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Abstract. The intruder deduction problem for an electronic purse pro-
tocol with blind signatures is considered. The algebraic properties of the
protocol are modeled by an equational theory implemented as a con-
vergent rewriting system which involves rules for addition, multiplica-
tion and exponentiation. The whole deductive power of the intruder is
modeled as a sequent calculus that, modulo this rewriting system, deals
with blind signatures. It is proved that the associative-commutative (AC)
equality of the algebraic theory can be decided in polynomial time, pro-
vided a strategy to avoid distributivity law between the AC operators is
adopted. Moreover, it is also shown that the intruder deduction problem
can be reduced in polynomial time to the elementary deduction problem
for this equational theory.

1 Introduction

Cryptographic protocols are programs designed to ensure secure communication
over computer networks. A cryptographic protocol involves some cryptographic
algorithm, but generally the goal of the protocol is something beyond a simple
secrecy. The parties participating of the protocol might want share parts of
their secrets to compute a value, jointly generate a random sequence, convince
one another of their identity, our simultaneously sign a contract. The objective
of using cryptography in a protocol is to prevent or detect eavesdropping and
cheating.

By formalizing protocols, one can examine ways in which dishonest parties
can subvert them and then develop protocols that are immune to that subver-
sion. These protocols use cryptographic primitives such as public and symmetric
encryption, functions that are based on mathematical notions, such as modular
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exponentiation and multiplication, and algorithmically hard problems such as
the difficulty of calculating discrete logarithms in a finite field.

One of the main challenges in cryptography is to formally verify the secu-
rity of the cryptographic models taking into account the algebraic properties
of the cryptographic primitives. Cryptographic protocols may themselves make
use of algebraic properties, which makes it impossible to describe protocols in
models that do not handle algebraic properties. A list of algebraic properties
used in cryptographic protocols is surveyed in [7]; for instance, the associativ-
ity is necessary in Needham-Schoreder-Lowe Modified Protocol, exclusive-or is
used in Bull’s protocol [5]. Another interesting equational theory, which is the
focus of this work is the theory composed by the properties of Abelian groups
and modular exponentiation, this is the case of Schnorr’s, the Multi-Authority
Secret Ballot Election and the Electronic Purse Protocols (EPP) [6, 8].

For studying the EPP, the representation of an execution of the protocol
requires the addition of several algebraic properties, which makes its modeling
a very complex problem. In order to build the equational theory, one has to
consider the Abelian group properties of multiplication and addition and also
the properties of modular exponentiation. Unfortunately, a theory having both
multiplication and exponentiation properties, together with the distributivity
laws, yields undecidability of unification, as was shown by Kapur et alii in [9].
In order to obtain decidability of the unification problem, it was necessary to
restrict the axioms used in the execution of the protocol. Therefore, to avoid
the distributivity axiom, exponentials are not multiplied to each other and an
additional homomorphism axiom is included into the equational theory. These
changes allows the study of the intruder deduction problem for this protocol,
which is known to be polynomially decidable [6].

In this work, the EPP is improved allowing blind signatures. Blind signa-
tures are useful to authenticate documents and authorize transactions without
knowing their contents as is done, for example, by the election authorities in
electronic voting protocols.

In [12] deductive techniques for dealing with a protocol with blind signatures
in which mutually disjoint equational theories containing a unique AC operator
each are considered. In that paper the intruder capability of deduction is modeled
inside a sequent calculus modulo a rewriting system that models the algebraic
deductive power following the approach in [3]. The intruder deduction problem
can be reduced in polynomial time to the elementary deduction problem (EDP).
The restriction on the AC operators to belong to mutually disjoint theories is
essential to guarantee polynomiality.

In this work the techniques in [12] are combined with the ones in [6] in order
to model an EPP with blind signatures and it is proved, adapting the techniques
in these works, that the intruder deduction problem can be also polynomially
reduced to the EDP. Instead combining several disjoint equational theories as
in [12], the algebraic power is modeled by a unique equational theory, which
has more than one AC operator. This is achieved presenting a polynomial al-
gorithm that decides AC equality of the operators used to model the protocol.
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Detailed proofs are included in an extended version of this paper available at
http://ayala.mat.unb.br/publications.html.

Section 2 presents the necessary notions about the considered protocol as well
as how it is modeled: firstly, the protocol is described in detail; afterwards, the
equational theory and the associated convergent rewriting system are presented;
finally, the cut-free sequent calculus that models the intruder deduction is intro-
duced. Before concluding, Section 3 introduces the notion of normal derivations
that is useful to present a linear inference system for the intruder. This system
is necessary to prove polynomial reduction to the EDP.

2 Modeling Intruder Deduction for the Electronic Purse
Protocol with Blind Signatures

It is assumed basic knowledge on cryptography and rewriting (e.g, [2, 4, 11]). In
the following, an important security problem in presence of a passive eavesdrop-
per will be considered, the so-called intruder deduction problem: given a finite
set of messages Γ and a message M , is it possible for the intruder to retrieve M
from Γ by using his deduction capabilities?

2.1 Syntax

The signature adopted consists of a set of function symbols, composed by the
union of the set

ΣC = {pub( ), sign( , ), blind( , ), { } , < , >}

representing the constructors, whose interpretations are:

– pub(M) gives the public key generated from a private key M ;
– blind(M,N) gives M encrypted with N using blinding encryption;
– sign(M,N) gives M signed with a private key N ;
– {M}N gives M encrypted with the key N using Dolev-Yao symmetric en-

cryption and;
– 〈M,N〉 constructs a pair of terms from M and N .

In addition, the signature includes the set of symbols ΣEP associated with
the equational theory EP. It is also required that ΣEP ∩ΣC = ∅.

