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Abstract. Nominal unification is an extension of first-order unification
that takes into account the α-equivalence relation generated by binding
operators, following the nominal approach. We propose a sound and com-
plete procedure for nominal unification with commutative operators, or
nominal C-unification for short, which has been formalised in Coq. The
procedure transforms nominal C-unification problems into simpler (finite
families) of fixed point problems, whose solutions can be generated by
algebraic techniques on combinatorics of permutations.

1 Introduction
Unification, where the goal is to solve equations between first-order terms, is
a key notion in logic programming systems, type inference algorithms, proto-
col analysis tools, theorem provers, etc. Solutions to unification problems are
represented by substitutions that map variables (X,Y, . . . ) to terms.

When terms include binding operators, a more general notion of unification
is needed: unification modulo α-equivalence. In this paper, we follow the nominal
approach to the specification of binding operators [20,30,26], where the syntax of
terms includes, in addition to variables, also atoms (a, b, . . . ), which can be ab-
stracted, and α-equivalence is axiomatised by means of a freshness relation a#t
and name-swappings (a b). For example, the first-order logic formula ∀a.a ≥ 0
can be written as a nominal term ∀([a]geq(a, 0)), using function symbols ∀ and
geq and an abstracted atom a. Nominal unification [30] is the problem of solving
equations between nominal terms modulo α-equivalence; it is a decidable prob-
lem and efficient nominal unification algorithms are available [11,9,24], that com-
pute solutions consisting of freshness contexts (containing freshness constraints
of the form a#X) and substitutions.

In many applications, operators obey equational axioms. Nominal reasoning
and unification have been extended to deal with equational theories presented
by rewrite rules (see, e.g., [18,17,5]) or defined by equational axioms (see, e.g.,
[14,19]). The case of associative and commutative nominal theories was consid-
ered in [3], where a parametric {α,AC}-equivalence relation was formalised in
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Coq. However, only equational deduction was considered (not unification). In
this paper, we study nominal C-unification.

Contributions: We present a nominal C-unification algorithm, based on a set
of simplification rules. The algorithm transforms a given nominal C-unification
problem 〈∆, Q〉, where ∆ is a freshness context and Q a set of freshness con-
straints and equations, respectively of the form a#?s and s ≈? t, into a finite set
of triples of the form 〈∇, σ, P 〉, consisting of a freshness context ∇, a substitution
σ and a set of fixed point equations P of the form π.X ≈? X. The simplifications
are based on a set deduction rules for freshness and α-C-equivalence (denoted
as ≈{α,C}).

The role of fixed point equations (for short, FP equations) in nominal C-
unification is tricky: while in standard nominal unification [30], solving a FP
equation of the form (a b).X ≈? X reduces to checking whether the constraints
a#X, b#X (a and b fresh in X) are satisfied, and in this case the solution is
the identity substitution, in nominal C-unification, for ∗ and + commutative
operators, one can have additional combinatory solutions of the form {X/a +
b}, {X/(a + b) ∗ . . . ∗ (a + b)}, {X/f(a) + f(b)}, etc. We show that in general
there is no finitary representation of solutions using only freshness contexts and
substitutions, hence a nominal C-unification problem may have a potentially
infinite set of independent most general unifiers (unlike standard C-unification,
which is well-known to be finitary).

We adapt the proof of NP-completeness of syntactic C-unification to show
that nominal C-unification is NP-complete as well.

Soundness and completeness of the simplification rules were formalised in
Coq (available at http://ayala.mat.unb.br/publications.html). An OCaml
implementation is also available. Details of the proofs are in the appendix.

Related work: To generate the set of combinatorial solutions for FP equations
we can use an enumeration procedure given in [4], which is based on the com-
binatorics of permutations. By combining the simplification and enumeration
methods, we obtain a nominal C-unification procedure in two phases: a simplifi-
cation phase, described in this paper, which outputs a finite set of most general
solutions that may include fixed point constraints, and a generation phase, which
eliminates the fixed point constraints according to [4].

Several extensions of the nominal unification algorithm have been defined, in
addition to the equational extensions already mentioned.

An algorithm for nominal unification of higher-order expressions with re-
cursive let was proposed in [23]; as in the case of nominal C-unification, FP
equations are obtained in the process. Using the techniques in [4], it is possible
to proceed further and generate the combinatorial solutions of FP equations.

Recently, Aoto and Kikuchi [1] proposed a rule-based procedure for nominal
equivariant unication [13], an extension of nominal unification that is useful in
confluence analysis of nominal rewriting systems [2,16].

Furthermore, several formalisations and implementations of the nominal uni-
fication algorithm are available. For example, formalisations of its soundness and
completeness were developed by Urban et al [30,29], Ayala-Rincón et al [6], and

http://mat.unb.br/~ayala/publications.html
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Kumar and Norrish [22] using, respectively, the proof assistants Isabelle/HOL,
PVS and HOL4. An implementation in Maude using term graphs [10] is also
available. Urban and Cheney used a nominal unification algorithm to develop
a Prolog-like language called α-Prolog [12]. Our formalisation of nominal C-
unification is based on the formalisation of equivalence modulo {α,AC} pre-
sented in [3]. The representations of permutations and terms are similar, but
here we deal also with substitutions and unification rules, and prove soundness
and completeness of the unification algorithm.

Non nominal reasoning modulo equational theories has been subject of for-
malisations. For instance, Nipkow [25] presented a set of Isabelle/HOL tactics
for reasoning modulo A, C and AC; Braibant and Pous [8] designed a plugin for
Coq, with an underlying AC-matching algorithm, that extends the system tactic
rewrite to deal with AC function symbols; also, Contejean [15] formalised in
Coq the correction of an AC-matching algorithm implemented in CiME.

Syntactic unification with commutative operators is an NP-complete problem
and its solutions can be finitely generated [21,28]. Since C-unification problems
are a particular case of nominal C-unification problems, our simplification algo-
rithm, checked in Coq, is also a formalisation of the C-unification algorithm.

Organisation: Sec. 2 presents basic concepts and notations. Sec. 3 introduces
the formalised equational and freshness inference rules for nominal C-unification,
and briefly discusses NP-completeness; Sec. 4 shows that a single fixed point
equation can have infinite independent solutions; Sec. 5 shortly discusses the
formalisation in Coq and Sec. 6 concludes and proposes future work.

2 Background

Consider countable disjoint sets of variables X := {X,Y, Z, · · · } and atoms A :=
{a, b, c, · · · }. A permutation π is a bijection on A with a finite domain, where
the domain (i.e., the support) of π is the set dom(π) := {a ∈ A | π · a 6=
a}. The inverse of π is denoted by π−1. Permutations can be represented by
lists of swappings, which are pairs of different atoms (a b); hence a permutation
π is a finite list of the form (a1 b1) :: . . . :: (an bn) :: nil, where the empty
list nil corresponds to the identity permutation; concatenation is denoted by ⊕
and, when no confusion may arise, :: and nil are omitted. We follow Gabbay’s
permutative convention: Atoms differ on their names, so for atoms a and b the
expression a 6= b is redundant. Also, (a b) and (b a) represent the same swapping.

