
Variations on a theme: call-by-value and
factorization

Beniamino Accattoli

INRIA & LIX, Ecole Polytechnique

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 1 / 31

Outline

1 Call-by-value λ-calculus

2 Factorization

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 2 / 31

Outline

1 Call-by-value λ-calculus

2 Factorization

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 3 / 31

Call-by-value

Plotkin’s call-by-value λ-calculus:

t ::= V | t t

V ::= x | λx .t

βv rule: (λx .t) V →βv
t{x/V }

Most functional programming languages are CBV .

Most works on λ-calculus are call-by-name (CBN).

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 4 / 31

Call-by-value

Plotkin’s calculus is not satisfactory for various reasons.

Semantic models do not faithful reflect
bueibdivergence.
Let ∆ = λx .xx . Now consider:

M = (λx .∆) (y z) ∆

Semantically M should be divergent , but it is a βv -normal form!

Problem studied by Luca Paolini and Simona Ronchi della
Rocca ("call-by-value solvability").

Another problem: the completeness of CPS-translations.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 5 / 31

λ-calculus and Linear Logic

λ-calculus can be represented in various ways inside Linear Logic.

Two main translations:

1 Call-by-name: (A ⇒ B)n := (!An) (Bn.

2 Call-by-value: (A ⇒ B)v := !(Av (Bv).

Both appear in Girard’s seminal paper (1987)

Girard calls the second boring.

Sad consequence: the CBV-translation is less known and
understood .

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 6 / 31

Call-by-value and Linear Logic

The translations are typed but both can be extended to pure CBN
and CBV λ-calculus by means of recursive types.

Curious fact :
M = (λx .∆) (y z) ∆

diverges when represented in LL Proof-Nets via the CBV
translation (which is good).

Idea: to extract the calculus corresponding to CBV Proof-Nets.

Relation with Proof-Nets requires explicit substitutions.

But here ES are evaluated in just one shot .

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 7 / 31

The value-substitution calculus λvsub

Let L be a possibly empty list [x1/u1] . . . [xn/un].

Define λvsub as:
t ::= V | t t | t [x/u]

V ::= x | λx .t

Rules:
(λx .t)L s →dB t [x/s]L
t [x/VL] →sv t{x/V }L

Note that s needs not to be a value.

Note that explicit substitutions can be reduced only if the content
is a value.
Note the use of distance (i.e. L).

λvsub is confluent .

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 8 / 31

Solvability and explicit substitution

Re-consider the problematic term:

M = (λw .∆) (y z) ∆

Now let’s look at it in our new framework:

(λw .∆) (y z) ∆ →dB ∆[w/y z]∆ →dB

(x x)[x/∆][w/y z] →sv

(∆ ∆)[w/y z] → . . .

M has no nf! (which is good)

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 9 / 31

Herbelin-Zimmerman’s λCBV

There is a similar calculus by Herbelin and Zimmerman, but
without distance.
The syntax is the same, but not the rules:

t ::= V | t t | t [x/u]

V ::= x | λx .t

Operational rules Structural rules

(λx .t) s ⇒ t [x/s]

t [x/V] →letv t{x/V }

t [x/u[y/w]] →letlet t [x/u][y/w]

t [x/u] w →letapp (t w)[x/u]

Note that s needs not to be a value, but:

(λx .t)[y/w] s is not a ⇒ redex.

t [y/V [x/u]] is not a →letv redex.

The structural rules become identities on Proof-Nets.
Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 10 / 31

Simulation

λvsub is an equational sub-calculus of λCBV :

(λx .t)L s →dB t [x/s]L

(λx .t)L s →∗letapp
((λx .t) s)L ⇒ t [x/s]L

t [x/VL] →sv t{x/V }L

t [x/VL] →∗letlet
t [x/V]L →letv t{V/x}L

Thus →λvsub⊆→∗λCBV
.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 11 / 31

Inverse simulation

Apparently, λvsub is strictly contained in λCBV .

