the Ao- and the As.-calculus, respectively, do
not preserve strong normalisation.

3.1 Understanding the \-calculus and its implementations

We have used SUBSEXPL to explain to students questions related to the computational adequacy of the
A-calculus and the problems which arise from the usual notation with symbolic variables and the implicit
notion of substitution. The computational expressiveness of the A-calculus can be illustrated by examples
which range from the A-representation of arithmetic operations such as addition (which we have illustrated
earlier in this paper), multiplication and exponentiation over Church’s numerals to the A-representation of
basic data structures which include booleans and computational commands and operators such as if-then-
else, iteration and recursion. All this was done in the spirit of [Bar84, Bar92]. As a concrete example,
we consider an expression for computing the factorial function. This simple exercise takes a lot of effort,
because students are neither familiar with the notation neither with the operational semantics of the \-
calculus. But implementing this class of exercises is necessary because this gives the real flavour of the
computational power of the A-calculus. By using SUBSEXPL over an intelligent editor such as EMACS
we can very quickly implement these functions: Initially, we create abbreviations for the needed operators
and functions; afterwards, we compound these operators and functions in order to complete the desired
function. We illustrate how this is done for the case of the factorial function. Basically, this function is
implementing by defining an iteration operator Ty given by Ap.{S™*(p true), H(p true)(p false)), where
ST is the successor function, i.e., ST = A, C; and H is a convenient function that does the right job. The
result of applying Ty to (C;, Cy(;)) is the pair (Ciy1, Cyiq1)), where f references the function implemented
by the iteration mechanism, the first component of the pair is a counter for the iteration step and the second
one is the value of the desired function at that step. This iteration operator is then used repeatedly.

3.1.1 Abbreviations

1. The Church numbers are as given before;
2. The booleans true and false correspond to the A-terms L(L(2)) and L(L(1)), respectively.
3. (M,N) represents the pair operator which is given, in the language of SUBSEXPL, by the A-term
L(A(A(L1,M),N)). Pairs can be applied to booleans, written as (M, N)true and (M, N)false and the normal
form of these terms are M and N, respectively.
4. For the case of the factorial function, the adequate operator T is given as Ty above where H is selected
as Azy. A, y (STz). It is easy to see that this operator satisfies the property: T{(Cy,Ck) B-reduces to
(Chky1, Clr41y1), and so, applying repeatedly this mechanism we are counting the number of iteration in the
first component of the pair and computing the associated value of the factorial in second one.

In the language of SUBSEXPL, the normal form of the operator T for factorial is given by:
L(L(ACA(1,L(LCAC2,ACACAC4,L(L(2))),2),1))),
L(ACA(3,L(L(1))),L(A(2,ACACA(4,L(L(2))),2),1))))))))

3.1.2 Checking parts of the implementation

This step is useful for testing the functionality of parts of the intended implementation which allows to infer
the functionality of the whole specification. For instance, we can check that T(Cs, Ca) reduces to (Cs, Cs)).
In the input syntax of SUBSEXPL this is written as



T(C2, C21)
(C2, Car) 2

By (-normalisation this part of the implementation can be checked obtaining the term
L(ACA(1,L(LCA(2,A(2,A(2,1)))))),
L(L(A(2,A(2,A(2,A(2,A(2,A(2,1)))))))))) which corresponds to (Cs3, Cs)
The repetition mechanism is completed by applying n times the iteration operator starting from the pair
(Cp, Cor). This is done by the term:
A(A(Cn, T), (Co, Cor)) (1)

which reduces to (Cy,, Cp1).
Functionality of all parts of the desired mechanism/function can be checked by normalisation with SUB-
SEXPL.