We will assume as in [3] countable sets of function symbols with different
equational properties such as associativity, commutativity, idempotence, etc.
Function symbols have superscripts that indicate their equational properties;
thus, fCk will denote the kth function symbol that is commutative and f∅j the

jth function symbol without any equational property.

Nominal terms are generated by the following grammar:

s, t := 〈〉 | ā | [a]t | 〈s, t〉 | fEk t | π.X
〈〉 denotes the unit (that is the empty tuple), ā denotes an atom term, [a]t
denotes an abstraction of the atom a over the term t, 〈s, t〉 denotes a pair,
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fEk t the application of fEk to t and, π.X a moderated variable or suspension.
Suspensions of the form nil.X will be represented just by X.

The set of variables occurring in a term t will be denoted as V ar(t). This
notation extends to a set S of terms in the natural way: V ar(S) =

⋃
t∈S V ar(t).

As usual, | | will be used to denote the cardinality of sets as well as to denote
the size or number of symbols occurring in a given term.

Definition 1 (Permutation action). The action of a permutation on atoms
is defined as: nil ·a := a; (b c) :: π ·a := π ·a; and, (b c) :: π · b := π · c. The action
of a permutation on terms is defined recursively as:

π · 〈〉 := 〈〉 π · 〈u, v〉 := 〈π · u, π · v〉 π · fEk t := fEk (π · t)
π · a := π · a π · ([a]t) := [π · a](π · t) π · (π′ . X) := (π′ ⊕ π) . X

Notice that according to the definition of the action of a permutation over
atoms, the composition of permutations π and π′, usually denoted as π ◦ π′,
corresponds to the append π′ ⊕ π. Also notice that π′ ⊕ π · t = π · (π′ · t). The
difference set between two permutations π and π′ is the set of atoms where the
action of π and π′ differs: ds(π, π′) := {a ∈ A | π · a 6= π′ · a}.

A substitution σ is a mapping from variables to terms such that its do-
main, dom(σ) := {X | X 6= Xσ}, is finite. For X ∈ dom(σ), Xσ is called
the image of X. Define the image of σ as im(σ) := {Xσ | X ∈ dom(σ)}. Let
dom(σ) = {X1, · · · , Xn}, then σ can be represented as a set of bindings in the
form {X1/t1, · · · , Xn/tn}, where Xiσ = ti, for 1 ≤ i ≤ n.

Definition 2 (Substitution action). The action of a substitution σ on a term
t, denoted tσ, is defined recursively as follows:

〈〉σ := 〈〉 aσ := a (fEk t)σ := fEk tσ
〈s, t〉σ := 〈sσ, tσ〉 ([a]t)σ := [a]tσ (π.X)σ := π ·Xσ

The following result can be proved by induction on the structure of terms.

Lemma 1 (Substitutions and Permutations Commute). (π ·t)σ = π ·(tσ)

The inference rules defining freshness and α-equivalence are given in Fig. 1
and 2. The symbols∇ and ∆ are used to denote freshness contexts that are sets of
constraints of the form a#X, meaning that the atom a is fresh in X. The domain
of a freshness context dom(∇) is the set of atoms appearing in it; ∇|X denotes
the restriction of ∇ to the freshness constraints on X: {a#X | a#X ∈ ∇}. The
rules in Fig. 1 are used to check if an atom a is fresh in a nominal term t under
a freshness context ∇, also denoted as ∇ ` a#t. The rules in Fig. 2 are used to
check if two nominal terms s and t are α-equivalent under some freshness context
∇, written as ∇ ` s ≈α t. These rules use the inference system for freshness
constraints: specifically freshness constraints are used in rule (≈α [ab]).

Example 1. Let σ = {X/[a]a}. Verify that 〈(a b).X, f(e)〉σ ≈α 〈X, f(e)〉σ.

By dom(π)#X and ds(π, π′)#X we abbreviate the sets {a#X | a ∈ dom(π)}
and {a#X | a ∈ ds(π, π′)}, respectively.

Key properties of the nominal freshness and α-equivalence relations have
been extensively explored in previous works [3,6,29,30].
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(#〈〉)
∇ ` a# 〈〉

(# atom)
∇ ` a# b

∇ ` a# t
(# app)

∇ ` a# fEk t
(# a[a])

∇ ` a# [a]t

∇ ` a# t
(# a[b])

∇ ` a# [b]t

(π−1 · a#X) ∈ ∇
(# var)

∇ ` a#π.X

∇ ` a# s ∇ ` a# t
(# pair)

∇ ` a# 〈s, t〉

Fig. 1. Rules for the freshness relation

(≈α 〈〉)∇ ` 〈〉 ≈α 〈〉
(≈α atom)

∇ ` a ≈α a
∇ ` s ≈α t

(≈α app)
∇ ` fEk s ≈α fEk t

∇ ` s ≈α t
(≈α [aa])

∇ ` [a]s ≈α [a]t

∇ ` s ≈α (a b) · t ∇ ` a# t
(≈α [ab])

∇ ` [a]s ≈α [b]t

ds(π, π′)#X ⊆ ∇
(≈α var)

∇ ` π.X ≈α π′.X
∇ ` s0 ≈α t0 ∇ ` s1 ≈α t1

(≈α pair)
∇ ` 〈s0, s1〉 ≈α 〈t0, t1〉

Fig. 2. Rules for the relation ≈α
2.1 The relation ≈{α,C} as an extension of ≈α

In [3], the relation ≈α was extended to deal with associative and commutative
theories. Here we will consider α-equivalence modulo commutativity, denoted as
≈{α,C}. This means that some function symbols in our syntax are commutative,
and therefore the rule for function application (≈α app) in Fig. 2 should be
replaced by the rules in Fig. 3.

∇ ` s ≈{α,C} t
, E 6= C or both s and t are not pairs (≈{α,C} app)

∇ ` fEk s ≈{α,C} fEk t
∇ ` s0 ≈{α,C} ti, ∇ ` s1 ≈{α,C} t(i+1)mod 2

, i = 0, 1 (≈{α,C} C)
∇ ` fCk 〈s0, s1〉 ≈{α,C} fCk 〈t0, t1〉

Fig. 3. Additional rules for {α,C}-equivalence

The following properties for ≈{α,C} were formalised as simple adaptations of
the formalisations given in [3] for ≈α.

Lemma 2 (Inversion). The inference rules of ≈{α,C} are invertible.

