BOLETÍN ELECTRÓNICO CIENTÍFICO
DEL NODO BRASILERO
DE INVESTIGADORES COLOMBIANOS
Número 3(Artículo 7), 2001

TÍTULO
FAMILIES OF (1,2)-SYMPLECTIC METRICS ON FULL FLAG MANIFOLDS

TIPO: Artículo aceptado para publicación en International Journal of Mathematics and Mathematical Sciences

AUTOR: Marlio Paredes Gutierrez mparedes@uis.edu.co

IDIOMA: Inglés

DIRECCIÓN PARA CONTACTO
Escuela de Matemáticas
Universidad Industrial de Santander
A.A. 678, Bucaramanga, Colombia

ENTIDADES QUE FINANCIARON LA INVESTIGACIÓN: CAPES, COLCIENCIAS

PALABRAS CLAVE: (1,2)-symplectic metrics, flag manifolds, tournaments, harmonic maps. Clasificación de la AMS: Primary 53C15, 53C55; Secondary 14M15, 05C20, 58E20

RESUMEN

Mo and Negreiros [14], by using moving frames and tournaments, showed explicitly the existence of an $ n$-dimensional family of invariant (1,2)-symplectic metrics on $ F(n) = U(n)/(U(1) \times \cdots \times U(1))$. This family corresponds to the family of the parabolic almost complex structures on $ F(n)$. In this paper we study the existence of other families of invariant (1,2)-symplectic metrics corresponding to classes of non-integrable invariant almost complex structures on $ F(n)$, different to the parabolic one.

Eells and Sampson [8] proved that if $ \phi \colon M
\rightarrow N$ is a holomorphic map between Kähler manifolds then $ \phi$ is harmonic. This result was generalized by Lichnerowicz (see [12] or [20]) as follows: Let $ (M,g,J_1)$ and $ (N,h,J_2)$ be almost Hermitian manifolds with $ M$ cosymplectic and $ N$ (1,2)-symplectic, then any $ \pm$-holomorphic map $ \phi \colon (M,g,J_1) \rightarrow (N,h,J_2)$ is harmonic.

If we want to obtain harmonic maps, $ \phi \colon M^2 \rightarrow
F(n)$, from a closed Riemann surface $ M^2$ to a full flag manifold $ F(n)$ by the Lichnerowicz theorem, we must study (1,2)-symplectic metrics on $ F(n)$ because a Riemann surface is a Kähler manifold and we know that a Kähler manifold is a cosymplectic manifold (see [20] or [11]).

To study the invariant Hermitian geometry of $ F(n)$ it is natural to begin by studing its invariant almost complex structures. Borel and Hirzebruch [5] proved that there are $ 2^{\binom{n}{2}}$ $ U(n)$-invariant almost complex structures on $ F(n)$. This number is the same number of tournaments with $ n$ players or nodes. A tournament is a digraph in which any two nodes are joined by exactly one oriented edge (see [13] or [6]). There is a natural identification between almost complex structures on $ F(n)$ and tournaments with $ n$ players (see [15] or [6]).

Tournaments can be classified in isomorphism classes. In this classification, one of these classes corresponds to the integrable structures and the other ones correspond to non-integrable structures. Burstall and Salamon [6] proved that an almost complex structure $ J$ on $ F(n)$ is integrable if and only if the tournament associated to $ J$ is isomorphic to the canonical tournament (the canonical tournament with $ n$ players, $ \{1,2,\ldots,n\}$, is defined by $ i \rightarrow j$ if and only if $ i < j$).

Borel proved the existence of an $ (n-1)$-dimensional family of invariant Kähler metrics on $ F(n)$ for each invariant complex structure on $ F(n)$ (see [2] or [4]). Eells and Salamon [9] proved that any parabolic structure on $ F(n)$ admits a (1,2)-symplectic metric. Mo and Negreiros [14] showed explicitly that there is an $ n$-dimensional family of invariant (1,2)-symplectic metrics for each parabolic structure on $ F(n)$.