3.1.3 Final function

Once enough tests have been ran over SUBSEXPL, the factorial function can be written as:

L( A(A(A(1,T), (Co, Con)), L(L(1))) ) (2)
Match with eq. (1) false

Selection of the 2™¢ element of the pair

The equation (2), when applied to the Church numeral C,,, S-reduces to C,. In fact, such an application
will generate a (-redex in the root of the new term. Reducing this new term, there is a sub-term of eq. (2)
which reduces exactly to the term corresponding to eq. (1). And, this term we have already showed that
reduces to the pair (C,,,Cyi). To get the desired result we need to select the second element of this pair
which is done by applying it to false, as previously explained.

Observe that in the syntax of SUBSEXPL (which corresponds to the one of the A-calculus) the expression
for factorial (eq. (2)) is incomprehensible:

L(ACACA(L,L(LCACA(L,L(L(AC2,ACACA(4,L(L(2))),2),1))))),
L(L(ACACA(4,L(L(1))),2),ACACA(4,L(L(2))),
ACAC4,L(L(1))),2)),1)))))))) ,L(ACA(L,L(L(D))),
L(L(A(2,1)))))),L(L(1))))

Similarly, other functions can be implemented easily. In fact, notice that from this construction it is
easy (also for students) to infer that the sole thing to be changed in the whole repetition mechanism is the
function H in the definition of the iteration operator Ty . For instance, for computing the function E;L:O i,
H should be replaced by Azy.Ay y (STz); for computing the function Y. i, H should be replaced by
Azy. Apy(A(STx)(STr)); ete.

We believe that this kind of experiments is necessary and useful for obtaining a flavor of the computational
power of the A-calculus. A way to speed-up the generation of non elementary implementations is by using
our system jointly with an editor for creating the necessary abbreviations, cutting, pasting and testing for
modular constructions of “programs” or functions. In intelligent editors such as EMACS, these abbreviations

10



can be easily incorporated in new buttons and short-cut keys, which makes the quick construction of these
functions possible. Some of these experiments are included in the file of examples of the distribution.

3.2 Comparing calculi by the simulation of g-reduction

SUBSEXPL has been implemented with the intention of comparing the three treated calculi of explicit
substitutions with respect to the necessary effort to simulate one-step S-reduction. By applying this system
we were able to conclude that As. is more efficient than the suspension calculus and is incomparable to the Ao-
calculus in the simulation of one-step S-reduction [AMKO05]. The efficiency of As, is justified by the fact that
the manipulation of de Bruijn indexes in As. is directly related to a built-in manipulation of natural numbers
and arithmetic (which is standard in today’s computational environments and programming languages)
whereas in the other two calculi, this is done constructively. Of course this comparison is interesting, but not
conclusive since As. is not completely adequate for combining steps of G-reduction, which is more natural in
Asuse [LNO2, Nad02]. But we believe this has to be investigated more carefully, since some variations of As,
like A¢ ([KROO]), which is a calculus & la As. but which updates & la Ao, can allow this combination in the
Ao family of calculi.

3.3 Understanding properties of explicit substitutions calculi

SUBSEXPL has been used as a tool for understanding properties of explicit substitutions calculi. This is
illustrated by examining the property of Preservation of Strong Normalisation (PSN).

To illustrate the use of SUBSEXPL in understanding properties of explicit substitution calculi, we explain
how one can follow(/check) papers which prove some properties of these calculi. In particular, we follow
the proofs of non PSN of Ao and As. given in [Mel95] and [Gui00], respectively. By examining these
counter-examples in SUBSEXPL, firstly, students can animate the generation of an infinite derivation in the
associated substitution calculi starting from a well typed term of the pure A-calculus. Secondly, students
can try to generate infinite derivations of S-reductions from these A-terms, concluding (the most critical of
them) that this is impossible. This last step is achieved without necessarily knowing that there are no infinite
(8-)derivations in the A-calculus starting from well typed terms. In this way it is possible to simultaneously
understand the importance of the PSN property as well as why it does not hold in these two calculi.