This means, for instance, that for rules (≈α [ab]) one has ∇ ` [a]s ≈{α,C}
[b]t implies ∇ ` s ≈{α,C} (a b) · t and ∇ ` a# t; and for (≈{α,C} app), ∇ `
fCk 〈s0, s1〉 ≈{α,C} fCk 〈t0, t1〉 implies ∇ ` s0 ≈{α,C} t0 and ∇ ` s1 ≈{α,C} t1, or
∇ ` s0 ≈{α,C} t1 and ∇ ` s1 ≈{α,C} t0.

Lemma 3 (Freshness preservation). If ∇ ` a# s and ∇ ` s ≈{α,C} t then
∇ ` a# t.

Lemma 4 (Intermediate transitivity for ≈{α,C} with ≈α). If ∇ ` s ≈{α,C}
t and ∇ ` t ≈α u then ∇ ` s ≈{α,C} u.

Lemma 5 (Equivariance). ∇ ` π · s ≈{α,C} π · t whenever ∇ ` s ≈{α,C} t.
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Lemma 6 (Equivalence). ` ≈{α,C} is an equivalence relation.

Remark 1. According to the grammar for nominal terms, function symbols have
no fixed arity: any function symbol can apply to any term. Despite this, in the
syntax of our Coq formalisation commutative symbols apply only to tuples.

3 A nominal C-unification algorithm
Inference rules are given that transform a nominal C-unification problem into
a finite family of problems that consist exclusively of FP equations of the form
π.X ≈? X, together with a substitution and a set of freshness constraints.

Definition 3 (Unification problem). A unification problem is a pair 〈∇, P 〉,
where ∇ is a freshness context and P is a finite set of equations and freshness
constraints of the form s ≈? t and a#?s, respectively, where ≈? is symmetric, s
and t are terms and a is an atom. Nominal terms in the equations preserve the
syntactic restriction that commutative symbols are only applied to tuples.

Equations of the form π.X ≈? X are called fixed point equations. Given
〈∇, P 〉, by P≈, P#, Pfp≈ and Pnfp≈ we will resp. denote the sets of equations,
freshness constraints, FP equations and non FP equations in the set P .

Example 2. Given the nominal unification problem P=〈∅, {[a][b]X ≈? [b][a]X}〉,
the standard unification algorithm [30] reduces it to 〈∅, {X ≈? (a b).X}〉, which
gives the solution 〈{a#X, b#X}, id〉. However, we will see that infinite indepen-
dent solutions are feasible when there is at least a commutative operator.

We design a nominal C-unification algorithm using one set of transforma-
tion rules to deal with equations (Fig. 4) and another set of rules to deal with
freshness constraints and contexts (Fig. 5). These rules act over triples of the
form 〈∇, σ, P 〉, where σ is a substitution. The triple that will be associated by
default with a unification problem 〈∇, P 〉 is 〈∇, id , P 〉. We will use calligraphic
uppercase letters (e.g., P,Q,R, etc) to denote triples.

Remark 2. Let ∇ and ∇′ be freshness contexts and σ and σ′ be substitutions.

– ∇′ ` ∇σ denotes that ∇′ ` a#Xσ holds for each (a#X) ∈ ∇, and
– ∇ ` σ ≈ σ′ that ∇ ` Xσ ≈{α,C} Xσ′ for all X (in dom(σ) ∪ dom(σ′)).

Definition 4 (Solution for a triple or problem). A solution for a triple
P = 〈∆, δ, P 〉 is a pair 〈∇, σ〉, where the following conditions are satisfied:

1. ∇ ` ∆σ;
2. ∇ ` a# tσ, if a#?t ∈ P ;

3. ∇ ` sσ ≈{α,C} tσ, if s ≈? t ∈ P ;
4. there is a substitution λ such that ∇ ` δλ≈σ.

A solution for a unification problem 〈∆, P 〉 is a solution for the associated
triple 〈∆, id , P 〉. The solution set for a problem or triple P is denoted by UC(P).

Definition 5 (More general solution and complete set of solutions). For
〈∇, σ〉 and 〈∇′, σ′〉 in UC(P), we say that 〈∇, σ〉 is more general than 〈∇′, σ′〉,
denoted 〈∇, σ〉 4 〈∇′, σ′〉, if there exists a substitution λ satisfying ∇′ ` σλ ≈ σ′
and ∇′ ` ∇λ. A subset V of UC(P) is said to be a complete set of solutions of P
if for all 〈∇′, σ′〉 ∈ UC(P), there exists 〈∇, σ〉 in V such that 〈∇, σ〉 4 〈∇′, σ′〉.
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We will denote the set of variables occurring in the set P of a problem 〈∆, P 〉
or triple P = 〈∇, σ, P 〉 as V ar(P ). We also will write V ar(P) to denote this set.

〈∇, σ, P ] {s ≈? s}〉
(≈? refl)

〈∇, σ, P 〉
〈∇, σ, P ] {〈s1, t1〉 ≈? 〈s2, t2〉}〉

(≈? pair)
〈∇, σ, P ∪ {s1 ≈? s2, t1 ≈? t2}〉

〈∇, σ, P ] {fEk s ≈? f
E
k t}〉

, if E 6= C (≈? app)
〈∇, σ, P ∪ {s ≈? t}〉

〈∇, σ, P ] {fCk s ≈? f
C
k t}〉

,

{
where s = 〈s0, s1〉 and t = 〈t0, t1〉
v = 〈ti, t(i+1)mod 2〉, i = 0, 1

}
(≈? C)

〈∇, σ, P ∪ {s ≈? v}〉
〈∇, σ, P ] {[a]s ≈? [a]t}〉

(≈? [aa])
〈∇, σ, P ∪ {s ≈? t}〉

〈∇, σ, P ] {[a]s ≈? [b]t}〉
(≈? [ab])

〈∇, σ, P ∪ {s ≈? (a b) t, a#?t}〉
〈∇, σ, P ] {π.X ≈? t}〉 let σ′ := σ{X/π−1 · t}

, if X /∈ V ar(t) (≈? inst)〈
∇, σ′, P{X/π−1 · t} ∪

⋃
Y ∈dom(σ′),
a#Y ∈∇

{a#?Y σ
′}
〉

〈∇, σ, P ] {π.X ≈? π
′.X}〉

, if π′ 6= nil (≈? inv)
〈∇, σ, P ∪ {π ⊕ (π′)−1.X ≈? X}〉

Fig. 4. Reduction rules for equational problems

The unification algorithm proceeds by simplification. Derivation with rules
of Figs. 4 and 5 is respectively denoted by ⇒≈ and ⇒#. Thus, 〈∇, σ, P 〉 ⇒≈
〈∇, σ′, P ′〉 means that the second triple is obtained from the first one by appli-
cation of one rule. We will use the standard rewriting nomenclature, e.g., we will
say that P is a normal form or irreducible by⇒≈, denoted by⇒≈-nf, whenever
there is no Q such that P ⇒≈ Q; ⇒∗≈ and ⇒+

≈ denote respectively derivations
in zero or more and one or more applications of the rules in Fig. 4.

