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0 A-calculus
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A-calculus

@ Syntax:
tbus v,ra=x|Ax.t|tu

@ Evaluation: -reduction
(Ax.t) u —p Hx/uj}
@ Expressiveness: Turing-complete and machine independent.

@ Mathematics: Intuitionistic Logic, Cartesian Closed Categories.

@ Applications:

Functional Languages,
Theorem Provers,

Linguistics,

Polymorphism,
MapReduce.
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@ Some examples of (3-reductions:

o Duplication: (Ax.x x) t —p tt.
o Erasure: (Ax.y)t—p y.

o Linear replacement: (Ax.u x) t —g U L.

@ (-reduction is non-deterministic, but well-behaved, i.e.:

AT - wnz
l l
(Ay.z)u) ((Ay.2)u) — ((Ay.z2)u)z — zZz

@ But 3-reduction may not terminate:

AXXX)AY.yy =g AY.y Y)AY.yy —p Ay.yyIAy.yy...
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e Permutative extension
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@ A-calculus can be extended with permutations of constructors.

@ (3-reduction alone does not allow to postpone erasing steps:

(AXAy.y)tv —p (Ayy)v —p Vv

erasing step
@ One solution: a rule permuting the two As (De Groote, 1993):
(AxAy.tyu —p Ay.((Ax.t)u) ify ¢ fv(u)
@ So that:

AXAy.y)tv —p Ay ((Axy)t) v —p (Axv)t —p Vv

erasing step
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Further examples

Some other cases where A-calculus is extended with some
permutation rules:

@ Studying generalized notions of 3-reduction
(Kamareddine, 2000).

@ Relating A-calculus and Linear Logic Proof-Nets
(Regnier 1992).

© Completeness of CPS-translation for the call-by-value A-calculus
(Sabry & Felleisen, 1992).

© Mapping Moggi’s monadic metalanguage on A-calculus
(Espirito Santo, Matthes & Pinto, 2009).
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Every extension of A-calculus should enjoy:

@ Confluence:

t —* Uy t —* Uy
. implies dv s.t. s s
Uo U —* v

© Preservation of 3-strong normalization (PSN), i.e. no diverging
behaviour is introduced by the extension:

If t terminates with (3 then t terminates with the extension.

The aim of this work:

Unify and generalize all the extensions in the literature
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The generalization

All the mentioned examples use rewriting rules as:

AxAy.tyu — Ay.((Ax.t)u) ify ¢ £v(u)
Mxtviu — (Ax.bHuv if x ¢ £v(v)
Ax.tviu — t((Ax.v)u) if x ¢ £v(t)

Our generalization consist in taking them as equations:

AxAy.tyu =p Ay.(Ax.t)u) ify¢ fv(u)
Axtviu = (Ax.Hyuv if x ¢ £v(v)
Axtviu =p t((Ax.v)u) if x & £v(t)

@ Prove confluence and PSN of 3 modulo =,

© All previous results become instances of our result.
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The permutative A-calculus

The permutative A-calculus As is given by:

@ Syntax:
tLbuvas=x|Axt|tu

@ Evaluation: 3-reduction
(Ax.t) u —p tH{x/u}

Modulo:

AxAy.tyu =p Ay.(Ax.t)u) ify¢ £v(u)
MAxtviu =p (MAx.Huv if x ¢ £v(v)
Axtviu =p t((Ax.v)u) if x & £v(1)

@ =; has a natural justification in terms of Linear Logic.
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The permutative A-calculus

@ A-calculus corresponds to Intuitionistic Logic.

@ Variations on A-calculus usually correspond to different logics
(modal, classical, linear).

@ The permutative A-calculus Ay extends A-calculus within
Intuitionistic Logic.

@ Interest of Ap:

e unifies and generalizes many ad-hoc extensions.
e A;p uses rewriting modulo.

e Confluence and PSN for A; are challenging rewriting problems.
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e Confluence
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Confluence

@ The paper focus on proving confluence of 3 modulo =;.