The equational theory EP contains three different AC symbols, which will be
denoted by {+, •, ?}, obeying the standard Abelian group laws and also some
axioms for exponentiation. The signature of EP contains three constant symbols
for the neutral elements, e◦, three for the inverse functions, J◦( ), associated with
each of the AC symbols: ◦ ∈ {+, •, ?}. In addition, EP contains two symbols for
exponentiation h( ) and exp( , ) whose rules will be presented in the Subsection
2.2. Messages are built over countably infinite sets of names N and variables V.
As notational convention names will range over the first and variables over the
last letters of the Roman alphabet.



4 D.N. Sobrinho and M. Ayala-Rincón

Then the grammar of the set of terms or messages is given as

M,N := a | x | pub(M) | sign(M,N) | blind(M,N) | {M}N | 〈M,N〉 |

M +N |M •N |M ?N | e+ | e• | e? | J+(M) | J•(M) | J?(M) |

exp(M,N) | h(M)

As in [12], some definitions related to terms are necessary, for instance, a
term M is said to be an EP-alien term if M is headed by a symbol f /∈ ΣEP.M
is guarded if it is either a name, a variable, or a term headed by a constructor.
It is a pure EP-term if it contains only symbols from ΣEP, names and variables.

A context is a term with holes. Ck[ ] denotes a context with k-hole(s). An
EP-context is a context formed using only function symbols in ΣEP.

2.2 The Electronic Purse Protocol: the equational theory EP

This protocol, as presented in [6], allows the transaction between an electronic
purse and a server. It aims to guarantee a good level of security, using asymmetric
cryptography and with a small cost. It involves three agents: the electronic purse
EP, a server S and a trusted autority A, which is involved in case of claims of
either party only and consequently is not considered here.

Let b and r denote two public positive integers. The public key of EP is
bs mod r, where s is its private key. Initially, there is a phase during which the
server authenticates itself, that is not considered here, since it does not make use
of algebraic properties. After this phase, the electronic purse EP authenticates
itself with the server S and performs the transaction:

Step 1. EP computes the message M = {S,NS , NEP ,Mt}KA(P ) (which is used
in case of conflict only);

Step 2. EP sends to the server S: hash(bN mod r, S,Ns,M,Mt), where Mt is the
amount payed;

Step 3. The server S challenges EP sending a nonce Nc;

Step 4. EP sends back N − s×Nc,M,Mt and subtract Mt from his account;

Step 5. S checks that the the message received at the second step is consistent
with the message received at the fourth step and then increases its ac-
count in the amountMt. S also stores the messagesM,NS , NEP and Mt.

The most important and difficult step is Step 5, since S should be able
to verifify consistence of the previous steps. For doing it, S shold perform the
following operations:

hash((bs)Nc × bN−s×Ncmodr, S,NS , NEP ,M,Mt) =

hash(bs×Nc × bN−s×Ncmodr, S,NS , NEP ,M,Mt) =

hash(bs×Nc+N−s×Ncmod r, S,NS , NEP ,M,Mt) =

hash(bNmod r, S,NS , NEP ,M,Mt)
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In addition to Abelian group properties for both × and +, the following
equational properties are used:

exp(exp(b, y), z) = exp(b, y × z) and exp(b, x)× exp(b, y) = exp(b, y + z)

This introduces a problem because the properties

(1) exp(exp(x, y), z) = exp(x, y × z)

(2) exp(x, y)× exp(x, z) = exp(x, y + z)

derive distributivity of exponentiation over the multiplication operator. In fact:

exp(exp(x, y1)× exp(x, y2), z) =2 exp(exp(x, y1 + y2), z)

=1 exp(x, (y1 + y2)× z)

= exp(x, y1 × z + y2 ×z)

=2 exp(x, y1×z)× exp(x, y2 × z)

=1 exp(exp(x, y1), z)× exp(exp(x, y2),z)

Consequently, the unification and hence security becomes undecidable (e.g.
[9]). Since exponential needs to be applied to constant bases only, to solve this
problem an additional unary function symbol h is adopted, whose meaning is
h(x) = exp(b, x). This adaptation will provide an equational theory EP with
decidable unification problem [6].

Actually, the distributivity rule does not need to be considered. The following
restriction to a homomorphism axiom is sufficient: h(x) • h(y) = h(x+ y).

Thus, the equational theory EP used to model the protocol is composed by
the following equational axioms:

AG(+, J+, e+) h(x) • h(y) = h(x+ y)

AG(?, J?, e?) exp(h(x), y) = h(x ? y)

AG(•, J•, e•) exp(exp(x, y), z) = exp(x, y ? z)

where AG(◦, J◦, e◦) are the axioms of Abelian groups for ◦ ∈ {•,+, ?}.
These equational axioms are sufficient for modeling the protocol. The follow-

ing equalities express the main test executed by the server (during Step 5):

exp(h(s), Nc) • h(N + J+(s ? Nc)) = h(s ? Nc) • h(N + J+(s ? Nc))

= h(s ? Nc +N + J+(s ? Nc))

= h(N)

The role of the two multiplication used is to differentiate between the multi-
plication in the basis of exponentials and the multiplication of exponents.
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2.3 The convergent rewriting system R equivalent to the equational
theory EP

Standard rewriting notation and notions are used (e.g. [2,4]). A rewriting system
is a set R of oriented equations over terms in a given signature. For terms s and
t, s→R t denotes that s rewrites into t using one application of a rewriting rule
in R. The inverse of →R is denoted by R←. The transitive, reflexive-transitive
and equivalence closures of →R are denoted by +→R,

∗→R and ∗↔R, respectively.
Analogously, the transitive and reflexive-transitive closures of R← are denoted
by R

+← and R
∗←, respectively. The equivalence clousure of the rewriting relation,

∗↔R, is also denoted by ≈R. Composition of relations is denoted by ◦.
A term s is in R-normal form if there is no term t such that s →R t; s ↓R

denotes a normal form of s (i.e., a term t such that s→R t and t is in R-normal
form).
R is said to be convergent whenever it is terminant and confluent, i.e., re-

spectively:

there is no infinite chain s0 →R s1 →R s2 · · · and

(R← ◦ →R) ⊆ ( ∗→R ◦ R
∗←)

Given an equational theory E, it is said that E is equivalent to R whenever
≈R = ≈E . Subscripts are omitted when they are clear from the context.