The only rule that can generate branches is (≈? C), which is an abbreviation
for two rules providing the different forms in which one can relate the arguments
s and t in an equation fCk s ≈? f

C
k t for a commutative function symbol (s, t are

tuples, by the syntactic restriction in Definition 3): either 〈s0, s1〉 ≈? 〈t0, t1〉 or
〈s0, s1〉 ≈? 〈t1, t0〉.

The syntactic restriction on arguments of commutative symbols being only
tuples, is not crucial since any equation of the form fCk π.X ≈? t can be trans-
lated into an equation of form fCk 〈π.X1, π.X2〉 ≈? t, where X1 and X2 are new
variables and ∇ is extended to ∇′ in such a way that both X1 and X2 inherit
all freshness constraints of X in ∇: ∇′ = ∇∪ {a#Xi | i = 1, 2, and a#X ∈ ∇}.

In the rule (≈? inst) the inclusion of new constraints in the problem, given in⋃
Y∈dom(σ′),
a#Y∈∇

{a#?Y σ
′} is necessary to guarantee that the new substitution σ′ is

compatible with the freshness context ∇.

Example 3. Let ∗3 be a commutative function symbol. Below, we show how the
problem P = 〈∅, {[e](a b).X ∗ Y ≈? [f ](a c)(c d).X ∗ Y }〉 reduces (via rules in

3 Infix notation is adopted for commutative symbols: s ∗ t abbreviates ∗〈s, t〉.
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〈∇, σ, P ] {a#?〈〉}〉
(#?〈〉)〈∇, σ, P 〉

〈∇, σ, P ] {a#?b̄}〉
(#?ab̄)

〈∇, σ, P 〉
〈∇, σ, P ] {a#?f t}〉

(#?app)
〈∇, σ, P ∪ {a#?t}〉

〈∇, σ, P ] {a#?[a]t}〉
(#?a[a])

〈∇, σ, P 〉
〈∇, σ, P ] {a#?[b]t}〉

(#?a[b])
〈∇, σ, P ∪ {a#?t}〉

〈∇, σ, P ] {a#?π.X}〉
(#?var)

〈{(π−1 · a)#X} ∪ ∇, σ, P 〉
〈∇, σ, P ] {a#?〈s, t〉}〉

(#?pair)
〈∇, σ, P ∪ {a#?s, a#?t}〉

Fig. 5. Reduction rules for freshness problems

Figs. 4 and 5). Application of rule (≈? C) gives two branches which reduce
into two fixed point problems: Q1 and Q2. Highlighted terms show where the
rules are applied. For brevity, let π1 = (a c)(c d)(e f), π2 = (a b)(e f)(c d)(a c),
π3 = (a c)(c d)(e f)(a b) and σ = {X/(e f)(a b).Y }.
〈∅, id , { [e](a b).X ∗ Y ≈? [f ](a c)(c d).X ∗ Y }〉 ⇒(≈?[ab])

〈∅, id , { (a b).X ∗ Y ≈? π1.X ∗ (e f).Y , e#?(a c)(c d).X ∗ Y }〉 ⇒(≈?C)

branch 1: 〈∅, id , { (a b).X ≈? π1.X , Y ≈? (e f).Y , e#?(a c)(c d).X ∗ Y }〉
⇒(≈?inv)(2×) 〈∅, id , {(a b)[π1]−1.X≈?X, [(e f)]−1.Y ≈?Y, e#?(a c)(c d).X ∗ Y }〉
⇒ (#?app),

(#?pair)

〈∅, id , {π2.X ≈? X, (e f).Y ≈? Y, e#?(a c)(c d).X , e#?Y }〉

⇒(#?var)(2×) 〈{e#X, e#Y }, id , {π2.X ≈? X, (e f).Y ≈? Y }〉 = Q1

branch 2: 〈∅, id , { (a b).X ≈? (e f).Y , Y ≈? π1.X, e#?(a c)(c d).X ∗ Y }〉
⇒(≈?inst) 〈∅, σ, { Y ≈? (a c)(c d)(e f)(e f)[(a b)]−1.Y , e#?π1[(a b)]−1.Y ∗ Y }〉
⇒(≈?inv) 〈∅, σ, {[(a c)(c d)(a b)]−1.Y ≈? Y, e#?π3.Y ∗ Y }〉
⇒ (#?app),

(#?pair)

〈∅, σ, {(a b)(c d)(a c).Y ≈? Y, e#?π3.Y , e#?Y }〉

⇒(#?var)(2×) 〈{e#Y, f#Y }, σ, {(a b)(c d)(a c).Y ≈? Y }〉 = Q2

A visual representation of the derivation tree for this example, generated
using our OCaml implementation, is depicted in Fig. 8 Appendix C. Please see
Appendix C for more examples.

Definition 6 (Set of⇒≈ and⇒#-normal forms). We denote by P⇒≈ (resp.
P⇒#

) the set of normal forms of P with respect to ⇒≈ (resp. ⇒#).

Definition 7 (Fail and success for ⇒≈). Let P be a triple, such that the
rules in Fig. 4 give rise to a normal form 〈∇, σ, P 〉. The rules in Fig. 4 are said
to fail if P contains non FP equations. Otherwise 〈∇, σ, P 〉 is called a successful
triple regarding ⇒≈ (i.e., in a successful triple, P consists only of FP equations
and, possibly, freshness constraints).

The rules in Fig. 5 will only be applied to successful triples regarding ⇒≈.

Definition 8 (Fail and success for ⇒#). Let Q = 〈∇, σ,Q〉 be a successful
triple regarding ⇒≈, and Q′ = 〈∇′, σ,Q′〉 its normal form via rules in Fig. 5,
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that is Q ⇒∗# Q′ and Q′ is in Q⇒#
. If Q′ contains freshness constraints it is

said that ⇒# fails for Q; otherwise, Q′ will be called a successful triple for ⇒#.

Remark 3. Since in a successful triple regarding ⇒≈, Q, one has only FP equa-
tions and ⇒# acts only over freshness constraints, Q′ in the definition above
contains only FP equations and freshness constraints. Also, by a simple case
analysis on t one can check that any triple with freshness constraints a#?t is re-
ducible by ⇒#, except when t ≡ ā. Hence the freshness constraints in Q′ would
be only of the form a#?ā.

The relation ⇒≈, starts from a triple with the identity substitution and
always maintains a triple 〈∇, σ′, P ′〉 in which the substitution σ′ does not affect
the current problem P ′. The same happens for ⇒# since the substitution does
not change with this relation. This motivates the next definition and lemma.