@ \-calculus does not terminate, so confluence does not reduce
to local confluence (i.e. it is non-trivial).

@ Standard proof-techniques:

@ Parallel reduction (Tait-Martin L6f).

@ Finite (super)developments.

@ Unfortunately, these techniques do not work for  modulo =».
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Some words about developments

@ An abstract development is a function (-)° from terms to terms:
1) t —p uimplies u — t°.

2) t—p uimplies t> —5 u°.

@ If a system admits an abstract development than it is confluent
(Van Oostrom).

@ For confluence modulo one needs also a third property:
3) t=p uimplies t° = u°.

For known notions of development property 3 does not hold.
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© Explicit substitutions
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Proof Technique 1

@ We introduce a new notion of development verifying properties
1-2-3.

@ This notion is defined via a simple calculus of explicit substitutions
(or 1et expressions) refining 3-reduction.

@ A-calculus syntax + explicit substitutions:
tuvi=x|Ax.t|tu]tlx/ul
Meta-notation: 1. := [x1/u4] ... [Xk/uk) with kK > 0.
@ Refined evaluation:

AL u —g tx/UlL
tix/ul —sup  Hx/U}
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Main property

@ The refinement simulates B-reduction:
(Ax.1) U —gs tX/U] —suwp HXx/U}
and so it does not terminate.

@ But each rule of the refinement is terminating and confluent
when considered alone.

@ The refinement is a non-terminating system which is locally
terminating.

@ Main rewriting idea of the paper:

To use local termination to define a new notion of
development.
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Proof Technique 1

@ For every term t there exist normal forms sub(t) and dB(t).
@ The term t°° := sub(dB(t)) is an abstract development.

@ The simple and elegant proof is based on local confluence and
local commutation of — 4z and —gyp.-

@ Moreover, t°° verifies property 3:
t =p uimplies t°° = u®°

@ So the permutative A-calculus is confluent modulo =;.
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Proof Technique 2

@ The proof of property 3 ( t = u implies t°° = u°°) is also based
on a local principle.

@ We define an equivalence =7 on terms with explicit substitutions:
@ =: is transported on =p;:

t — t -

= implies Ju’ s.t. = =n
u u — u

@ =1 is continuos with respect to reduction —:

t - t =t
=q implies Ju’ s.t. =n =
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The equivalence =y

@ The equivalence ===, U =1, is given by :
AxAy.tyu =n, Ay.((Ax.t)u) ify ¢ £v(u)

Ax.tviju =n, (Axtuv if x ¢ £v(v)
Axtv)u =p, t({(Ax.v)u) if x ¢ £v(t)

tix/slly/vl =n,, tly/vilx/s] ifx & fv(v) &y ¢ fv(s)
Ay.(tix/sl) =, (Ay.t)x/s] ify & fv(s)
tix/s] v =n, (tv)x/s] if x ¢ £v(v)

t vix/ul =, (t v)[x/ul if x & £v(t)
tly/vilx/ul =n, ty/vix/ull it x ¢ £v(t)

@ =y, is obtained by elimination of dB-redexes from =p ==, .
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Explaining the equivalence

@ The second equation:
AxAy.tyu =p  Ay.((Ax.t) u)
las las

Ay.bix/ul =m,  Ay.(tix/u)

@ The third equation:
(Ax.t)u)y =p (Ax.(tVv))u

lae las

tix/ulv  =m, (tv)x/ul

@ The first equation is obtained combining the previous two cases.

Accattoli, Kesner ( INRIA and LIX (Ecole Poly The Permutative A-calculus 22/34



Explaining the equivalence

@ The fourth equation:

Ax.tv)u =p t((Ax.v)uU)

Las las

(tv)ix/ul =n, tvix/ul

@ The fifth equation:
(Ay.t) v)lx/ul  =p (Ay.t) vix/ul
las las

tly/vilx/ul - =n,  tly/vix/ull
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Idea of the proof

@ Taking the dB-normal form maps =, on =yy,.
@ Taking the sub-normal form =py, disappear.

