Variations on a theme: call-by-value and

factorization

Beniamino Accattoli

INRIA & LIX, Ecole Polytechnique

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

0 Call-by-value A-calculus

e Factorization

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

0 Call-by-value A-calculus

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Call-by-value

@ Plotkin’s call-by-value A-calculus:
=V |tt
V= x| Ax.t
By rule: (Ax.t) V —g tx/V}

@ Most functional programming languages are CBV.

@ Most works on \-calculus are call-by-name (CBN).

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Call-by-value

@ Plotkin’s calculus is not satisfactory for various reasons.

@ Semantic models do not faithful reflect
bueibdivergence.

@ Let A = Ax.xx. Now consider:
M= (Ax.A) (yz) A
Semantically M should be divergent, but it is a 3,-normal form!

@ Problem studied by Luca Paolini and Simona Ronchi della
Rocca ("call-by-value solvability").

@ Another problem: the completeness of CPS-translations.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

A-calculus and Linear Logic

@ A-calculus can be represented in various ways inside Linear Logic.
@ Two main translations:
@ Call-by-name: (A= B)" := (1A") — B".
@ Call-by-value: (A= B)" .= (A" — BY).
@ Both appear in Girard’s seminal paper (1987)
@ Girard calls the second boring.

@ Sad consequence: the CBV-translation is less known and
understood.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Call-by-value and Linear Logic

@ The translations are typed but both can be extended to pure CBN
and CBV A-calculus by means of recursive types.

@ Curious fact:
M= (Ax.A)(y z) A

diverges when represented in LL Proof-Nets via the CBV
translation (which is good).

@ Idea: to extract the calculus corresponding to CBV Proof-Nets.
@ Relation with Proof-Nets requires explicit substitutions.

@ But here ES are evaluated in just one shot.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

The value-substitution calculus A, 5.5

@ Let L be a possibly empty list [x1/uq] ... [Xn/Un].

@ Define Aysup as:
t == V|tt|tx/ul
V = x|Ax.t

@ Rules:
Ax.H)L s —gs tx/s|L
tix/Vil —s Hx/VIL

Note that s needs not to be a value.

Note that explicit substitutions can be reduced only if the content
is a value.

@ Note the use of distance (i.e. L).

@ Aysup IS cOnfluent.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Solvability and explicit substitution

@ Re-consider the problematic term:
M=(AwA)(yz) A

@ Now let’s look at it in our new framework:

(AW.A) (y2) A —a Alw/y ZIA —dB
(x x)Ix/Allw/y z] —sy
(AA)w/y Z] —

@ M has no nf! (which is good)

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Herbelin-Zimmerman’s Acgy

@ There is a similar calculus by Herbelin and Zimmerman, but
without distance.

@ The syntax is the same, but not the rules:

t == V|tt|tx/ul
V = x|Ax.t
Operational rules | Structural rules

(Ax.t)s = tlx/s] tix/uly/wll —et,, tix/ully/w]
tix/VI —er, Hx/V} | tix/ulw —letsyy (T W)[X/U]

@ Note that s needs not to be a value, but:

o (Ax.t)[y/w] s is not a = redex.
o tly/Vix/ull is not a — g, redex.

@ The structural rules become identities on Proof-Nets.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

@ A,sup iS an equational sub-calculus of Agpy:

(Ax.t)L s — B tx/s]L

(Ax.t)L s —>;*etapp (Ax.t) s)L. = tx/slL

tix/ V1] —sv t{x/ViL

tx/VLl =i, tX/VIL e, HV/XIL

® Thus —),,..C—3,,,-

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Inverse simulation

@ Apparently, A, sup is strictly contained in Aqgy.

@ These rules cannot be simulated:

tix/uly/wll —let,, tix/ully/wl

tx/ulw ey, (twW)x/Ul

@ But this is not quite true...

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Structural congruence

@ Let =, be the equivalence relation generated by:

tix/slly/ul ~o, tly/ullx/sl ifx & fv(u)&y & £v(s)
t ulx/s] ~o, (tUu)[x/s] if x & £v(1)
tix/sl u ~os (L U)[X/S] if x & £v(u)
tix/sly/ull ~o, tix/slly/ul ity ¢ £v(t)

@ =, contains Aggy structural rules:

tix/uly/wll —e,, tx/ully/wl
tx/ul w ety (L W)[X/UI

@ Operational rules: t —,, uimplies t —, _, u.

vsub

@ Structural rules: t —y,, Uimplies t =, u.

@ Hence —x., C (—a,u / =o)-

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Strong bisimulations

@ =, is a strong bisimulation, i.e.:

t t o,
= = 3Jt'st =, =,
u —>7\vsub U, t H)\vsub U,

@ Rewriting modulo a strong bisimulation preserves confluence
and strong normalisation.

@ If t =, uthen t and u map to the same Proof-Net.

@ Then they can really be considered as the same object.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Concluding

@ In A,sup there is a good match between semantics and
divergence.

@ Recent work in collaboration with Luca Paolini (FLOPS 2012).

@ This work gives an operational characterization of
CBV-solvablity (a semantic notion).

@ The operational characterization uses crucially two factorization
theorems.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

e Factorization

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Confluence

@ A system S if confluent when:

t —% Uy t —% U
L implies Jv s.t. . s
Uo U —* v

@ A system S if locally confluent when:

t — U t — U
implies 3v s.t. 1 L«
Uo U —* v

@ Termination = Confluence = Local Confluence
(Newman’s Lemma).