In this paper, we characterize new $ n$-parametric families of (1,2)-symplectic invariant metrics on $ F(n)$, different to the Kähler and parabolic ones. More precisely, we obtain explicitly $ n-3$ different $ n$-dimensional families of (1,2)-symplectic invariant metrics, for each $ n \geq 5$. Each of them corresponds to a different class of non-integrable invariant almost complex structure on $ F(n)$. These metrics are used to produce new examples of harmonic maps $ \phi \colon M^2 \rightarrow
F(n)$, using the previous result by Lichnerowicz.

BIBLIOGRAPHY

1
M. Barros and F. Urbano, Differential Geometry of $ U(p+q+r) / U(p) \times U(q) \times U(r)$, Rend. Circ. Mat. Palermo 30 (1981), 83-96.

2
A. Besse, Einstein Manifolds, Ergb. Math. Grenzgeb. (3) 10, Springer Verlag, Berlin, Heilderberg, New York, 1987.

3
M. Black, Harmonic Maps into Homogeneous Spaces, Pitman Res. Notes Math. Ser., vol. 255, Longman, Harlow, 1991.

4
A. Borel, Kählerian Coset Spaces of Semi-Simple Lie Groups, Proc. Nat. Acad. of Sci. USA 40 (1954), 1147-1151.

5
A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.

6
F.E. Burstall and S. Salamon, Tournaments, Flags and Harmonic Maps, Math. Ann. 277 (1987), 249-265.

7
S.S. Chern and J.G. Wolfson, Harmonic Maps of the Two-Sphere into a Complex Grassmann Manifold II, Ann. of Math. 125 (1987), 301-335.

8
J. Eells and J.H. Sampson, Harmonic Mappings of Riemannian Manifolds, Amer. J. Math. 86 (1964), 109-160.

9
J. Eells and S. Salamon, Twistorial Constructions of Harmonic Maps of Surfaces into Four-Manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 589-640.

10
J. Eells and J.C. Wood, Harmonic Maps from Surfaces to Complex Projective Spaces, Adv. Math. 49 (1983), 217-263.

11
A. Gray and L.M. Hervella, The Sixteen Classes of Almost Hermitian Manifolds and Their Linear Invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58.

12
A. Lichnerowicz, Applications Harmoniques et Variétés Kählériennes, Sympos. Math. 3 (Bologna, 1970), 341-402.

13
J.W. Moon, Topics on Tournaments, Holt, Rinehart and Winston, New York, 1968.

14
X. Mo and C.J.C. Negreiros, (1,2)-Symplectic Structures on Flag Manifolds, Tohoku Math. J. (2), 57 (2000), 271-283.

15
X. Mo and C.J.C. Negreiros, Tournaments and Geometry of Full Flag Manifolds, Proceedings of the XI Brazilian Topology Meeting, Rio Claro, Brazil, World Scientific (2000).

16
C.J.C. Negreiros, Some Remarks about Harmonic Maps into Flag Manifolds, Indiana Univ. Math. J. 37 (1988), 617-636.

17
C.J.C. Negreiros, Harmonic Maps from Compact Riemann Surfaces into Flag Manifolds, Doctoral Thesis, University of Chicago, 1987.

18
M. Paredes, Aspectos da Geometria Complexa das Variedades Bandeira, Doctoral Thesis, Universidade Estadual de Campinas, Brasil, 2000.

19
M. Paredes, Some Results on the Geometry of Full Flag Manifolds and Harmonic Maps, pre-print.

20
S. Salamon, Harmonic and Holomorphic Maps, Lecture Notes in Math. 1164, Springer, 1986.

21
J.A. Wolf and A. Gray, Homogeneous Spaces Defined by Lie Groups Automorphisms. II, J. Differential Geom. 2 (1968), 115-159.

BECNBIC,3(7)2001
De vuelta al ÍNDICE