The rewriting systemR associated with the equational theory EP, introduced
in [6], has as signature

ΣEP = {+, e+, J+, ?, e?, J?, •, e•, J•, h, exp}

and consists of the union of the rewriting systems below.
RAG(◦), for ◦ ∈ {+, ?, •}, denotes the rewriting system modulo AC for ◦,

given by the set of rules:

RAG(◦) :=



x ◦ e◦ → x

J◦(x) ◦ J◦(y)→ J◦(x ◦ y)

J◦(J◦(x))→ x

J◦(x) ◦ J◦(y) ◦ z → J◦(x ◦ y) ◦ z

J◦(x ◦ y) ◦ x ◦ z → J◦(y) ◦ z

x ◦ J◦(x)→ e◦

J◦(e◦)→ e◦

J◦(x) ◦ x ◦ y → y

J◦(x ◦ y) ◦ x→ J◦(y)

J◦(J◦(x) ◦ y)→ x ◦ J◦(y)

R0 is given by the rules.

R0 :=



exp(h(x), y)→ h(x ? y)

exp(exp(x, y), z)→ exp(x, y ? z)

h(x) • h(y)→ h(x+ y)

h(x) • h(y) • z → h(x+ y) • z

J•(h(x))→ h(J+(x))

h(e+)→ e•

J•(h(x) • y)→ h(J+(x)) • J•(y)

exp(e•, x)→ h(e+ ? x)
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The rewriting system R := RAG(?)∪RAG(•)∪RAG(+)∪R0 was proved conver-
gent modulo AC in [6]. This implies that any equational theorem in EP, namely,
s =EP t, can be effectively proved using R, by normalizing s: s ∗→R s ↓, and t:
t
∗→R t↓, and checking whether s↓=AC t↓.

2.4 Sequent calculus for the intruder

The set of inference rules S for the intruder deduction, presented in Table 1 is
essentially the same as in [12], except that the (id) rule considers the equational
theory EP and the symbol =AC will be interpreted as equality modulo AC for
the operators {+, ?, •}.

Table 1. System S : Sequent Calculus for the Intruder

M≈EPC[M1,...,Mk]

C[ ] an EP-context, and M1, . . . ,Mk ∈ Γ
(id)

Γ `M

Γ `M Γ,M ` T
(cut)

Γ ` T

Γ, 〈M,N〉 ,M,N ` T
(pL)

Γ, 〈M,N〉 ` T
Γ `M Γ ` N (pR)

Γ ` 〈M,N〉

Γ, {M}k ` K Γ, {M}k ,M,K ` N
(eL)

Γ, {M}k ` N
Γ `M Γ ` K (eR)

Γ ` {M}k

Γ ,sign(M,K), pub(L),M ` N
(signL)K =AC L

Γ ,sign(M,K), pub(L) ` N

Γ `M Γ ` K (blindR)
Γ ` blind(M,K)

Γ `M Γ ` K (signR)
Γ ` sign(M,K)

Γ ,blind(M,K) ` K Γ ,blind(M,K),M,K ` N
(blindL1)

Γ ,blind(M,K) ` N

Γ, sign(blind(M,R),K) ` R Γ, sign(blind(M,R),K), sign(M,K), R ` N
(blindL2)

Γ ,blind(M,K) ` N

Γ ` A Γ,A `M
(gs), A is a guarded subterm of Γ ∪ {M}

Γ `M

As in [12], the rule (gs), called analytic cut, is necessary to introduce the
function symbols in ΣEP. This rule is necessary to “abstract” EP-alien subterms
in a sequent in order to prove cut rule admissibility.
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A sequent Γ `M is in normal form if M and all the terms in Γ are in normal
form. Unless stated otherwise, it is assumed that sequents are in normal form.
Moreover, Γ 
S M denotes that the sequent Γ `M is derivable in S.

Definition 1 (Admissible rules). An inference rule R in a proof system D is
admissible for D if for every sequent Γ `M derivable in D, there is a derivation
of the same sequent in D without instances of R.

Admissibility of the cut rule holds. The proof is based on induction on the
height of the left premise derivation immediately above the cut rule as in [12].

Theorem 1 (Admissibility of the cut rule). The cut rule is admissible for
S.

Proof (Sketch). The cut reduction is driven by the left premise derivation of
the cut. The proof is divided in several cases, based on the last rule of the left
premise derivation.

For instance, suppose the left premise of the cut ends with the (id)-rule :

(id)
Γ `M

Π1

Γ,M ` R
(cut)

Γ ` R
where M = C[M1, . . . ,Mk] ↓, C[. . .] is an EP-context and M1, . . . ,Mk ∈ Γ . By
induction hypothesis Γ,M ` R is cut-free derivable, hence applying a lemma
of preservation of S-derivability on the decomposition of EP-contexts to Π1 one
can obtain a cut-free derivation Π ′ of Γ ` R. ut

3 Elementary Intruder Deduction Under the EP Theory

The decidability of the intruder deduction problem for the EPP without blind
signatures is already known to be polynomial [6]. This result was obtained fol-
lowing McAllester’s approach which states that there is a polynomial algorithm
provided a locality property for the inference rules is guaranteed [10]. Here, the
techniques in [12] are followed to prove that the decidability result for the EPP
with blind signatures can be reduced to the EDP.

For doing this, it is necessary an improvement on the boundary created to
guarantee the locality property for the intruder’s rules for the EPP in [6], in
which all intermediate formulas contained in every derivation were bounded by
a notion of subterms involving only terms in the signature ΣEP. Here, since one
deals with the system S and terms headed by constructors are allowed inside the
(id) rule, a new bound will be necessary to preserve the subformula property.
This bound is built as a combination of the previous notion of subterms and the
saturated set of Γ (intruder’s knowledge).