3.3.1 The counter-example of Mellies

To follow the counter-example in the Ao-calculus, consider the well typed pure A-term written in de Bruijn’s
notation as A((A(A1)((A1)1))((A1)1)). The corresponding term in the language of SUBSEXPL is given by

LCACLCA(L(1),ACL(1),1))),ACL(1),1)))

The infinite reduction is generated by applying an adequate strategy which mixes rules of the associated
calculus o with the rule Beta which initiates the simulation of one step G-reduction. The whole derivation,
with the usual grammar of the Ao-calculus, is given at the end of this subsection according to the numbering
of steps given in the following tables.

STEP | RULE | POSITION
1 1 111
2 1 1
3 4 1
4 8 12

At this point,
L(Sb(1,Cp(Pt(A(L(1),1),Id),Pt(A(L(1),1),Id)))) is the current term. Let us define recursively:

11



s.1 = Pt(A(L(1),1),Id)
s2 = Cp(Up,Pt(Sb(1,s.1),Id))
= Cp(Up,Pt(Sb(1,Pt(A(L(1),1),Id)),Id))
s.3 = Cp(Up,Pt(Sb(1,s.2),Id))
si = Cp(Up,Pt(Sb(1,s (i-1))),Td))

With this definition, we can write the current term as L(Sb(1,Cp(s_-1,s-1))). At this point, applying the
Map transition at position 12 the sub-term s_1 is duplicated. And we get L(Sb(1,Pt(Sb(A(L(1),1),s.1),
Cp(Id,s_-1)))). Note that the second occurrence of s_1 is vacuous, in the sense that it can be easily
eliminated by the rule VarCons. The key idea of Mellies is to maintain this second occurrence of s_1 and to
propagate the first occurrence as follows:

STEP | RULE | POSITION
5 2 121
6 9 122
7 3 1211

Now the current term is L(Sb(1,Pt(A(L(Sb(1,Pt(1,Cp(s_1,Up)))),
Sb(1,s.1)),s.1))) and again we can apply the Beta rule and then compose the two substitutions:

STEP | RULE | POSITION
8 1 121
9 4 121

The next three steps duplicate the sub-term Pt (Sb(1,Pt(A(L(1),1),Id)),Id) and generate the term
s_2 = Cp(Up,Pt(Sb(1,Pt(A(L(1),1),Id)),Id)) which have inside an occurrence of s_1:

STEP | RULE | POSITION
10 8 1212
11 ) 12121
12 7 12122

At this point, L(Sb(1,Pt(Sb(1,Pt(Sb(1,s.1),
Cp(s-1,s-2))),s-1))) becomes the current term. It contains an occurrence of Cp(s_1,s_2). By repeating
the same sequence of rules, we will get a term with the sub-term Cp(s_2,s.3):

STEP | RULE | POSITION
13 8 12122
14 2 121221
15 9 121222
16 3 1212211
17 1 121221
18 4 121221
19 8 1212212
20 ) 12122121
21 7 12122122

Here, it is easy to see how an infinite reduction can be built from the initial well typed term in the
Ao calculus of explicit substitutions. The mellies-README file (distributed with the source code) explains
these details and some additional information about generating the corresponding postscript file. The above
steps are stored in the file mellies and can be executed automatically with the command ./subsexpl.bin
mellies (or ./ledit.out ./subsexpl.bin mellies). In this case, the output dvi file, automatically gen-
erated by SUBSEXPL, is mellies-1s.dvi. The result can be seen in table 3.3.1. Note that the notation
$1, S2, s3 and the numeration of the steps are used here for ease reading but is not automatically generated
in the above dvi file. The latex code of the output can be found in the file mellies-1s.
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10

11

12

13

14

15

16

17

18

19

20

21

AL (A1) ((AL)1))) = Beta
(AAL[(((AM)1)-id)])(AL)1))) = Beta
(AL[(((AD)1)-id)][(((A1)1)-id)]) —cios
(AL[(((A1)1)-id)o(((A1)1)-id))]) = Map