Definition 9 (Valid triple). P = 〈∇, σ, P 〉 is valid if im(σ)∩dom(σ) = ∅ and
dom(σ) ∩ V ar(P ) = ∅.

Remark 4. A substitution σ in a valid triple P is idempotent, that is, σσ = σ.

Lemma 7 is proved by case analysis on the rules used by ⇒≈ and ⇒#.

Lemma 7 (Preservation of valid triples). If P = 〈∇, σ, P 〉 is valid and
P ⇒≈ ∪ ⇒# P ′ = 〈∇′, σ′, P ′〉, then P ′ is also valid.

From now on, we consider only valid triples.

Lemma 8 (Termination of ⇒≈ and ⇒#). There is no infinite chain of re-
ductions ⇒≈ (or ⇒#) starting from an arbitrary triple P = 〈∇, σ, P 〉.

Proof. – The proof for⇒≈ is by well-founded induction on P using the measure
‖P‖ = 〈|V ar(P≈)|, ‖P‖, |Pnfp≈ |〉 with a lexicographic ordering, where ‖P‖ =∑
s≈?t∈P≈ |s| + |t| +

∑
a#?u∈P#

|u|. Note that this measure decreases after

each step 〈∇, σ, P 〉 ⇒≈ 〈∇, σ′, P ′〉: for (≈? inst), |V ar(P≈)| > |V ar(P ′≈)|; for
(≈? refl), (≈? pair), (≈? app), (≈? [aa]), (≈? [ab]) and (≈? C), |V ar(P≈)| ≥
|V ar(P ′≈)|, but ‖P‖ > ‖P ′‖; and, for (≈? inv), both |V ar(P≈)| = |V ar(P ′ ≈)|
and ‖P‖ = ‖P ′‖, but |Pnfp≈ | > |P

′
nfp≈
|.

– The proof for ⇒# is by induction on P using as measure ‖P#‖. It can be
checked that this measure decreases after each step: 〈∇, σ, P 〉 ⇒# 〈∇, σ′, P ′〉.

To solve a unification problem, 〈∇, P 〉, one builds the derivation tree for
⇒≈, labelling the root node with 〈∇, id , P 〉. This tree has leaves labelled with
⇒≈-nf’s that are either failing or successful triples. Then, the tree is extended
by building ⇒#-derivations starting from all successful leaves. The extended
tree will include failing leaves and successful leaves. The successful leaves will
be labelled by triples P ′ in which the problem P ′ consists only of FP equations.
Since⇒≈ and⇒# are both terminating (Lemma 8), the process described above
must be also terminating.
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Definition 10 (Derivation tree for 〈∆, P 〉). A derivation tree for the unifi-
cation problem 〈∆, P 〉, denoted as T〈∆,P 〉, is a tree with root label P = 〈∆, id , P 〉
built in two stages:

– Initially, a tree is built, whose branches end in leaf nodes labelled with the
triples in P⇒≈ . The labels in each path from the root to a leaf correspond to
a ⇒≈-derivation.

– Further, for each leaf labelled with a successful triple Q in P⇒≈ , the tree is
extended with a path to a new leaf that is labelled with a Q̄ ∈ Q⇒#

. The labels
in the extended path from the node with label Q to the new leaf correspond to
a ⇒#-derivation.

Remark 5. For 〈∆, P 〉, all labels in the nodes of T〈∆,P 〉 are valid by Lemma 7.

The next lemma is proved by case analysis on elements of P⇒≈ and P⇒#
.

Lemma 9 (Characterisation of leaves of T〈∆,P 〉). Let 〈∆, P 〉 be a unifica-
tion problem. If P ′ = 〈∇, σ′, P ′〉 is the label of a leaf in T〈∆,P 〉, then P ′ can be
partitioned as follows: P ′ = P ′′ ∪P⊥, where P ′′ is the set of all FP equations in
P ′ and P⊥ = P ′ − P ′′. If P⊥ 6= ∅ then UC(P ′) = ∅.

The next definition is motivated by the previous characterisation of the labels
of leaves in derivation trees.

Definition 11 (Successful leaves). Let 〈∆, P 〉 be a unification problem. A
leaf in T〈∆,P 〉 that is labelled with a triple of the form Q = 〈∇, σ,Q〉, where Q
consists only of FP equations, is called a successful leaf of T〈∆,P 〉. In this case
Q is called a successful triple of T〈∆,P 〉. The sets of successful leaves and triples
of T〈∆,P 〉 are denoted respectively by SL(T〈∆,P 〉) and ST (T〈∆,P 〉).

The soundness theorem states that successful leaves of T〈∆,P 〉 produce correct
solutions. The proof is by induction on the number of steps of ⇒≈ and ⇒# and
uses Lemma 9 and auxiliary results on the preservation of solutions by ⇒≈ and
⇒#. Proving preservation of solutions for rules (≈? [ab]) and (≈? inst) is not
straightforward and uses Lemmas 1 2, 3 and 5 to check that the four conditions
of Def. 4 are valid before, if one supposes their validity after the rule application.

Theorem 1 (Soundness of T〈∆,P 〉). T〈∆,P 〉 is correct, i.e., if P ′ = 〈∇, σ, P ′〉
is the label of a leaf in T〈∆,P 〉, then 1. UC(P ′) ⊆ UC(〈∆, id , P 〉), and 2. if P ′

contains non FP equations or freshness constraints then UC(P ′) = ∅.

The completeness theorem guarantees that the set of successful triples pro-
vides a complete set of solutions. Its proof uses case analysis on the rules of the
relations⇒≈ and⇒# by an argumentation similar to the one used for Theorem
1. For⇒# one has indeed equivalence: P ⇒# P ′, implies UC(P) = UC(P ′). The
same is true for all rules of the relation ⇒≈ except the branching rule (≈? C),
for which it is necessary to prove that all solutions of a triple reduced by (≈? C)
must belong to the set of solutions of one of its children triples.
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Theorem 2 (Completeness of T〈∆,P 〉). Let 〈∆, P 〉 and T〈∆,P 〉 be a unification
problem and its derivation tree. Then UC(〈∆, id , P 〉) =

⋃
Q∈ST (T〈∆,P〉) UC(Q).

Corollary 1 (Generality of successful triples). Let P = 〈∆, P 〉 be a uni-
fication problem and 〈∇′′, σ′〉 ∈ UC(P). Then there exists a successful triple
Q ∈ ST (T〈∆,P 〉) where Q = 〈∇, σ,Q〉 such that 〈∇′′, σ′〉 ∈ UC(Q), and hence,
∇′′ ` ∇σ′ and there exists λ such that ∇′′ ` σλ ≈ σ′.

