
The rewriting theory of explicit substitution at a
distance

Beniamino Accattoli

Ecole Polytechnique, LIX

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 1 / 29

Outline

1 Introduction

2 Confluence

3 Refining the calculus

4 Other properties

5 Developments

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 2 / 29

Outline

1 Introduction

2 Confluence

3 Refining the calculus

4 Other properties

5 Developments

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 3 / 29

Discriminating ES calculi

Many calculi of explicit substitutions (ES).

How to discriminate?

Denotational and categorical semantics describe normal forms.
Explicit substitutions can always be executed , getting a λ-term.

Normal forms thus are λ-terms without ES.

Denotational and categorical semantics cannot help.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 4 / 29

Discriminating ES calculi

Explicit substitutions are a purely operational topic.

Our discrimination criterion: logic background and quality of
the rewriting theory .

Logic background : Linear Logic Proof-Nets (previous talk).

Quality of the rewriting theory : properties, insights and
compactness of the proofs.

Challenge: match the beauty of λ-calculus rewriting theory.

Faith: beauty will induce a powerful theory .

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 5 / 29

Outline

1 Introduction

2 Confluence

3 Refining the calculus

4 Other properties

5 Developments

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 6 / 29

Definition

A system S if confluent when:

t →∗ u1 t →∗ u1↓∗ implies ∃v s.t. ↓∗ ↓∗
u2 u2 →∗ v

A system S if locally confluent when:

t → u1 t → u1↓ implies ∃v s.t. ↓ ↓∗
u2 u2 →∗ v

Termination⇒ Confluence = Local Confluence
(Newman’s Lemma).

λ-calculus and calculi with ES do not terminate.
Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 7 / 29

Parallel reductions

Confluence for non-terminating calculi often obtained via parallel
reduction (Tait-Martin-Löf).
Idea: find a new reduction⇒ s.t.:

Extends→: →⊆⇒⊆→∗.

Is parallel (=diamond property=strong confluence):

t ⇒ u1 t ⇒ u1⇓ implies ∃v s.t. ⇓ ⇓
u2 u2 ⇒ v

Parallelism implies⇒ and⇒∗ are confluent.

By 1)⇒∗=→∗
So→ is confluent.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 8 / 29

Residuals

Residuals are a sort of refinement of parallel reduction.

The refinement consist in:

1 Adding a tracing system for redexes.

2 Asking that the redexes reduced to close the diagram can be
traced back to the starting term:

t ⇒R u1 t ⇒R u1⇓S implies ∃v ,R/S,S/R s.t. ⇓S ⇓R/S
u2 u2 ⇒S/R v

S/R is the set of redexes which are residuals of S after R.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 9 / 29

Examples in λ-calculus

Singleton set:
(I I) (I I) ⇒R (I I) I⇓S ⇓R/S

I (I I) ⇒R/S I I

Set:
(λx .xx) (I I) ⇒R (λx .xx) I⇓S ⇓R/S

(I I) (I I) ⇒R/S I I

Empty Set:

(λx .y) (I I) ⇒R (λx .y) I⇓S ⇓R/S
y ⇒R/S y

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 10 / 29

Residuals

The residual property implies confluence (it induces a parallel
reduction).

The advanced rewriting theory of λ-calculus (standardization,
families, optimality) is based on residuals.

Residuals are the right semantic abstraction of being
orthogonal .

Traditionally : a system is orthogonal if it is left-linear and it has
no critical pair .

This is a syntactic definition.

Orthogonality ⇒ residual property , which is why orthogonal
systems are interesting.

But there are systems with residuals which are not orthogonal .

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 11 / 29

The structural λ-calculus λj

Rules:

(λx .t)L u →B−distance t [x/u]L

t [x/u] →weakening t |t |x= 0

t [x/u] →dereliction t{x/u} |t |x= 1

t [x/u] →contraction t[y]x [x/u][y/u] |t |x> 1 & y fresh

λj does not enjoy the residual property .