Definition 2 (Elementary deduction problem). The elementary deduction
problem for EP, written Γ 
EP M , is the problem of deciding whether the (id)
rule is applicable to the sequent Γ ` M , by checking whether there exists an
EP-context C[. . .] and terms M1, . . . ,Mk ∈ Γ such that C[M1, . . . ,Mk] ≈EP M .
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For ◦ ∈ {?, •,+} define inv◦(u) as the term J◦(u) ↓. The following definitions
are essential for the next results.

Definition 3. Denote by top(t) the root symbol of the term t. TOP(u) is defined
recursively as

TOP(t) :=



◦, if t = J◦(u ◦ v), for ◦ ∈ {?, •,+}

•, if t = h(v + w)

•, if t = h(J+(v + w))

top(t), otherwise.

Definition 4 (EP-decomposition subterms). Let ◦ ∈ {?, •,+}, the set of
EP-decomposition subterms, denoted by DS◦(u), is defined as

1. DS◦(u ◦ v) = DS◦(u) ∪DS◦(v),

2. DS◦(J◦(u)) = {J◦(v)|v ∈ DS◦(u)},
3. DS•(h(u)) = {h(v)|v ∈ DS+(u)}, and

4. DS◦(u) = {u} if TOP(u) 6= ◦.

Definition 5 (EP-subterms). Let t be a term in EP-normal form, Sub(t) is
the smallest set of terms such that t ∈ Sub(t) and if u ∈ Sub(t) then

1. either ◦ = TOP(u) ∈ {?, •,+} and DS◦(u) ⊆ Sub(t)
2. or else u = f(u1, . . . un) and u1, . . . , un ∈ Sub(t).

If T is a set of terms, Sub(T ) is defined as: Sub(T ) :=
⋃
u∈T

Sub(u).

Although the modifications made in the (id) rule, it is possible to see that
this rule still preserves the subformula property : in any sequent Γ `M derivable
using the new (id) rule only subformulas of Γ and M occur. In order to obtain
this property it is necessary a suitable notion of subterms F , which is a function
that associates a term to the set of its subterms.

The function above is basically the same introduced by Bursuc et alii in
[6] except by a slight alteration in the subset {inv◦(t) | t ∈ Sub(T ),TOP(t) ∈
{?,+, •}} used in the composition of F .

F (T ) = Sub(T )

∪{h(t) | t ∈ Sub(T ),TOP(t) = +}

∪ {h(inv+(t) | t ∈ Sub(T ),TOP(t) = +}

∪ {inv◦(t) | t ∈ Sub(T ),TOP(t) ∈ {?,+, •}}

∪ {h(t) | ∃ t ∈ Sub(T ) s.t. TOP(u) = ◦ ∈ {?,+} , t ∈ DS◦(u)}

∪ {inv◦(t) | ∃u ∈ Sub(T ) s.t. TOP(u) = ◦ ∈ {?,+, •} , t ∈ DS◦(u)}

∪ {h(inv◦(t)) | ∃u ∈ Sub(T ) s.t. TOP(u) = ◦ ∈ {?,+} , t ∈ DS◦(u)}
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Notice that the size of F (T ) is linear in the size of T .
Nevertheless the cut-free system S does not enjoy the subformula property,

since in (blindL2) the premisse has a term which is not a subterm of any term in
the conclusion. Notice that reading the rules bottom up, the terms introduced
are smaller than the terms in the conclusion. Thus a proof search strategy will
eventually terminate.

Normal derivations in a deduction system satisfy the following conditions: left
rules appear neither above a right rule nor immediately above the left-premise
of a branching left rule.

Γ 
R M denotes the fact that the sequent Γ ` M is provable using only
right rules and (id). The system L given in Table 2 is a linear deduction system
for the intruder. The difference with the system in [12] is essentially the new
interpretation of the (id) rule and the equality modulo AC used in the rule (sign).

Table 2. System L: a linear proof system for intruder deduction

Γ 
R M
(r)

Γ `M
Γ, {M}K ,M,K ` N

(le), where Γ, {M}K 
R K
Γ, {M}K ` N

Γ, 〈M,N〉 ,M,N ` T
(lp)

Γ, 〈M,N〉 ` T
Γ ,sign(M,K), pub(L),M ` N

(sign), K =AC L
Γ ,sign(M,K), pub(L) ` N

Γ , blind(M,K), M , K ` N
(blind1), Γ , blind (M,K) 
R K

Γ , blind (M,K) ` N

Γ , sign(blind(M,R),K), sign(M,K), R ` N
(blind2), Γ , sign(blind(M,R),K) 
R R

Γ , sign(blind(M,R),K) ` N

Γ,A `M
(ls), where A is a guarded subterm of Γ ∪ {M} and Γ 
R A

Γ `M

Standard DAG representation of Γ with maximum sharing of subterms is
assumed (see, e.g. [1]). As in [12], st(Γ ) denotes the set of subterms of the
terms in Γ . A term M is a proper subterm of N if M is a subterm of N and
M 6= N . Denote with pst(Γ ) the set of proper subterms of Γ , and define

sst(Γ ) = {sign(M,N) |M,N ∈ pst(Γ )}.

The saturated set of Γ with respect to EP, written St(Γ ), is the set

St(Γ ) = Γ ∪ pst(Γ ) ∪ sst(Γ ) ∪ F (Γ )

As in [12], the next complexity results are stated with relation to the size of
St(Γ ∪ {M}) combined with the notion of EP-subterms.
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Definition 6 (Polynomial reducibility to elementary deduction). Let
Γ 
L M be a deduction problem and let n be the size of St(Γ ∪ {M}). Suppose
that the EDP in EP has complexity O(f(m)), where m is the size of the input.
The problem Γ 
L M is said to be polynomially reducible to the EDP 
EP if it
has complexity O(nk × f(n)) for some constant k.