Proof. By Theorem 2, UC(P) =
⋃
P′∈ST (T〈∆,P〉) UC(P ′). Then there exists Q ∈

ST (T〈∆,P 〉) such that 〈∇′′, σ′〉 ∈ UC(Q). Suppose Q = 〈∇, σ,Q〉. Then by the
first and fourth conditions of the definition of solution (Def. 4) we have that
∇′′ ` ∇σ′ and there exists λ such that ∇′′ ` σλ ≈ σ′.

Remark 6. The nominal C-unification problem is to decide, for a given P, if
UC(P) is non empty; that is, whether P has nominal C-unifiers. To prove that
this problem is in NP, a non-deterministic procedure using the reduction rules in
the same order as in Definition 10 is designed. In this procedure, whenever rule
(≈? C) applies, only one of the two possible branches is guessed. In this manner,
if the derivation tree has a successful leaf, this procedure will guess a path to
the successful leaf, answering positively to the decision problem. According to
the measures used in the proof of termination (Lemma 8), reduction with both
the relations ⇒≈ and ⇒# is polynomially bound, which implies that this non-
deterministic procedure is polynomially bound.

To prove NP-completeness, one can polynomially reduce the well-known NP-
complete positive 1-in-3-SAT problem into nominal C-unification, as done in [7]
for the C-unification problem. An instance of the positive 1-in-3-SAT problem
consists of a set of clauses C = {Ci|1 ≤ i ≤ n}, where each Ci is a disjunction of
three propositional variables, say Ci = pi ∨ qi ∨ ri. A solution of C is a valuation
with exactly one variable true in each clause. The proposed reduction of C into
a nominal C-unification problem would require just a commutative function
symbol, say ⊕, two atoms, say a and b, a variable for each clause Ci, say Yi,
and a variable for each propositional variable p in C, say Xp. Instantiating Xp

as a or b, would be interpreted as evaluating p as true or false, respectively.
Each clause Ci = pi ∨ qi ∨ ri in C is translated into an equation Ei of the form
((Xpi⊕Xqi)⊕Xri)⊕Yi ≈? ((b⊕b)⊕a)⊕((b⊕a)⊕b). The nominal C-unification
problem for C is given by PC = 〈∅, {Ei|1 ≤ i ≤ n}〉. Simplifying PC would not
introduce freshness constraints since the problem does not include abstractions.
Thus, to conclude it is only necessary to check that 〈∅, σ〉 is a solution for PC if
and only if σ instantiates exactly one of the variables Xpi , Xqi and Xri in each
equation with a and the other two with b, which means that C has a solution.

4 Generation of solutions for successful leaves of T〈∆,P 〉
To build solutions for a successful leaf P = 〈∇, σ, P 〉 in the derivation tree of a
given unification problem, we will select and combine solutions generated for FP
equations π.X ≈? X, for each X ∈ V ar(P ). We introduce the notion of pseudo-
cycle of a permutation, in order to provide precise conditions to build terms t by
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combining the atoms in dom(π), such that π ·t ≈{α,C} t. For convenience, we use
the algebraic cycle representation of permutations. Thus, instead of sequences of
swappings, permutations in nominal terms will be read as products of disjoint
cycles [27].

Example 4. (Continuing Example 3) The permutations (a b)::(e f)::(c d)::(a c)::
nil and (a b) :: (c d) :: (a c) :: nil are respectively represented as the product of
permutation cycles (a b c d)(e f) and (a b c d)(e)(f).

Permutation cycles of length one are omitted. In general the cyclic represen-
tation of a permutation consists of the product of all its cycles.

Let π be a permutation with dom(π) = n. Given a ∈ dom(π) the elements of
the sequence a, π(a), π2(a), . . . cannot be all distinct. Taking the first k ≤ n, such
that πk(a) = a, we have the k-cycle (a π(a) . . . πk−1(a)), where πj+1(a) is the
successor of πj(a). For the 4-cycle in the permutation (a b c d) (e f), the 4-cycles
generated by a, b, c and d are the same: (a b c d) = (b c d a) = (c d a b) = (d a b c).

Def. 12 establishes the notion of a pseudo-cycle w.r.t. a k-cycle κ. Intuitively,
given a k-cycle κ and a commutative function symbol ∗, a pseudo-cycle w.r.t κ,
(A0 . . . Al), is a cycle whose elements are either atom terms built from the atoms
in κ or terms of the form A′i ∗A′j , for A′i, A

′
j elements of a pseudo-cycle w.r.t κ.

Definition 12 (Pseudo-cycle). Let κ = (a0 a1 . . . ak−1) be a k-cycle of a
permutation π. A pseudo-cycle w.r.t. κ is inductively defined as follows:

1. κ = (a0 · · · ak−1) is a pseudo-cycle w.r.t. κ, called trivial pseudo-cycle of κ.
2. κ′ = (A0 ... Ak′−1) is a pseudo-cycle w.r.t. κ, if the following conditions are

simultaneously satisfied:
(a) each element of κ′ is of the form Bi ∗ Bj, where ∗ is a commutative

function symbol in the signature, and Bi, Bj are different elements of
κ′′, a pseudo-cycle w.r.t. κ. κ′ will be called a first-instance pseudo-cycle
of κ′′ w.r.t. κ.

(b) Ai 6≈α,C Aj for i 6= j, 0 ≤ i, j ≤ k′ − 1;
(c) for each 0 ≤ i < k′ − 1, κ ·Ai ≈{α,C} A(i+1)mod k′ .

The length of the pseudo-cycle κ, denoted by |κ|, consists of the number of
elements in κ. A pseudo-cycle of length one will be called unitary.

Example 5. A (Continuing Example 2) The unitary pseudo-cycles of κ = (a b)
are of the form (a ∗ b) for ∗ any commutative symbol in the signature. These
pseudo-cycles are the basis for a more elaborated construction used to build
infinite independent solutions for the leaf 〈∅, id , {X ≈? (a b).X}〉. Examples of
these solutions are: 〈∅, {X/a∗b}〉, 〈∅, {X/(a∗a)∗(b∗b)}〉, 〈∅, {X/(a∗b)∗(a∗b)}〉,
〈∅, {X/((a ∗ a) ∗ a) ∗ ((b ∗ b) ∗ b)}〉, 〈∅, {X/(a ∗ (a ∗ a)) ∗ (b ∗ (b ∗ b))}〉, etc.