(AL[((ADD)[(((AL)1)-id)]-(ido(((AL)1)-id)))]) = app
AL[((ADI(((A2)1)-id)]1[(((A1)1)-id)])- (ido ((A1)1)-id)))]) —rar
AL[(((AD[(((A2)1)-id)]2[(((AL)1)-id)])- (((AL)1)-id))]) — abs

AL[((AL(@- (A1) -idp 1))DA[((A)1)-id)])- ((AL)1)-id))]) = Beta

(AL[(L[(1- (A1) -ide D)I[AI((AL)L)-id)]-id)]- (AL)1)-id))]) = cios
(AL[(A[((2-((((A1)1)-id)p 1)) o ([((AL)1)-id)] -id))]-(((A1)1)-id))]) = arap
(AL[(2[A[@A[(((AL)1)-id)]-id)] - ((((AL)1)-idp T) o (1[(((AL)1)-id)]-id)))]-((AL)1)-id))]) =V arcons
(AL[A[A[(((AL)1)-7d)]- ((((AD)D)-id) T)o (A[((AL)1)-id)]-id)))]- (AL)1)-id))]) = Assoc
AL[(2[(A[(((AL)1) )] (((A1)1)-id)o(T A2[(((A1)1)-id)] -id))))]- (((AL)1)-id))]) = rrap

(AL[(2[A[(((A1)2)-id)]- (AL D[(T AL[(((AL)1)-id)]-id))]- (ido (T «(1[(((AL)1)-id)]-id)))))]- (AL)1)-id))]) = app

(AL[(A[A[(((A2)1) )] -((AL)[(T A2[((AL)1)-id)]-id))]L[(TAL[(((A1)1)-id)]-id))]}
(1do (T oA1[((AL)1)-id)]-id)))))]- ((AL)1)-id))]) —1ar

(((A)1)-id)]-id))]A[(T A2[(((AL)1)-4d)] -id))]}

(AL[(L[A[(((AD)2)-dd)]- ((AL[(L- ((TAL[(((A1)1)-id)]-id) ) 1)) DA[(T AL[((AL)1) -id)]-id))]}
(Td1[(((AL)1)-id)]-id))))]-((AL)1)-id))]) = Beta

(T o(A)1)-id)]-id) e DI ALI((AD)L)-id)] -id))]-id)}
1)1)-

(AL[A[([(((AL)1) )] (L[((L- (T2 [(((AL)1)-id)]-id) ) T)) o (A[(T AL[(((AL)1)-id)]-id))]-id))}
‘ : 1)-i

( 8
TO(A[(T 0(1[(((/\1) )-id)]-id))]-id))))]-(To(1[(((A1)1)-id)]-id))))]- (AL)1)-id))])

13
Table 1: The counter-example of Mellies
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3.3.2 The counter example of Guillaume

In [Gui00], Guillaume showed that the As.-calculus does not preserve strong normalisation. This is done
from the well typed pure A-term in de Bruijn’s notation:

A(A((AM((A2)3))2))(A((A2)2))1)
which is written in SUBSEXPL system as
L(A(L(A(L(A(L(2),3)),2)),A(L(A(L(2),2)),1)))

The generation of an infinite derivation is done by the following steps. The initial steps of the infinite
derivation, written in the usual grammar of the As.-calculus, is given at the end of this subsection according
to the numbering of these steps.

STEP | RULE | POSITION
1 1 1
2 1 11
3 3 11
4 2 111
5 3 1
6 2 11

Here, the derivation gives the sub-term S(1,3(1,3,2),A(L(A(L(2),2)),1)) which is called ug, and so
up := (3012)a ((A((A2)2))1). We recursively define the following:

Up41 = S(1:S(1’P(2’1:2) ’P(2,O:1)) ’un) ifn Z 0.