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 12 / 29

No residuals for λj 1

Consider:

x [y/w] w ← x [z/y y][y/w] →c x [z/y1 y2][y1/w][y2/w]

↓w ↓w
x x [y1/w][y2/w]

The diagram can be closed :

x [y/w] w ← x [z/y y][y/w] →c x [z/y1 y2][y1/w][y2/w]

↓w ↓w
x w ← x [y1/w] w ← x [y1/w][y2/w]

But the two further steps reduce created redexes.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 13 / 29

No residuals for λj 2

Consider:
(xx)[x/z] d ← (xx)[x/y][y/z] →c (x1x2)[x1/y][x2/y][y/z]

↓c ↓c
(x1x2)[x1/z][x2/z] (x1x2)[x1/y1][x2/y2][y1/z][y2/z]

The diagram can be closed :

(xx)[x/z] d ← (xx)[x/y][y/z] →c (x1x2)[x1/y][x2/y][y/z]

↓c ↓c
(x1x2)[x1/z][x2/z] d ← (x1x2)[x1/y1][x2/z][y1/z] d ← (x1x2)[x1/y1][x2/y2][y1/z][y2/z]

But the two further steps reduce created redexes.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 14 / 29

Outline

1 Introduction

2 Confluence

3 Refining the calculus

4 Other properties

5 Developments

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 15 / 29

Milner’s calculus

The linear substitution calculus λls:

(λx .t)L u →dB t [x/u]L

C[x][x/u] →ls C[u][x/u]

t [x/u] →w t x /∈ fv(t)

Is a mix of λj and Milner’s calculus.

It enjoys residuals.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 16 / 29

Residuals for λls

The first critical pair:

x [z/y y][y/w] →ls x [z/w y][y/w]

↓w ↓w
x [y/w] = x [y/w]

The second one:

(xx)[x/y][y/z] →ls (xx)[x/z][y/z]

↓ls ↓ls
(yx)[x/y][y/z] →ls (zx)[x/z][y/z] →ls (zx)[x/z][y/z]

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 17 / 29

Outline

1 Introduction

2 Confluence

3 Refining the calculus

4 Other properties

5 Developments

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 18 / 29

Postponment of erasing steps

In λ-calculus it is not possible to postpone erasing steps:

(λx .λy .y) t v →β (λy .y) v︸ ︷︷ ︸
erasing step

→β v

In λls instead the postponement holds.

w-postponement : t →∗ u then t →∗¬w→∗w u.

λls generalizes Klop’s memory calculus.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 19 / 29

Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29

Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29

Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29

Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29

Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29

Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29

Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29

Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29

Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29

≡o-equivalence

The translation on graphs induces a quotient:

(λy .t)[u/x] ≡ λy .(t [u/x]) if y /∈ fv(u)

(t [u/x]) v ≡ (t v)[u/x] if x /∈ fv(v)

t [x/u][y/v] ≡ t [y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)

Which is a strong bisimulation by construction:

t → t ′↓· ↓·
G → G ′↑· ↑·
s → s ′

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 21 / 29

≡o-equivalence

The translation on graphs induces a quotient:

(λy .t)[u/x] ≡ λy .(t [u/x]) if y /∈ fv(u)

(t [u/x]) v ≡ (t v)[u/x] if x /∈ fv(v)

t [x/u][y/v] ≡ t [y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)

Which is a strong bisimulation by construction:

t → t ′↓· ↓·
G → G ′↑· ↑·
s → s ′

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 21 / 29

≡o-equivalence

The translation on graphs induces a quotient:

(λy .t)[u/x] ≡ λy .(t [u/x]) if y /∈ fv(u)

(t [u/x]) v ≡ (t v)[u/x] if x /∈ fv(v)

t [x/u][y/v] ≡ t [y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)

Which is a strong bisimulation by construction:

t → t ′↓· ↓·
G → G ′↑· ↑·
s → s ′

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 21 / 29

≡o-equivalence

≡o is a reformulation of Regnier’s σ-equivalence.

But ≡o is a strong bisimulation whether σ is not .

Strong bisimulations preserve reduction lengths.

⇒ λj and λls modulo ≡o enjoy PSN .

Church-Rosser modulo also follows.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 22 / 29

≡o-equivalence

≡o is a reformulation of Regnier’s σ-equivalence.

But ≡o is a strong bisimulation whether σ is not .

Strong bisimulations preserve reduction lengths.

⇒ λj and λls modulo ≡o enjoy PSN .