In order to adapt the proof of the following lemma from [12] it is only
necessary to interpret the (id) rule inside the equational theory EP.

Lemma 1 (
R reducible polynomially to 
EP). The decidability of the re-
lation 
R is polynomially reducible to the decidability of elementary deduction

EP.

Proof. It is enough to assume a simple proof search procedure for Γ `M using
only right-rules:

1. If Γ `M is elementary deducible, then the lemma holds.

2. Otherwise, apply a right-introduction rule (backwards) to Γ `M and repeat
step 1 for each obtained premise. If no such rules are applicable, then Γ `M
is not derivable.

Notice that the number of iterations is bound by the number n of distinct sub-
terms of M and that elementary deducibility is checked on problems of size less
or equal to n. ut

In order to prove the main result, one has to consider the notion of a principal
term in a left-rule in the proof system L which was defined in [12]. Given a
sequent Γ `M and a pair of principal-term and left-rule (N, ρ), the pair (N, ρ)
is applicable to the sequent if

– ρ is (ls), N is a guarded subterm of Γ ∪ {M}, and there is an instance of ρ
with Γ,N `M as its premise;

– ρ is not (ls), N ∈ Γ , and there is an instance of ρ with Γ ` M as its
conclusion.

Assume that the complexity of 
E is O(f(n)) and let n be the size of St(Γ ∪
{M}) . Given a sequent Γ `M and a pair (N, ρ), observe the following facts:

F1. the complexity of checking whether (N, ρ) is applicable to Γ ` M is equal
to O(nlf(n)) for some constant l;

F2. if (N, ρ) is applicable to Γ ` M , then there is a unique sequent Γ ′ ` M
such that the sequent below is a valid instance of ρ:

Γ ′ `M ρ
Γ `M
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For F1 it is necessary to assume DAG representation of sequents with max-
imal sharing of subterms. The complexity of checking if a rule is applicable or
not then consists of: pointer comparisons; pattern match a subgraph with a rule;
checking equality modulo AC (for the rule sign); checking 
R. Pointer compar-
isons and pattern matching can be done in polynomial time and checking 
R
is polynomially reducible to 
EP (Lemma 1). The following result shows the
polynomiality of the third operation.

Lemma 2 (=AC is polynomially decidable). Let M,N terms in normal
form. The problem whether M =AC N is decidable in polynomial time.

Proof. By induction on the structure of M . Suppose that M = f(M1, . . . ,Mn).

1. If f /∈ {+, ?, •} it is enough to apply induction hypothesis to the subterms
M1, . . . ,Mn of M .

2. Suppose f ∈ {+, ?}. To make the computation easier, write: M = M1 ◦M2 ◦
. . . ◦Mn. Since M is in normal form and according to the rewrite rules,

M = M ′1 ◦M ′2 ◦ . . . ◦M ′k ◦ J◦(M”1 ◦M”2 ◦ . . . ◦M”s)

It is possible to count the occurrences of each subterm in M . Hence,

M = α1M
′
1 ◦ α2M

′
2 ◦ . . . αp ◦M ′p ◦ J◦(β1M

′′
1 ◦ β2M

′′
2 ◦ . . . ◦ βqM ′′q )

where α1, . . . , αp, β1, . . . , βq are integers (at least one of them non null) and
p ≤ k, q ≤ s. Hence, M =AC N iff |M |M ′

i
= |N |M ′

i
and |M |M ′′

j
= |N |M ′′

j
,

1 ≤ i ≤ p and 1 ≤ j ≤ q. And a simple enumeration gives a polynomial
algorithm.
The problematic case happens when

N = γ1N
′
1 ◦ γ2N

′
2 ◦ . . . ◦ γpN ′p ◦ J◦(ϕ1N

′′
1 ◦ ϕ2N

′′
2 ◦ . . . ◦ ϕqN ′′q ),

and for each 1 ≤ i ≤ p (resp. 1 ≤ j ≤ q) there exists a 1 ≤ l ≤ p (resp.
1 ≤ r ≤ q) such that M ′i =AC N ′l (resp. M ′′j =AC N ′′r ). Applying the
induction hypothesis, the result follows.

3. Suppose f = •. Then, M = M1•. . .•Mp•J•(M ′1•. . .•M ′q)•h(M ′′1 +. . .+M ′′r ).
Reordering the subterms which appear repeteadly,

M = χ1M1 • . . . • χuMp • J•(µ1M
′
1 • . . . • µqM ′q) • h(ρ1M

′′
1 + . . .+ ρwM

′′
w).

Analogously to the previous case, a simple enumeration gives a polynomial
algorithm.

This completes the proof. ut

The polynomial reducibility of 
L to 
EP can be proved by a deterministic
proof search strategy which systematically tries all applicable rules following the
same proof methodology as in [12].
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Theorem 2 (
L reducible polynomially to 
EP). The decidability of the
relation 
L is polynomially reducible to the decidability of elementary deduction

EP.

Proof (Sketch). Three auxiliary results are used:

– Weakening: if Π is an L-derivation of Γ `M and Γ ⊆ Γ ′, then there exists
an L-derivation Π ′ of Γ ′ `M such that |Π ′| = |Π|.

– Let Π be an L-derivation of Γ ` M . Then for every sequent Γ ′ ` M ′

occurring in Π, Γ ′ ∪ {M ′} ⊆ St(Γ ∪ {M}).

– If there is an L-derivation of Γ ` M then there is an L-derivation of the
same sequent whose length is at most quadratic with respect to the size of
Γ ∪ {M}.