The following steps are:

STEP | RULE | POSITION
7 1 1
8 4 111
9 10 11
10 11 11
11 8 1

The current term, L(S(1,S(2,P(2,1,2),up), S(1,P(2,0,A(L(A(L(2),2)),1)),up))) has the term
S(1,P(2,0,A(L(A(L(2),2)),1)),up) as a sub-term, which is written as (©2((A((1\2)2))1)c up) in the lan-
guage of the As.-calculus. This sub-term is important in the characterisation of the infinite reduction.

The following steps are given in the next table:

STEP | RULE | POSITION

12 6 121

13 ) 1211

14 6 12111
15 ) 121111
16 7 1211111
17 1 121

18 3 121

19 2 1211

20 3 12

21 2 121

22 1 12

23 4 1211

24 10 121

25 11 121

26 8 12
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The current term contains the sub-term S(1,P(2,0,uq) ,u1) which can be reduced to
S(1,P(2,0,ACL(ACL(2),2)),1)) ,u1)

according to the table:

STEP | RULE | POSITION
27 11 1221
28 8 122

The current term contains S(1,P(2,0,A(L(A(L(2),2)),1)),u1) as a sub-term which completes the first
cycle of our infinite reduction. Note that we do not have a loop in these reductions because the original
term is never reached again. In fact, the adequate combination of the associated calculus, named s., with
the o-generation rule permits one to start new simulations of S-reduction without finishing previous started
simulations of §-reduction which suggests a kind of cycle. The same happens in the Ao-calculus.

The next cycle is completed when the sub-term

is generated. This is done by repeating the same steps from 12 to 26 in adequate positions. Additional appli-
cations of the rules 11 and 8 (in this order) will be necessary to rewrite terms of the form S(1,P(2,0, ) ,uy,)
as terms containing sub-terms of the form S(1,P(2,0,A(L(A(L(2),2)),1)),u,), for n,m > 0 (cf. [Gui00]).
The next table presents the necessary steps to complete the second cycle:

STEP | RULE | POSITION
29 6 12221
30 ) 122211
31 6 1222111
32 5 12221111
33 7 122211111
34 1 12221
35 3 12221
36 2 122211
37 3 1222
38 2 12221
39 1 1222
40 4 122211
41 10 12221
42 11 12221
43 8 1222

Now we need to reduce the sub-term S(1,P(2,0,u1) ,us2) to a new term having S(1,P(2,0,uq) ,uz) as
a sub-term, from which we get the sub-term
S(1,P(2,0,A(L(A(L(2),2)),1)),u2). The next table includes this reduction:

STEP | RULE | POSITION
44 11 122221
45 8 12222
46 11 1222221
47 8 122222

Note that here, two applications of rules 11 and 8 (in this order) were necessary as is shown in the
previous table. To continue the derivation and generate the sub-term S(1,P(2,0,A(L(A(L(2),2)),1)),u3)
repeat steps 29 to 47 on the adequate positions. Do not forget that additional applications of rules 11 and
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8 will be necessary. The shape of the infinite derivation can be written as
A((A((A((A2)3))2))(A((A2)2))1) ~

(P3((M(A2)2))1)0 o) ~

(G((M(A2)2) 1) ur) ~

(F((AN(A2)2) L)t ug) ~ - -

where ~~ means “leads to a term containing the following expression as a sub-term”.

The latex output of the first 28 steps of the infinite derivation can be automatically generated. To do so,

type the prompt shell command

./subsexpl.bin guillaume (or ./ledit.out ./subsexpl.bin guillaume)
where guillaume is a file distributed with the source code of SUBSEXPL®. The system will generate the
guillaume-1lse.dvi file. The result is shown in the next page which includes the number of the steps and
some subscripts for ease of reading, such as ug and w1, that do not appear in the latex output generated by
the system SUBSEXPL. In this example, the latex code of the output can be found in the guillaume-lse
file.