@ For instance:

tly/vilx/ul =n,,  ty/vix/ull

lsub J,sub
lsub lsub ]
Hy/viix/up = Hy/vix/uj}

@ Thus t=pu implies dB(sub(t))=dB(sub(u)).
@ The technique also proves confluence of ES modulo =.

@ Actually, in both cases proves Church-Rosser modulo (stronger).
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e Termination
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PSN

@ PSN is a conditional termination property:

if tis 3-strongly normalizing then t is strongly normalizing
modulo =5.

@ Usually, PSN is difficult to prove.
@ Our proof technique:

e Reduce PSN for the permutative A-calculus to ES modulo =iy ,.
e Done via a dB-projection, showed to preserve SN.

e PSN for ES modulo =1, is a recent, non-trivial result of ours
(LMCS).
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Difficulty 1

@ These two equations are problematic:

tvix/ul =m, (tv)ix/ul  ifx & fv(t)
tly/vilx/ul =n, ty/vix/ull it x g £v(t)
@ They are not a strong bisimulation:
Y y/Xlx/z] —sw (X X)[x/Z] —euwp  ZZ
=m, Zm, =

(y Y)ly/xx/z] —ew XIx/ZI X[x/2] —sip—su Z2Z
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Difficulty 2

@ We cheated a bit, PSN does not hold.

@ Let u=(zz)[z/y], then:
t = ulx/ul = (zz)[z/yllx/u] =n, (22)lz/ylx/ull  —c
(z122)1z1/y[x/ulllze/yIx/ull —%  yix/ullylx/ul)  =n,

(yy)Ix¢/ullx/ul =m, Wy)ba/ulx/ull

@ The term t reduces to a term containing t.
@ Loop of the form t —+ Cylt] =1 ColCq[t] —7T .. ..

@ Iy = (Ax.((Az.z 2) y)) ((Az.z 2) y) is SN in A-calculus but it
reduces to t ¢ SN,;.
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Refining the equations

@ So the equations have to be refined:

tvix/u =, (tv)x/u o ifx ¢ £v(t) & x € £v(v)

tly/viix/ul =n, tly/vix/ull ifx ¢ fv(t) & x € fv(v)

@ For this system PSN holds.

@ The following rule can be added without breaking PSN:
tly/vix/ull — tly/vilx/ul  if x & £v(t)

@ For the other direction we do not know.
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Refining the permutative A-calculus

@ The permutative A-calculus suffers from the same problem.

@ The calculus actually is:

(Ax.t)u —p  tHx/u}

AxAy.t)u =p Ay.(Ax.t)u) ify¢ fv(u)

Ax.tviu = Mxtuv if x ¢ £v(v)
t(Ax.v)u) = ((Ax.tVv)u if x ¢ £v(t) & x € £v(Vv)
t(Ax.v)u) —, (Ax.tv)u if x ¢ £v(t)

@ The confluence proof still works.
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Additional comments

@ The PSN result for the structural \-calculus is hard.

@ For the linear substitutions calculus, thanks to better diagrams
(i.e. residual property) it becomes much easier.

@ Some equivalences may be oriented, and the results still holds.
@ The proof of confluence is essentially unchanged.

@ There is a core at a distance sub-calculus computing normal
forms.

@ So the equations can be oriented form left to right or right to
left, indifferently.
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e Conclusions
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Conclusions

@ An extension of A-calculus with equations permuting
constructors, generalizing all previous calculi in the literature.

@ Generality obtained via rewriting modulo.

@ Difficult confluence problem solved in a simple way using an
elementary calculus with explicit substitutions.

@ The refinement:

A-calculus = explicit substitutions
non-termination = local termination

@ Then confluence modulo reduces to local properties.
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THANKS!
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