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

General Idea

@ A-calculus has just one rule:
(Ax.t) u —p Hx/uj}

which does not terminate.
@ Explicit substitutions, abstractly:

@ Creation of substitutions: (Ax.1)L u —gs t[x/ul.
@ Set of rules executing substitutions: t[x/u] —* t{x/u}.
@ Key property: each rule of an ES-calculus ferminates.

@ So ES-calculi are sort of locally terminating systems, which are
globally non-terminating.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Local termination and confluence

@ New proof technique for confluence.
@ Prove local confluence of each rule alone.
@ Termination gives confluence of each rule.

@ Hindley-Rosen Lemma: if two reductions —¢ and —»> commute:

t =7 U b= U
L2 implies Jv s.t. L2 Li2
U U —7 Vv

and are confluent then —¢ U —» is confluent.
@ Prove commutation of each pair of rule.

@ Termination often reduces commutation to /local commutation.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Local termination

@ So in ES-calculi a global property as confluence can be reduced
to local confluence and local commutation.

@ Surprising: in A-calculus confluence do not reduce to local
confluence.

@ ES-calculi are more complex than A-calculus, but local
termination provides new proof techniques.

@ Another notion which can be localized is factorization.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Standardization

@ Termination is about the existence of results.

@ Confluence is about the unicity of results.
@ Standardization instead is about how to compufte.

@ It identifies a specific class of reductions to which any other
reduction can be transformed by permuting its steps.

@ It has many important corollaries, in particular it gives a
normalizing strategy for evaluation.

@ Many applications require a simpler form, called factorization.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

@ Factorization is a simple form of standardization.

@ Head contexts in A\-calculus:
H:=[]|Ax.H|Ht

@ Head reduction —, in A-calculus is the closure by head contexts
H of:
(Ax.t) u—p t{x/u}

@ Internal reduction is the complement of head reduction,
I'.e.—>,'::—>[3 \ —h-

@ Factorization theorem:

Every reduction t —} u can be re-organized as t —}—7 u

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Factorization theorem in A-calculus

@ At first sight factorization is easy.

@ Local diagram permutation diagram:

c—— ~

174

h+

S§ ¢

*
—— 37
]

<

@ Two abstract lemmas, similar to Newman’s, imply the
factorization theorem when:

@ -} is composed of at most one step, or

@ -, is strongly normalizing.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Factorization is non-trivial

@ Unfortunately, — g lacks both properties.

@ The sequence —>; can have length > 1:

Ax.xx) (I —; Ax.x x) |
L v L
(rnn -y LI —-»; Il

@ —j is not strongly normalising:

(AX.X X) AX.X X —p (AX.X X) AX.X X —p ...

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Factorization and explicit substitutions

@ The basic ES-calculus A5 p:

(Ax.H)L's g tx/SIL
tx/ul s Hx/u}

@ Define head contexts as:
H:=[]1|Ax.H|Ht|Hx/t
@ We get four reductions:
| =i o

—dB | —?dBi ~—’dBh
—s —si —sh

@ Remember: they all terminates.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Factorization for Ay,

@ We get four diagrams:

¢ —api U t —si U
| |
| |
¥xdBh Z Jdgh vxsh Lh
* *
4 e W v - W
t rsi U t *qpi U
| |
| |
samn ¥ lch s ¥ Lh
v -t W Vool W

@ The abstract lemmas get factorization of each single diagram
(a new abstract lemma is required).

@ Glueing the obtained local factorizations (easy to do) we get the
factorization theorem for Agp.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Back to call-by-value

@ Call-by-value factors with respect to weak reductions.

@ Weak contexts:
We=[]|Wt[tW]|Wix/tl|tx/W]
@ Weak reduction —,: closure of the rules by weak contexts.

@ Same technique gives factorization: if t —5 uthen
t—r—=r, U

@ Factorization also with respect to stratified weak reduction,
defined from head-weak contexts H[W].

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Linear substitution calculus

@ The linear substitution calculus A :
Ax.t)Lu —g tx/ulL
Clxllx/ul —i1s Clullx/u]

tlx/ul —w x & fv(t)

@ Head factorization does not hold:

xIx/yly/zlllz/ul —si xx/zly/zlllz/u] —.1sn X[x/uly/2]][z/u]

The two steps cannot be permuted.

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Linear substitution calculus

@ New notion of head reduction.
@ We need to refine the notion of head substitution.

@ Set:
Hix][x/u] —hls Hlullx/u]

@ Then define linear head reduction as H[—o4z] U H[— h1s].

@ The linear substitution calculus enjoys factorization with respect to
linear head reduction.

@ Linear head reduction can be seen as an abstraction of Krivine
Abstract Machine (Danos and Regnier).

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

Linear Head reduction

@ Linear head reduction arises naturally and repeatedly in the LL
literature.

@ First studied in connection with Proof-Nets (Mascari, Pedicini).
@ Then in semantics: geometry of interaction and game semantics.

@ Then in connection with the t-calculus (Mazza) and differential
A-calculus (Ehrhard, Regnier).

@ Recently it has been shown to induce a measure for complexity
(Accattoli, Dal Lago).

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto 30/31

THANKS!

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and facto

	Call-by-value -calculus
	Factorization

