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Discriminating ES calculi

Many calculi of explicit substitutions (ES).

@ How to discriminate?

Denotational and categorical semantics describe normal forms.
Explicit substitutions can always be executed, getting a A-term.

Normal forms thus are A-terms without ES.

Denotational and categorical semantics cannot help.
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Discriminating ES calculi

Explicit substitutions are a purely operational topic.

Our discrimination criterion: logic background and quality of
the rewriting theory.

Logic background: Linear Logic Proof-Nets (previous talk).

Quality of the rewriting theory: properties, insights and
compactness of the proofs.

Challenge: match the beauty of A-calculus rewriting theory.

Faith: beauty will induce a powerful theory.
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e Confluence
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@ A system S if confluent when:

t =" U t = U
Ls implies Jv s.t. Ls Ls
Uo U —* v

@ A system S if locally confluent when:

t — U t — U4
implies Jv s.t. 1 L«
Uo U —* v

@ Termination = Confluence = Local Confluence
(Newman’s Lemma).

@ A-calculus and calculi with ES do not terminate.
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Parallel reductions

@ Confluence for non-terminating calculi often obtained via parallel
reduction (Tait-Martin-Lo&f).
@ /dea: find a new reduction = s.t.
e Extends —: —C=C—*.

o Is parallel (=diamond property=strong confluence):

I = U I = u
4 implies Jv s.t. |5 [k
7] u = Vv

@ Parallelism implies = and =* are confluent.

@ By 1) =*=—*
@ So — is confluent.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at ¢



Residuals are a sort of refinement of parallel reduction.
The refinement consist in:
@ Adding a tracing system for redexes.

@ Asking that the redexes reduced to close the diagram can be
traced back to the starting term:

t =p U t =R U
Us implies 3v, R/S, S/R s.t. Is lr/s
Uz U2 =smr V

S/R is the set of redexes which are residuals of S after R.
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Examples in A-calculus

@ Singleton set:

0 (1 =g (W1
Us Lr/s

@ Set:
Lr/s
(//)(//) s 1
@ Empty Set:
Ir/s
y =R/S y
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@ The residual property implies confluence (it induces a parallel
reduction).

@ The advanced rewriting theory of A-calculus (standardization,
families, optimality) is based on residuals.

@ Residuals are the right semantic abstraction of being
orthogonal.

@ Traditionally: a system is orthogonal if it is left-linear and it has
no critical pair.

@ This is a syntactic definition.

@ Orthogonality = residual property, which is why orthogonal
systems are interesting.

@ But there are systems with residuals which are not orthogonal.
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The structural A-calculus A5

@ Rules:

()\Xt)L U —B_distance t[X/U]L
t[X/U] —weakening t |t|X: 0
t[X/U] —dereliction t{X/U} |t|X: 1

t[X/U] —contraction t[y]x [X/U] [y/U] |t|x> 1& y fresh

@ )\ does not enjoy the residual property.
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No residuals for A5 1

@ Consider:

xly/wl e xlz/y ylly/wl —c x[z/y1 yollyr/wlly2/w]
Lu Lu
X X[y1/wily2/wi
@ The diagram can be closed:
xly/wl w e xz/y yily/wl  —c  x(z/y1 yellyr/wlly2/w]
L L

X w x[y1/w] w x[y1/wllyz/wl

But the two further steps reduce created redexes.
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No residuals for A5 2

@ Consider:
(xx)[x/z] a— (xx)x/ylly/z] —- (x1x2)[x1/yl[x2/ylly/ 2]
J/C J,c
(x1x2)[x1/2][X2/ 2] (x1x2)[x1 /y1lIxa/ y2lly1 / 2] Y2/ 2]

@ The diagram can be closed:

(xx)[x/z] a4 (xx)[x/ylly /2] —e (x1x2)[x1 /yllxe /ylly /2]
le le

(x1x2)[x1/2lIx2 /2] a = (xyx2)lx1/y1llxa/Zlly1 /2] o  (x1x2)[X1 /y11ix2 /yollys /2]1ys

But the two further steps reduce created redexes.
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e Refining the calculus
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Milner’s calculus

@ The linear substitution calculus A <:
Ax.t)Lu —g tx/ulL
Clxllx/ul —1s Clullx/u]

tix/ul —y X ¢ £v(t)

Is a mix of A5 and Milner’s calculus.

@ It enjoys residuals.
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Residuals for A, .

@ The first critical pair:

x(z/y ylly/wl —1s xlz/w ylly/w]

Lw L
Xly/wl = xly/w]
@ The second one:
(xx)[x/ylly/z] s (xx)[x/zlly/z]
Lis Lis

(yx)x/ylly/zl —1s (2x)[x/2lly/z] —1s (2X)[x/Z]ly/Z]
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e Other properties
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Postponment of erasing steps

@ In A-calculus it is not possible to postpone erasing steps:

(AXAy.y)tv —p (Ayy)v —p Vv

erasing step
@ In Ay, instead the postponement holds.
@ w-postponement: t —* uthen t —%,,—y, U.

@ A; generalizes Klop’s memory calculus.
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Properties of A7

@ Simulation of one-step 3-reduction.
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Properties of A7

@ Simulation of one-step 3-reduction.

@ Strong Normalisation in the typed case.

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at ¢



Properties of A7

@ Simulation of one-step 3-reduction.
@ Strong Normalisation in the typed case.

@ Preservation of 3-strong normalisation (PSN):
if t € SNg, then t € SN,;.
Melliés counter-example out.
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Properties of A7

@ Simulation of one-step 3-reduction.
@ Strong Normalisation in the typed case.