The animated generation of the initial steps of these infinite derivations inside each calculus gives an
easy-to-understand and more intuitive insight as to why the PSN property fails. In fact, for understanding
these counter-examples (and their importance) directly from the related papers ([Mel95, Gui00]), the reader
needs to follow a sequence of inductively proved lemmas and theorems. This is of course necessary for an
adequate formalisation of this fact, but starting from this approach presumes previous knowledge about
what PSN means and we believe that in this way the reader may lose the focus about the mechanics of these
infinite derivations in the associated substitution calculi. Even worst, the reader may lose a very important
aspect: namely, the meaning and the implications of losing PSN in these calculi. Consequently, we believe
SUBSEXPL is an adequate and useful tool for intuitively understanding the details and difficulties concerned
with this and other general properties of the A-calculus as well as of explicit substitutions calculi.

In [Nad99, LNO02] it has been conjectured that PSN holds in Agysp. But until now, there is neither a
formal proof nor a counter-example of this conjecture. We believe that SUBSEXPL may act as an adequate
tool for reasoning about open questions like this since, every reduction (either from a pure or a non pure
A-term) can be simulated in an easy, fast and secure way in this system.

2 1
0
2 1
0
1

4 Conclusions and future work

We presented the system SUBSEXPL which is an Ocaml implementation of the rewriting rules of the Ao,
the As. and the suspension calculi of explicit substitutions, although according to the current structure the
inclusion of other explicit substitutions calculi can be easily done.

We showed how the system has been applied both to educational and research purposes. Its educational
use includes:

e the visualisation of the computational adequacy of the A-calculus via specification of numerical func-
tions and programming operators;

e the visualisation of (non trivial) properties of the A-calculus such as non terminality and the normali-
sation theorem;

e the illustration of the problem of implicitness of the substitution operator and how this is resolved in
real implementations by explicit substitutions calculi; etc.

To give to students a flavor of the computational power of the A-calculus, we showed how the system can
assist in building computational operators such as iteration, conditionals and repetitions and functions such
as the factorial function. Its research applications includes:

e analysis of non trivial properties of explicit substitutions calculi;

5See www.mat.unb.br/~ayala/TCgroup
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e comparing calculi of explicit substitutions.

The former was illustrated by showing how one can check the proofs of Mellies and Guillaume of the fact
that neither Ao nor As. preserve strong normalisation. The latter by showing how the system assisted us in
the proof that As. is more efficient than the suspension calculus and is incomparable to the Ao-calculus in
the simulation of one-step S-reduction [AMKO5].

Furthermore, SUBSEXPL gives correct implementations of n-reduction for each of the three explicit
substitutions calculi treated here. For the As.-calculus this implementation is also clean, but for Ao and
Asusp (and by the nature of these calculi), the simulation of one-step n-reduction requires the use of rewriting
rules that are not strictly related to this one-step simulation.

Other authors have presented tools which allow for manipulation of A-expressions in a similar way; for
example Huet presented a tool and illustrated how this can be applied for assisting the understanding of
non trivial properties of the A-calculus such as Bohm’s theorem [Hu93]. The novelty of SUBSEXPL with
relation to these applications is that it follows the de Bruijn philosophy of avoiding names, which makes our
tool also adequate for assisting the reasoning about properties of explicit substitution calculi.

As any modern computational system, SUBSEXPL is in constant development and new features should
be included in future versions. Among these features, we can point out the inclusion of variations of the
suspension calculus that combine applications of G-reduction and the development of new modules for dealing
with simply typed A-terms and A-calculus with names. Moreover, we will develop an EMACS mode which
may ease the inclusion of some common structures used to build more complex terms such as, the factorial
function studied in subsection 3.1.

Acknowledgments. We would like to thank Manuel Maarek and Stéphane Gimenez for the useful help
with Ocaml and suggestions to improve the system, and to Marrise Neves da Rocha for the development of
many examples with SUBSEXPL.
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