Suppose Γ ` M is provable in L. Let M1, . . . ,Mn be an enumeration of
the set St(Γ ∪ {M}). There is a shortest proof of Γ ` M where each sequent
appears exactly once in each branch of the proof. This also means that there
exists a sequence of principal-term and rule pairs

(Mi1 , ρ1), . . . , (Miq , ρq)

that is applicable, successively, to Γ ` M . Since no repetitions of sequents are
possible, q ≤ n. Also, it should be noticed that the rules of L are inversible:
one does not lose provability at any point of the proof search. Suppose, both
principal-term and rule pairs (N, ρ) and (N ′, ρ′) are applicable to Γ ` M ; then
if Γ ′ ` M is the unique premise determined by either (N, ρ) or (N ′, ρ′), then,
respectively, either (N ′, ρ′) or (N, ρ) applies to Γ ′ `M .

A proof search strategy for Γ ` M is based on repeatedly try all possible
applicable pairs (M ′, ρ′) for each possible M ′ ∈ St(Γ ∪ {M}) and each left-
rule ρ′ (that is bounded by 6n) and for all generated sequents taking in care
elimination of redundancies based on the previous observations and weakening.
For all generated sequent ∆ ` M , before trying possible applicable pairs, one
should check whether ∆ 
R M . By Lemma 1, checking 
R takes O(naf(n))
for some constant a. By (F1), checking applicability takes O(nlf(n)) for some
constant l. Therefore the whole procedure takes O(nc+lf(n)). ut

4 Conclusion

It was shown that the decidability of the intruder deduction problem of an elec-
tronic purse protocol with the theory of blind signatures can be polynomially
reduced to the elementary intruder deduction problem. For doing this, the tech-
niques used by Bursuc et alii in [6] to model the algebraic power of the protocol
via a convergent rewriting system were applied together with the techniques in-
troduced by Tiu and Goré in [12] in order to represent the intruder’s deduction
capacity via a sequent calculus taking into account blind signatures. In the latter
work, the equational part is composed by a disjoint combination of equational
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theories, each one containing at most one AC operator. In this sense, the present
paper slightly extends these results since the equational theory considered, which
is essential for the execution of the protocol, is composed by three different AC
operators and the equational theory cannot be split into disjoint theories. Al-
though the proof techniques were proved to be straightforwardly adaptable, this
study is of practical interest since the analysis was extended to EPP in which
authority parties can blindly authorize electronic transactions.

As future work, one can consider more complex algebraic equational theories
in security analysis of cryptographic protocols (e.g. [7]), using the approach of
proof search in sequent calculus and, even more, try to establish similar results
for deduction problems in which the constructors interact with the equational
theories. Another interesting challenge is to obtain deducibility results with re-
spect to active attacks.

A Proof of Theorem 1

Before presenting the proof, a sequence of preliminar results similar to the ones
introduced in [12] are necessary.

Definition 7 (Quasi-EP term). A term M is a quasi-EP term if every EP-
alien subterm of M is in EP-normal form.

Given the equational theory EP, the function vEP is a variant of vE defined
in the original paper, which assigns a variable V to each ground term such that
vEP (M) = vEP (N) if and only if M ≈EP N .

Definition 8 ( EP abstraction function). The EP abstraction function FEP
is a function mapping ground terms to pure EP terms, defined recursively as
follows:

FEP (u) =

8<:
u, if u is a name,
f(FEP (u1), . . . , FEP (uk)), if u = f(u1, . . . , uk) and f ∈ ΣEP ,
vEP (u), otherwise.

Note that, the new abstraction function FEP still preserves the equivalence
relation =AC . That is, if M =AC N then FEP (M) =AC FEP (N).

For obtaining the following results, original proofs in [12] require some slight
changes on the interpretation of the proofs, mainly in the cases where either AC
function symbols are considered or the rule (id) is considered.

Proposition 1 (Preservation of REP -reducibility between quasi-EP terms
for FEP ). If M is a quasi-EP term and M ∗→REP

N , then N is a quasi-EP term
and FEP (M) ∗→REP

FEP (N).

Proof (Sketch). It is enough to show that the lemma holds for one-step rewrite
M →REP

N . The proof follows by induction on the structure of M . The only
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non-trivial case is when M = f(u1, . . . , uk) and the redex is M . Then there must
be a rule in REP of the form

C[x1, . . . , xl]→ C ′[x1, . . . , xl]

where C[. . .] and C ′[. . .] are EP -contexts, such that

M =AC (C[x1, . . . , xl])σ and N =AC (C[x1, . . . , xl])σ

for some substitution σ. Since M is a quasi-EP term, it follows that each xiσ is
also a quasi-EP term and then N is a quasi-EP term. From de definition of FEP
follows that

FEP (M) =AC FEP (C[x1, . . . , xl]σ)
= C[FEP (x1σ), . . . , FEP (xlσ)]
= C[x1, . . . , xl]σ′

where σ′ is the substitution {x1 7→ FEP (x1σ), . . . , xl 7→ FEP (xlσ)}. Therefore,

FEP (M) =AC C[x1, . . . , xl]σ′ → C ′[x1, . . . , xl]σ′ =AC FEP (N).

ut

Proposition 2 (Lifting). If M and N are quasi-EP terms FEP (M) ∗→REP

FEP (N), then M
∗→REP

N .

Proof (Sketch). The proof follows by induction on the structure of M . Let
x1, . . . , xl be the free variables in FEP (M) and M1, . . . ,Mk be normal EP-terms
such that vEP (Mj) = xj for each j ∈ {1, . . . , l} where M = f(M1, . . . , /Mk). In
addition, let

σ = {x1 7→M1, . . . , xk 7→Mk}.

One can shows by induction on the structure of M and N , and using the hy-
pothesis that they are quasi-EP terms, that

FEP (M)σ =AC M and FEP (N)σ =AC N

Notice that, the free variables of FEP (N) are among the free variables in FEP (M)
since they are related by rewriting.