@ Preservation of 3-strong normalisation (PSN):
if t € SNg, then t € SN,;.
Melliés counter-example out.
Short proof!
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@ Simulation of one-step 3-reduction.
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Properties of A7

@ Simulation of one-step 3-reduction.
@ Strong Normalisation in the typed case.

@ Preservation of 3-strong normalisation (PSN):
if t € SNg, then t € SN,;.
Melliés counter-example out.
Short proof!

@ Full Composition:
tix/ul =% t{x/ul.
Without equations!

@ Confluence.
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Properties of A7

@ Simulation of one-step 3-reduction.
@ Strong Normalisation in the typed case.

@ Preservation of 3-strong normalisation (PSN):
if t € SNg, then t € SN,;.
Melliés counter-example out.
Short proof!

@ Full Composition:
tix/ul =% t{x/ul.
Without equations!

@ Confluence.

@ Meta-Confluence (Fabien Renaud, Kesner’s student).
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=,-equivalence

@ The translation on graphs induces a quotient:
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=,-equivalence

@ The translation on graphs induces a quotient:

(Ay.t)lu/x]

Ay.(tlu/x]) ify ¢ £v(u)

(tlu/x]) v

(tv)lu/x]  ifx ¢ fu(v)

tix/ully/vl = tly/vlix/ul ify & fv(u) &x ¢& fv(v)
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=,-equivalence

@ The translation on graphs induces a quotient:

(Ay.t)lu/x]

Ay.(tu/x]) ify ¢ £v(u)

(tlu/x]) v

(tv)[u/x]  ifx ¢ fv(v)

tix/ully/vl = tly/vlix/ul ity ¢ fv(u) & x & fv(v)
@ Which is a strong bisimulation by construction:
t —» t

= ik
G —» G
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=,-equivalence

@ =, is a reformulation of Regnier’s c-equivalence.
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=,-equivalence

@ =, is a reformulation of Regnier’s c-equivalence.

@ But =, is a strong bisimulation whether ¢ is not.
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@ =, is a reformulation of Regnier’s c-equivalence.
@ But =, is a strong bisimulation whether ¢ is not.

@ Strong bisimulations preserve reduction lengths.
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=,-equivalence

=, is a reformulation of Regnier’s oc-equivalence.

But =, is a strong bisimulation whether ¢ is not.

Strong bisimulations preserve reduction lengths.

= Aj and A1 modulo =, enjoy PSN.

Church-Rosser modulo also follows.
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@ In A5 there is no rule for composing substitutions:
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@ In A5 there is no rule for composing substitutions:
tly/vl[x/ul Acomp t [x/ul ly/vix/ul]
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@ In A5 there is no rule for composing substitutions:
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@ There is a notion of implicit composition:

tly/vix/ujllx/ul

Which can be computed, at a distance, in A7.
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@ In A5 there is no rule for composing substitutions:
tly/vl[x/ul Acomp t [x/ul ly/vix/ul]

@ There is a notion of implicit composition:

tly/vix/ujllx/ul

Which can be computed, at a distance, in A7.
@ For instance:

(x Y)ly/xllx/ul  —c (X1 y)ly/xllxi/ullxo/ul  —q
(x1 y)ly/ullxq/ul =

(x y)ly/ullx/ul
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e Developments
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Complete Developments

@ A complete development from a term t is a reduction sequence
in which all and only residuals of redexes that already exist in t are
contracted.

@ Complete developments are terminating (and confluent).
@ The result of complete developments can be defined by induction

on the term:
Dev(x) = X
Dev(Ax.t) ‘= Ax.Dev(t)
Dev((Ax.t) u) := Dev(t){x/Dev(u)}
Dev(t u) == Dev(t) Dev(u) if t #A
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Extending complete developments

@ Creation of redexes in A-calculus (Levy):
1) (AxAy.t)u) v —p  (Ay.tix/u}) v
2) (Ax.xX)Ay.t)u —p (Ay.t)u

3) (Ax.Clx v]) (Ay.u) —p Ci{x/Ay.ull(Ay.u) V]
@ 1) Creates a redex that was hidden by a A.
@ 2) The redex was hidden by an identity redex.

@ 3) It is the dangerous kind of creation: the one leading to
divergence.

@ 0 o creates only redexes of the third kind.
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Superdevelopments

@ There exists an extension of complete developments which
reduces redexes of type 1 and 2:

1) ((AxAy.tiu) v —pg (Ay.tx/u}) v

2) (AMxx)Ay.t)u —p (Ay.t)u

@ These superdevelopments are convergent and can be defined by
induction, too:

x°° = X

(Ax.1)°° = Ax.t°°

tu°° = o ue if £°° £ A
tue° = H{x/u*°} ift°° =Ax.4
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Developments

@ Developments and Superdevelopments can be characterized in
new ways in Ay and Aj.

@ The idea is that a (Super)development can be seen as the normal
form of some subreductions of A;5 or A5.

@ But two new notions of developments can also be defined.
@ One reducing only creations of type 1.

@ One reducing creations of type 1, 2 and a linear case of type 3.
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Conclusions

@ The linear substitution calculus is the best refinement of
A-calculus I know of:
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Conclusions

@ The linear substitution calculus is the best refinement of
A-calculus I know of:

o Simple: 3 rules;

Solid: propagations can be modularly added:;

Expressive: head linear reduction, developments;

Perfect rewriting theory: residuals, short PSN proof.

Logiacl foundation: inspired by Linear Logic,
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Conclusions

@ The linear substitution calculus is the best refinement of
A-calculus I know of:

o Simple: 3 rules;

Solid: propagations can be modularly added:;

Expressive: head linear reduction, developments;

Perfect rewriting theory: residuals, short PSN proof.

Logiacl foundation: inspired by Linear Logic,

Graphical syntax: Proof-Nets.
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