Church-Rosser modulo also follows.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 22 / 29

≡o-equivalence

≡o is a reformulation of Regnier’s σ-equivalence.

But ≡o is a strong bisimulation whether σ is not .

Strong bisimulations preserve reduction lengths.

⇒ λj and λls modulo ≡o enjoy PSN .

Church-Rosser modulo also follows.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 22 / 29

≡o-equivalence

≡o is a reformulation of Regnier’s σ-equivalence.

But ≡o is a strong bisimulation whether σ is not .

Strong bisimulations preserve reduction lengths.

⇒ λj and λls modulo ≡o enjoy PSN .

Church-Rosser modulo also follows.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 22 / 29

≡o-equivalence

≡o is a reformulation of Regnier’s σ-equivalence.

But ≡o is a strong bisimulation whether σ is not .

Strong bisimulations preserve reduction lengths.

⇒ λj and λls modulo ≡o enjoy PSN .

Church-Rosser modulo also follows.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 22 / 29

Composition

In λj there is no rule for composing substitutions:

t [y/v] [x/u] 6→comp t [x/u] [y/v [x/u]]

There is a notion of implicit composition:

t [y/v {x/u}][x/u]

Which can be computed, at a distance, in λj.

For instance:

(x y)[y/x][x/u] →c (x1 y)[y/x2][x1/u][x2/u] →d

(x1 y)[y/u][x1/u] =α

(x y)[y/u][x/u]
Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 23 / 29

Composition

In λj there is no rule for composing substitutions:

t [y/v] [x/u] 6→comp t [x/u] [y/v [x/u]]

There is a notion of implicit composition:

t [y/v {x/u}][x/u]

Which can be computed, at a distance, in λj.

For instance:

(x y)[y/x][x/u] →c (x1 y)[y/x2][x1/u][x2/u] →d

(x1 y)[y/u][x1/u] =α

(x y)[y/u][x/u]
Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 23 / 29

Composition

In λj there is no rule for composing substitutions:

t [y/v] [x/u] 6→comp t [x/u] [y/v [x/u]]

There is a notion of implicit composition:

t [y/v {x/u}][x/u]

Which can be computed, at a distance, in λj.

For instance:

(x y)[y/x][x/u] →c (x1 y)[y/x2][x1/u][x2/u] →d

(x1 y)[y/u][x1/u] =α

(x y)[y/u][x/u]
Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 23 / 29

Composition

In λj there is no rule for composing substitutions:

t [y/v] [x/u] 6→comp t [x/u] [y/v [x/u]]

There is a notion of implicit composition:

t [y/v {x/u}][x/u]

Which can be computed, at a distance, in λj.

For instance:

(x y)[y/x][x/u] →c (x1 y)[y/x2][x1/u][x2/u] →d

(x1 y)[y/u][x1/u] =α

(x y)[y/u][x/u]
Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 23 / 29

Composition

In λj there is no rule for composing substitutions:

t [y/v] [x/u] 6→comp t [x/u] [y/v [x/u]]

There is a notion of implicit composition:

t [y/v {x/u}][x/u]

Which can be computed, at a distance, in λj.

For instance:

(x y)[y/x][x/u] →c (x1 y)[y/x2][x1/u][x2/u] →d

(x1 y)[y/u][x1/u] =α

(x y)[y/u][x/u]
Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 23 / 29

Composition

In λj there is no rule for composing substitutions:

t [y/v] [x/u] 6→comp t [x/u] [y/v [x/u]]

There is a notion of implicit composition:

t [y/v {x/u}][x/u]

Which can be computed, at a distance, in λj.

For instance:

(x y)[y/x][x/u] →c (x1 y)[y/x2][x1/u][x2/u] →d

(x1 y)[y/u][x1/u] =α

(x y)[y/u][x/u]
Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 23 / 29

Outline

1 Introduction

2 Confluence

3 Refining the calculus

4 Other properties

5 Developments

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 24 / 29

Complete Developments

A complete development from a term t is a reduction sequence
in which all and only residuals of redexes that already exist in t are
contracted.
Complete developments are terminating (and confluent).
The result of complete developments can be defined by induction
on the term:

Dev(x) := x

Dev(λx .t) := λx .Dev(t)

Dev((λx .t) u) := Dev(t){x/Dev(u)}

Dev(t u) := Dev(t) Dev(u) if t 6= λ

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 25 / 29

Extending complete developments

Creation of redexes in λ-calculus (Levy):

1) ((λx .λy .t)u) v →β (λy .t{x/u}) v

2) (λx .x)(λy .t) u →β (λy .t) u

3) (λx .C[x v]) (λy .u) →β C{x/λy .u}[(λy .u) v]

1) Creates a redex that was hidden by a λ.