B (Continuing Examples 3 and 4) In Q1 and Q2 we have the occurrences of
the 4-cycle κ = (a b c d). Suppose ∗,⊕,+ are commutative operators in the
signature. The following are pseudo-cycles w.r.t. κ: κ = (a b c d); κ1 =
((a∗b) (b∗c) (c∗d) (d∗a)); κ2 = ((a⊕c) (b⊕d)); κ11 = (((a∗b)+(b∗c)) ((b∗
c)+(c∗d))((c∗d)+(d∗a)) ((d∗a)+(a∗b))); κ12 = (((a∗b)∗(c∗d)) ((b∗c)∗(d∗a)));
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κ21 = (((a⊕ c) ∗ (b⊕ d))); κ121 = (((a ∗ b) ∗ (c ∗ d)) ∗ ((b ∗ c) ∗ (d ∗ a))). κ1 and
κ2 are first-instance pseudo-cycles of κ, and κ11 and κ12 of κ1 and κ21 of κ2.
Notice that, |κ| = |κ1| = |κ11| = 4, |κ12| = 2, and |κ21| = |κ121| = 1. Also, κ1

corresponds to ((a ∗ d) (b ∗ a) (c ∗ b) (d ∗ c)), a first-instance pseudo-cycle of κ.

Finally, observe that for the elements of the unitary pseudo-cycles κ21 and
κ121, say s = (a ⊕ c) ∗ (b ⊕ d) and t = ((a ∗ b) ∗ (c ∗ d)) ∗ ((b ∗ c) ∗ (d ∗ a)),
{X/s} and {X/t} (resp. {Y/s} and {Y/t}) are solutions of the FP equation
(a b c d)(e f).X ≈? X (resp. (a b c d).Y ≈? Y ).

Let κ be a pseudo-cycle. Notice that only item 2 of Def. 12 may build a
first-instance pseudo-cycle κ′ w.r.t. κ with fewer elements. If |κ′| < |κ| then,
due to algebraic properties of cycles and commutativity of the operator applied
(∗), one must have that |κ′| = |κ|/2. Thus, unitary pseudo-cycles can only be
generated from cycles of length a power of two. This is the intuition behind the
next theorem, proved by induction on the size of the cycle κ.

Theorem 3. A pseudo-cycle κ generates unitary pseudo-cycles iff |κ| is a power
of two.

Notice that, according item 2.c of Def. 12, if κ′ = (A0 . . . Ak′−1) is a pseudo-
cycle w.r.t. π then π ·Ak′−1 ≈{α,C} A0; particularly, if k′ = 1 then π ·A0 ≈{α,C}
A0. Below, given P = 〈∅, {π.X ≈? X}〉 a fixed point equational problem, we call
a combinatory solution of P, a substitution {X/t}, such that π · t ≈C t, and t
contains only atoms from π and commutative function symbols, built as unary
pseudo-cycles w.r.t. κ a cycle in π.

The next theorem is proved by contradiction, supposing that κ has an odd
factor and using Theorem 3.

Theorem 4. Let P = 〈∅, {π.X ≈? X}〉 be a fixed point problem. P has a com-
binatory solution iff there exists a unitary pseudo-cycle κ w.r.t. π.

Remark 7. Since one can generate infinitely many unitary pseudo-cycles from a
given 2n-cycle κ in π, n ∈ N, there exist infinite independent solutions for the
fixed point problem 〈∅, {π.X ≈? X}〉.

General solutions for fixed point problems. To compute the set of solutions for a
FP equation, we use a method described in [4], which is based on the computation
of unitary extended pseudo-cycles (epc). We refer to [4] for the definition of
extended pseudo-cycles and an algorithm to enumerate all the solutions of a
successful leaf in the derivation tree.

Pseudo-cycles are built just from atom terms in dom(π) and commutative
function symbols, while epc’s consider all nominal syntactic elements including
new variables, and also non commutative function symbols. The soundness and
completeness of the generator of solutions described in [4] relies on the properties
of pseudo-cycles described above, in particular the fact that only unitary pseudo-
cycles generate solutions.
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5 Formal Proofs

In the Coq formalisation, nominal terms are specified inductively, which permits
to use induction to formalise properties of terms (to check nominal α-equality
modulo C we use the rules given in [3]; see Fig. 3). The relations ⇒# and ⇒≈
are inductivelty specified, as propositions from problems to problems, resp. as
fresh sys and equ sys, and normal forms and their reflexive-transitive closures
are specified using abstract relations as shown below.

Definition NF (T :Type) (R:T→T→Prop) (s:T ) := ∀ t, ¬ R s t.

Inductive tr clos (T :Type) (R:T→T→Prop) : T→T→Prop :=
| tr rf : ∀ s, tr clos T R s s
| tr os : ∀ s t, R s t → tr clos T R s t
| tr ms : ∀ s t u, R s t → tr clos T R t u → tr clos T R s u

A unification step, unif step, is a reduction step either with the relation
equ sys or with the relation fresh sys, the latter restricted to fixed point prob-
lems; and a leaf is a normal form for this relation.

Inductive unif step : Triple → Triple → Prop :=
| equ unif step : ∀ T T’, equ sys T T’ → unif step T T’
| fresh unif step : ∀ T T’, fixpoint Problem (equ proj (snd T )) →

fresh sys T T’ → unif step T T’ .

Definition leaf (T : Triple) := NF unif step T .

Unification paths are derivations with the relation unif step to a leaf:

Definition unif path (T T’ : Triple) := tr clos unif step T T’ ∧ leaf T’.

Soundness is specified as the Theorem below, which reads: for any unification
problem T that reduces into a problem T’ with the relation unif path, and such
that Sl is a solution of T’, Sl is also a solution of T.

Theorem c unif path soundness : ∀ T T’ Sl,

valid triple T →unif path T T’ → sol c Sl T’ → sol c Sl T.

The formalisation of soundness is given in a theory that consists of 902 lines
or 35KB. This theory also includes lemmas that characterise successful leaves
and their solutions. The theorem uses three auxiliary lemmas, also proved by
induction. A lemma expresses preservation of the set of solutions of unification
problems under reduction by the relation ⇒#:

Lemma fresh sys compl : ∀ T T’ Sl, fresh sys T T’ → (sol c Sl T ↔ sol c Sl T’) .

Another lemma, the longer one, states that the solutions of a unification
problem obtained from a given problem through application of the relation ⇒≈
are solutions of the given problem:

Lemma equ sol preserv : ∀ T T’ Sl, valid triple T →
equ sys T T’ → sol c Sl T’ → sol c Sl T .

Finally, the last auxiliary lemma applied to prove soundness states that so-
lutions are preserved in each unification step:

Lemma unif step preserv : ∀ T T’ Sl,

valid triple T → unif step T T’ → sol c Sl T’ → sol c Sl T.
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Since except (≈{α,C} C) unification rules are invertible, the formalisation of
the proof of completeness is shorter, consisiting only of 351 lines or 13KB. The
additional element to be considered is the nondeterminism of (≈{α,C} C), indeed
implemented as two rules. The key theorem states that Sl is a solution for T iff
there exists a unification path form T to some T’ with solution Sl .