Suppose there is a rewrite rule in REP

C[x1, . . . , xl]→ C ′[x1, . . . , xl]

where C[. . . ] and C’[. . . ] are EP-contexts such that FEP (M) =AC C[x1, . . . , xl]θ
and FEP (M) =AC C ′[x1, . . . , xl]θ, for some substitution θ. Then

M =AC C[x1, . . . , xl](θ ◦ σ) and N =AC C ′[x1, . . . , xl](θ ◦ σ)

Hence M →REP
N . ut



16 D.N. Sobrinho and M. Ayala-Rincón

Lemma 3 (Preservation of S-derivability on AC-terms). Let Π be a
derivation of M1, . . . ,Mk ` N . Then for any M ′1, . . . ,M

′
k and N ′ such that

Mi =AC M ′i and N =AC N ′, there is a derivation Π ′ of M ′1, . . . ,M
′
k ` N ′ such

that |Π| = |Π ′|.

Lemma 4 (Preservation of S-derivability on the decomposition of con-
structors). Let X and Y be terms in normal form and let f be a binary con-
strutor. If Γ, f(X,Y ) `M is cut-free derivable, then so is Γ,X, Y `M .

Proof (Sketch). Let Π be a cut-free derivation of Γ, f(X,Y ) ` M . It will be
constructed a cut-free derivation Π ′ of Γ,X, Y ` M by induction of |f(X,Y )|
with subinduction on π. Suppose Π ends with the (id). The only non trivial case
is when f(X,Y ) is used in the rule, that is

M ≈EP C[f(X,Y )n,M1, . . . ,Mk]

where M1, . . .Mk ∈ Γ,C[. . .] is an EP-context and f(X,Y ) fills n-holes in C[. . .].
Assume that there is no subterm A of M,M1, . . .Mk such that A =AC f(X,Y ).
Since M is in normal form

C[f(X,Y )n,M1, . . .Mk] ∗→REP
M

and both C[f(X,Y )n,M1, . . . ,Mk] andM are quasi-EP terms. Let x = vEP (f(X,Y )).
It follows from Proposition 1 that

C[xn, FEP (M1), . . . FEP (Mk)] ∗→REP
FEP (M).

Since no subterms of M and M1, . . .Mk are equivalent to f(X,Y ), x does not
appear in any of FEP (M), FEP (M1), . . . , FEP (Mk). Now let a be a name that
does not occur in Γ,X, Y or M . Then

C[an, FEP (M1), . . . FEP (Mk)] ∗→REP
FEP (M).

Now by Proposition 2,

C[an,M1, . . .Mk] ∗→REP
M.

By substituting X for a,

C[Xn,M1, . . .Mk] ∗→REP
M.

Hence, the sequent Γ,X ` M is derivable using an instance of (id) rule. By
weakening follows that Γ,X, Y `M and the lemma holds. ut

Lemma 5 (Preservation of S-derivability on the decomposition of ΣEP-
terms). Let N1, . . . , Nk be normal terms and let Π be a cut-free derivation of
Γ, f(N1, . . . , Nk) ↓ `M , where f ∈ ΣEP . Then there exists a cut-free derivation
Π ′ of Γ,N1, . . . , Nk `M .
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Proof (Sketch). The proof follows by induction on |Π|.
Suppose that Π ends with an application of (id). The non trivial case is when

f(N1, . . . , Nk) ↓ is used in the rule, that is,

M ≈EP C[f(N1, . . . , Nk) ↓n,M1, . . . ,Mr]

where M1, . . . ,Mr ∈ Γ , C[. . .] is an EP-context and f(N1, . . . , Nk) ↓ fills n-holes
in C[. . .].

- The case where there is a guarded subterm A in M or some Mi, such that
A =AC f(N1, . . . , Nk) ↓ is similar to the proof of Lemma 4.

- Suppose there is no guarded subterm A of M,M1, . . . ,Mr such that A =AC

f(N1, . . . , Nk) ↓. Since M is in normal form, one has that

C[f(N1, . . . , Nk) ↓n,M1, . . . ,Mr]
∗→REP

M.

Substituting each one of the n occurrences of f(N1, . . . , Nk) ↓ in the EP-context
C[. . .] by f(N1, . . . , Nk), follows that

C[f(N1, . . . , Nk)n,M1, . . . ,Mr]
∗→REP

C[f(N1, . . . , Nk) ↓n,M1, . . . ,Mr]
∗→REP

M.

Since C[. . .] is formed using only function symbols in ΣEP and f ∈ ΣEP, there
is an EP-context C ′[. . .] such that C ′[N1, . . . , Nk,M1, . . . ,Mr] ≈EP M . Thus,
there is a derivation a cut-free derivation of Γ,N1, . . . , Nk `M using the (id)
rule.

ut

Lemma 6 (Preservation of S-derivability on the decomposition of EP-
contexts). Let M1, . . . ,Mk be normal terms and let Ck[] be an EP-context. If
Γ,C[M1, . . . ,Mk] ↓ `M is cut-free derivable, then so is Γ,M1, . . . ,Mk `M .

Proof (Sketch). By induction on the size of C[. . .].
Firstly, notice that

C[M1, . . . ,Mk] ∗→Rep
C[M1, . . . ,Mk] ↓ .

S ince C[. . .] is a context formed using only function symbols in ΣEP. Consider
the case where C[ ] = J◦( ), where ◦ ∈ {+, •, ?}.

Hence,
C[M1, . . . ,Mk] = J◦(C ′[M1, . . . ,Mk])

for some EP-context C ′[ ] which is smaller than C[ ].
From the hypothesis follows that Γ, J◦(C ′[M1, . . . ,Mk]) ↓`M and by Lemma

6,
Γ,C ′[M1, . . . ,Mk] `M.

Thus, by induction hypothesis, one can compute a cut-free derivation of Γ,M1, . . . ,Mk `
M . The cases where C[ ] is headed by another function symbol are treated anal-
ogously.

ut
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Now, the main result is proved by induction on the height of the left premise
derivation immediately above the cut rule. As usual in cut elimination, the proof
proceeds by eliminating the topmost instances of cut with the highest rank.