2) The redex was hidden by an identity redex.

3) It is the dangerous kind of creation: the one leading to
divergence.

δ δ creates only redexes of the third kind.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 26 / 29

Superdevelopments

There exists an extension of complete developments which
reduces redexes of type 1 and 2:

1) ((λx .λy .t)u) v →β (λy .t{x/u}) v

2) (λx .x)(λy .t) u →β (λy .t) u

These superdevelopments are convergent and can be defined by
induction, too:

x◦◦ := x
(λx .t)◦◦ := λx .t◦◦

t u◦◦ := t◦◦ u◦◦ if t◦◦ 6= λ

t u◦◦ := t1{x/u◦◦} if t◦◦ = λx .t1

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 27 / 29

Developments

Developments and Superdevelopments can be characterized in
new ways in λls and λj.

The idea is that a (Super)development can be seen as the normal
form of some subreductions of λls or λj.

But two new notions of developments can also be defined.

One reducing only creations of type 1.

One reducing creations of type 1, 2 and a linear case of type 3.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 28 / 29

Conclusions

The linear substitution calculus is the best refinement of
λ-calculus I know of :

Simple: 3 rules;

Solid : propagations can be modularly added;

Expressive: head linear reduction, developments;

Perfect rewriting theory : residuals, short PSN proof.

Logiacl foundation: inspired by Linear Logic,

Graphical syntax : Proof-Nets.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 29 / 29

Conclusions

The linear substitution calculus is the best refinement of
λ-calculus I know of :

Simple: 3 rules;

Solid : propagations can be modularly added;

Expressive: head linear reduction, developments;

Perfect rewriting theory : residuals, short PSN proof.

Logiacl foundation: inspired by Linear Logic,

Graphical syntax : Proof-Nets.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 29 / 29

Conclusions

The linear substitution calculus is the best refinement of
λ-calculus I know of :

Simple: 3 rules;

Solid : propagations can be modularly added;

Expressive: head linear reduction, developments;

Perfect rewriting theory : residuals, short PSN proof.

Logiacl foundation: inspired by Linear Logic,

Graphical syntax : Proof-Nets.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 29 / 29

Conclusions

The linear substitution calculus is the best refinement of
λ-calculus I know of :

Simple: 3 rules;

Solid : propagations can be modularly added;

Expressive: head linear reduction, developments;

Perfect rewriting theory : residuals, short PSN proof.

Logiacl foundation: inspired by Linear Logic,

Graphical syntax : Proof-Nets.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 29 / 29

Conclusions

The linear substitution calculus is the best refinement of
λ-calculus I know of :

Simple: 3 rules;

Solid : propagations can be modularly added;

Expressive: head linear reduction, developments;

Perfect rewriting theory : residuals, short PSN proof.

Logiacl foundation: inspired by Linear Logic,

Graphical syntax : Proof-Nets.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 29 / 29

Conclusions

The linear substitution calculus is the best refinement of
λ-calculus I know of :

Simple: 3 rules;

Solid : propagations can be modularly added;

Expressive: head linear reduction, developments;

Perfect rewriting theory : residuals, short PSN proof.

Logiacl foundation: inspired by Linear Logic,

Graphical syntax : Proof-Nets.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 29 / 29

Conclusions

The linear substitution calculus is the best refinement of
λ-calculus I know of :

Simple: 3 rules;

Solid : propagations can be modularly added;

Expressive: head linear reduction, developments;

Perfect rewriting theory : residuals, short PSN proof.

Logiacl foundation: inspired by Linear Logic,

Graphical syntax : Proof-Nets.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 29 / 29

	Introduction
	Confluence
	Refining the calculus
	Other properties
	Developments