These rules cannot be simulated :

t [x/u[y/w]] →letlet t [x/u][y/w]

t [x/u] w →letapp (t w)[x/u]

But this is not quite true...

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 12 / 31

Structural congruence

Let ≡o be the equivalence relation generated by:

t [x/s][y/u] ∼o1 t [y/u][x/s] if x /∈ fv(u)&y /∈ fv(s)

t u[x/s] ∼o2 (t u)[x/s] if x /∈ fv(t)
t [x/s] u ∼o3 (t u)[x/s] if x /∈ fv(u)

t [x/s[y/u]] ∼o4 t [x/s][y/u] if y /∈ fv(t)

≡o contains λCBV structural rules:

t [x/u[y/w]] →letlet t [x/u][y/w]

t [x/u] w →letapp (t w)[x/u]

Operational rules: t →λCBV u implies t →λvsub u.

Structural rules: t →λCBV u implies t ≡o u.

Hence →λCBV⊆ (→λvsub / ≡o).

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 13 / 31

Strong bisimulations

≡o is a strong bisimulation, i.e.:

t t →λvsub t ′

≡o ⇒ ∃ t ′ s.t. ≡o ≡o
u →λvsub u ′ t →λvsub u ′

Rewriting modulo a strong bisimulation preserves confluence
and strong normalisation.

If t ≡o u then t and u map to the same Proof-Net .

Then they can really be considered as the same object .

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 14 / 31

Concluding

In λvsub there is a good match between semantics and
divergence.

Recent work in collaboration with Luca Paolini (FLOPS 2012).

This work gives an operational characterization of
CBV-solvablity (a semantic notion).

The operational characterization uses crucially two factorization
theorems.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 15 / 31

Outline

1 Call-by-value λ-calculus

2 Factorization

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 16 / 31

Confluence

A system S if confluent when:

t →∗ u1 t →∗ u1↓∗ implies ∃v s.t. ↓∗ ↓∗
u2 u2 →∗ v

A system S if locally confluent when:

t → u1 t → u1↓ implies ∃v s.t. ↓ ↓∗
u2 u2 →∗ v

Termination ⇒ Confluence = Local Confluence
(Newman’s Lemma).

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 17 / 31

General Idea

λ-calculus has just one rule:

(λx .t) u →β t{x/u}

which does not terminate.
Explicit substitutions, abstractly :

1 Creation of substitutions: (λx .t)L u →dB t [x/u].

2 Set of rules executing substitutions: t [x/u] →∗ t{x/u}.

Key property : each rule of an ES-calculus terminates.

So ES-calculi are sort of locally terminating systems, which are
globally non-terminating.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 18 / 31

Local termination and confluence

New proof technique for confluence.

Prove local confluence of each rule alone.

Termination gives confluence of each rule.

Hindley-Rosen Lemma: if two reductions →1 and →2 commute:

t →∗1 u1 t →∗1 u1↓∗2 implies ∃v s.t. ↓∗2 ↓∗2
u2 u2 →∗1 v

and are confluent then →1 ∪→2 is confluent .

Prove commutation of each pair of rule.

Termination often reduces commutation to local commutation.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 19 / 31

Local termination

So in ES-calculi a global property as confluence can be reduced
to local confluence and local commutation.

Surprising: in λ-calculus confluence do not reduce to local
confluence.

ES-calculi are more complex than λ-calculus, but local
termination provides new proof techniques.

Another notion which can be localized is factorization.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 20 / 31

Standardization

Termination is about the existence of results.

Confluence is about the unicity of results.
Standardization instead is about how to compute.

It identifies a specific class of reductions to which any other
reduction can be transformed by permuting its steps.

It has many important corollaries, in particular it gives a
normalizing strategy for evaluation.

Many applications require a simpler form, called factorization.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 21 / 31

Factorization

Factorization is a simple form of standardization.