Proof (Theorem 1 (Sketch)).
The cut reduction is driven by the left premise derivation of the cut. The proof

is divided in several cases, based on the last rule of the left premise derivation.
For instance, suppose the left premise of the cut ends with the (id)-rule :

(id)
Γ `M

Π1

Γ,M ` R
(cut)

Γ ` R

where M = C[M1, . . . ,Mk] ↓, C[. . .] is an EP-context and M1, . . . ,Mk ∈ Γ . By
induction hypothesis Γ,M ` R is cut-free derivable, hence applying Lemma 6 to
Π1 one can obtain a cut-free derivation Π ′ of Γ ` R. ut

B Proof of Theorem 2

Although the changes in the equational theory, the proof of the theorem remains
close to the one presented in the extended version of [12].

Lemma 7 (Saturated set closeness of L-derivations). Let Π be an L-
derivation of Γ ` M . Then for every sequent Γ ′ ` M ′ occurring in Π, Γ ′ ∪
{M ′} ⊆ St(Γ ∪ {M}).

Proof (Sketch).
The proof follows by induction on |Π|.
During the proof it will be shown that for each rule ρ in L other than (r)

such that

Γ ′ `M ′ ρ
Γ `M

one has St(Γ ∪ {M}) = St(Γ ∪ {M ′}).
Consider the case where ρ is the rule (sign):

Γ1,sign(M,K), pub(L),M ` N
(sign), K =AC L

Γ1,sign(M,K), pub(L) ` N

where Γ := Γ1 ∪ {sign(R,K), pub(L)} and Γ ′ := Γ1 ∪ {sign(R,K), pub(L), R}.
Then St(Γ ∪ {M}) = St(Γ ∪ {sign(R,K), pub(L),M}) = St(Γ ′ ∪ {M}), that is,
Γ ′ ∪ {M} ⊆ St(Γ ∪ {M}), trivially.

The non-trivial case is the rule (blind2):

Γ1, sign(blind(N,R),K), sign(N,K), R `M
(blind2)

Γ1, sign(blind(N,R),K) `M
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where Γ = Γ1 ∪ {sign(blind(N,R),K)}.
Notice that St(Γ ∪{M}) = St(Γ ∪{sign(blind(N,R),K),M}) which contains

the proper subterms N and K. Hence, the term sign(N,K) ∈ sst(Γ ∪ {M}).
Therefore Γ ′ ∪ {M ′} ⊆ St(Γ ′ ∪ {M ′}) = St(Γ ∪ {M}) follows the result. ut

Lemma 8 (Quadratic bound on L-derivation length). If there is an L-
derivation of Γ ` M then there is an L-derivation of the same sequent whose
length is at most quadratic with respect to the size of Γ ∪ {M}.

Proof (Sketch).
Let Π be an L-derivation of Γ ` M , by Lemma 7, each sequent Γ ′ ` M ′

occurring in Π is such that Γ ′ ∪ {M ′} ⊆ St(Γ ∪ {M}). Replace the derivation
Π by a derivation Π ′ in which each sequent appears only once in each branch.
Moreover, analyzing the rules in L one can notice that, when read from the
conclusion to the premise, the left-hand sides of the rules preserve their principal
formula and more rules are added. Assuming that in each step, one term from
St(Γ ∪ {M}) is added into the premise, at most |St(Γ ∪ {M})| rules can be
applied. Hence, the lenght of the derivation is bounded by the size of St(Γ ∪
{M}), which is quadratic in the size of Γ ∪ {M}. ut

Proof ( Theorem 2 (sketch)).
Assume |St(Γ ∪ {M})| = n. For the proof, one has to use Lemmas 7 and 8

and weakening property:

– Weakening: if Π is an L-derivation of Γ `M and Γ ⊆ Γ ′, then there exists
an L-derivation Π ′ of Γ ′ `M such that |Π ′| = |Π|.

Suppose Γ ` M is provable in L. Let M1, . . . ,Mn be an enumeration of
the set St(Γ ∪ {M}). There is a shortest proof of Γ ` M where each sequent
appears exactly once in each branch of the proof. This also means that there
exists a sequence of principal-term and rule pairs

(Mi1 , ρ1), . . . , (Miq , ρq)

that is applicable, successively, to Γ ` M . Since no repetitions of sequents are
possible, q ≤ n. Also, it should be noticed that the rules of L are invertible: one
does not lose provability at any point of the proof search. That is, suppose both
principal-term and rule pairs (N, ρ) and (N ′, ρ′) are applicable to Γ ` M ; then
if Γ ′ ` M is the unique premise determined by either (N, ρ) or (N ′, ρ′), then,
respectively, either (N ′, ρ′) or (N, ρ) applies to Γ ′ `M .

A proof search strategy for Γ ` M is based on repeatedly try all possible
applicable pairs (M ′, ρ′) for each possible M ′ ∈ St(Γ ∪ {M}) and each left-
rule ρ′ (that is bounded by 6n) and for all generated sequents taking in care
elimination of redundancies based on the previous observations and weakening.
For all generated sequent ∆ ` M , before trying possible applicable pairs, one
should check whether ∆ 
R M . By Lemma 1, checking 
R takes O(naf(n))
for some constant a. By (F1), checking applicability takes O(nlf(n)) for some
constant l. Therefore the whole procedure takes O(nc+lf(n)).

The pseudo-algorithm works in the following way:
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1: Input: k := 0 and ∆ := Γ
2: if ∆ 
R M then YES
3: else“not polynomially reducible to EDP”
4: while k ≤ n and “not polynomially reducible to EDP” do
5: i := 1
6: while i ≤ n and “not applicable” do
7: if there exists a left-rule ρ such that (Mi, ρ) is applicable to the

sequent ∆ ` M , let Γi,ρ ` M be the unique premise of ρ determined by F2
then ∆ := Γi,ρ

8: else i := i+ 1
9: end if

10: end while
11: if ∆ 
R M then YES
12: else k:=k+1
13: end if
14: end while
15: end if
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