Head contexts in λ-calculus:

H ::= [·] | λx .H | H t

Head reduction →h in λ-calculus is the closure by head contexts
H of:

(λx .t) u 7→β t{x/u}

Internal reduction is the complement of head reduction,
i.e.→i :=→β \ →h.

Factorization theorem:

Every reduction t →∗β u can be re-organized as t →∗h→∗i u

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 22 / 31

Factorization theorem in λ-calculus

At first sight factorization is easy .

Local diagram permutation diagram:

t −→i u99K

h+

⇒ −→
h

v 99K∗i w

Two abstract lemmas, similar to Newman’s, imply the
factorization theorem when:

1 →+
h is composed of at most one step, or

2 →h is strongly normalizing.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 23 / 31

Factorization is non-trivial

Unfortunately, →β lacks both properties.

The sequence →+
h can have length > 1:

(λx .x x) (I I) −→i (λx .x x) I99K

h

⇒ −→
h

(I I) (I I) 99Kh I (I I) 99Ki I I

→h is not strongly normalising:

(λx .x x) λx .x x →h (λx .x x) λx .x x →h . . .

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 24 / 31

Factorization and explicit substitutions

The basic ES-calculus λsub:

(λx .t)L s 7→dB t [x/s]L
t [x/u] 7→s t{x/u}

Define head contexts as:

H ::= [·] | λx .H | H t | H[x/t]

We get four reductions:

→i →h→dB →dBi →dBh→s →si →sh

Remember: they all terminates.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 25 / 31

Factorization for λsub

We get four diagrams:

t −→dBi u99K

∗dBh

⇒ −→

dBh
v 99K∗dBi w

t −→si u99K

∗sh

⇒ −→
sh

v 99K∗si w

t −→si u99K

dBh

⇒ −→

dBh
v 99K∗s w

t −→dBi u99K
sh

⇒ −→

sh
v 99K∗dB w

The abstract lemmas get factorization of each single diagram
(a new abstract lemma is required).

Glueing the obtained local factorizations (easy to do) we get the
factorization theorem for λsub.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 26 / 31

Back to call-by-value

Call-by-value factors with respect to weak reductions.

Weak contexts:

W ::= [·] | W t | t W | W [x/t] | t [x/W]

Weak reduction →w: closure of the rules by weak contexts.

Same technique gives factorization: if t →∗λvsub u then
t →∗w→∗¬w u.

Factorization also with respect to stratified weak reduction,
defined from head-weak contexts H[W].

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 27 / 31

Linear substitution calculus

The linear substitution calculus λls:

(λx .t)L u →dB t [x/u]L

C[x][x/u] →ls C[u][x/u]

t [x/u] →w t x /∈ fv(t)

Head factorization does not hold:

x [x/y [y/z]][z/u] →lsi x [x/z[y/z]][z/u] →lsh x [x/u[y/z]][z/u]

The two steps cannot be permuted .

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 28 / 31

Linear substitution calculus

New notion of head reduction.
We need to refine the notion of head substitution.
Set:

H[x][x/u] (hls H[u][x/u]

Then define linear head reduction as H[(dB] ∪ H[(hls].
The linear substitution calculus enjoys factorization with respect to
linear head reduction.

Linear head reduction can be seen as an abstraction of Krivine
Abstract Machine (Danos and Regnier).

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 29 / 31

Linear Head reduction

Linear head reduction arises naturally and repeatedly in the LL
literature.

First studied in connection with Proof-Nets (Mascari, Pedicini).

Then in semantics: geometry of interaction and game semantics.

Then in connection with the π-calculus (Mazza) and differential
λ-calculus (Ehrhard, Regnier).

Recently it has been shown to induce a measure for complexity
(Accattoli, Dal Lago).

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 30 / 31

THANKS!

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 31 / 31

	Call-by-value -calculus
	Factorization