Theorem unif path compl : ∀ T Sl,

valid triple T → (sol c Sl T ↔ ∃ T’, unif path T T’ ∧ sol c Sl T’).

Excluding formalisation of nominal terms and E-equivalence, subject of [3],
the whole theory consists of theories Completeness, Soundness, Termination,
C-Unif, Substs, Problems and C-Equiv, which consist of 5474 lines or 204KB.

6 Conclusions and future work

A Coq formalisation of a sound and complete nominal C-unification algorithm
was obtained by combining⇒≈- and⇒#-reduction. The algorithm builds finite
derivation trees, such that the leaves, which may contain FP equations, represent
a complete set of unifiers. We have shown that nominal C-unification is infinitary
and NP-complete. An OCaml implementation of the simplification phase has
been developed, which outputs derivation trees. Extensions to deal with different
equational theories will be considered in future work.
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A Proofs of the Unification Algorithm - Section 3

All the proofs in section 3 have been formalised in Coq.

Lemma 2 (Inversion). The inference rules of ≈{α,C} are invertible:

1. ∇ ` fEk s ≈{α,C} fEk t, where E 6= C or both s and t are not pairs, implies
∇ ` s ≈{α,C} t

2. ∇ ` fCk 〈s0, s1〉 ≈{α,C} fCk 〈t0, t1〉 implies ∇ ` s0 ≈{α,C} t0 and ∇ `
s1 ≈{α,C} t1, or ∇ ` s0 ≈{α,C} t1 and ∇ ` s1 ≈{α,C} t0

3. ∇ ` 〈s0, s1〉 ≈{α,C} 〈t0, t1〉 implies ∇ ` s0 ≈{α,C} t0 and ∇ ` s1 ≈{α,C} t1
4. ∇ ` [a]s ≈{α,C} [a]t implies ∇ ` s ≈{α,C} t
5. ∇ ` [a]s ≈{α,C} [b]t implies ∇ ` s ≈{α,C} (a b) · t and ∇ ` a# t
6. ∇ ` π.X ≈{α,C} π′.X implies ds(π, π′)#X ⊆ ∇

Proof. (Sketch) The proof is by case analysis in the derivation rules of the rela-
tion ` ≈{α,C} . It is necessary to evaluate the possible scenarios where the
hypothesis can be considered valid. For example, in 2., ∇ ` fCk 〈s0, s1〉 ≈{α,C}
fCk 〈t0, t1〉 is valid only if we have either ∇ ` s0 ≈{α,C} t0 and ∇ ` s1 ≈{α,C} t1,
or ∇ ` s0 ≈{α,C} t1 and ∇ ` s1 ≈{α,C} t0. In the formalisation this proof
strategy is implemented in a very simple way by the use of the tactic inverts

applied to the hypothesis.

Lemma 7 (Preservation of valid triples). If P = 〈∇, σ, P 〉 is valid and
P ⇒≈ ∪ ⇒# P ′ = 〈∇′, σ′, P ′〉, then P ′ is also valid.

Proof. By case analysis on the derivation rules used in the relation ⇒≈ ∪ ⇒#.
The only rule that enlarges the domain of σ is (≈? inst) that builds a new substi-
tution σ′ = σ{X/π−1 ·t}, for t such that X /∈ V ar(t). Since dom(σ)∩V ar(P ) = ∅
and t occurs in P , dom(σ′) ∩ V ar(t) = ∅; hence, we obtain the first property:
im(σ′) ∩ dom(σ′) = ∅. For the second property, notice that P ′ consists of two
parts: 1. (P −{π.X ≈? t}){X/π−1 · t} that includes equations and freshness con-
straints whose variables do not intersect dom(σ′); and 2.

⋃
Y ∈dom(σ′),
a#Y ∈∇

{a#?Y σ
′}

that also does not include variables in dom(σ′), since im(σ′) ∩ dom(σ′) = ∅.
Consequently, dom(σ′) ∩ V ar(P ′) = ∅ and then P ′ is a valid triple.

Lemma 9 (Characterisation of leaves of T〈∆,P 〉). Let 〈∆, P 〉 be a unifica-
tion problem. If P ′ = 〈∇, σ′, P ′〉 is the label of a leaf in T〈∆,P 〉, then P ′ can be
partitioned as follows: P ′ = P ′′ ∪P⊥, where P ′′ is the set of all FP equations in
P ′ and P⊥ = P ′ − P ′′. If P⊥ 6= ∅ then UC(P ′) = ∅.

Proof. If there is a non FP equation in P⊥, say s ≈? t, then by definition of
T〈∆,P 〉, P ′ should be a ⇒≈-nf in P⇒≈ . Since no rule of the relation ⇒≈ applies
to decompose the equation s ≈? t in P ′, one has only the following possibilities:

1. Neither s nor t are suspended variables and s and t are nominal terms of
different grammatical type (for instance an abstraction and a pair, or an
atom term and a functional term).
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2. s and t are functional terms rooted by different function symbols.
3. s and t are different atom terms.
4. s is a suspension, say π.X, and t 6= π′.X, but X ∈ V ar(t).

Since for all these cases there is no 〈∇′, δ〉 such that ∇′ ` sδ ≈{α,C} tδ, one
can conclude that UC(〈∇, σ′, {s ≈? t}〉) = ∅, which implies that UC(P ′) = ∅.

In the case in which P⊥ consists only of freshness constraints, there exists
a success triple Q = 〈∆, σ,Q〉 ∈ P⇒≈ and P ′ is a ⇒#-nf of Q. The set Q can
be split into sets of freshness constraints, Q⊥, and FP equations Q′′ = P ′′. The
relation ⇒# will change only Q⊥, and since freshness constraints in P⊥ should
be of the form a#?ā (see remark after Def. 8), and there is no 〈∇′, δ〉 such that
∇′ ` a# āδ, that is ∇′ ` a# ā, one concludes that also in this case UC(P ′) = ∅.

Lemma A1 (Preservation of solutions by ⇒≈) If P is a valid triple and
P ⇒≈ P ′ then UC(P ′) ⊆ UC(P).

Proof. The proof is by case analysis on one step ⇒≈-reduction.
• Rules (≈? refl), (≈? pair), (≈? app) and (≈? [aa]): Let us analyse a one step
derivation with the rule (≈? [aa]):

P = 〈∇, σ, P ] {[a]s ≈? [a]t}〉 ⇒≈ 〈∇, σ, P ∪ {s ≈? t}〉 = P ′

Let 〈∇′, σ′〉 be a solution in UC(P ′). Then, according to the definition of
solution (Definition 4) four conditions are satisfied: first, for all a#X ∈ ∇,
∇′ ` a#Xσ′; second, for all a#?w ∈ P , ∇′ ` a#wσ′; third, for all u ≈?

v ∈ P ∪ {s ≈? t}, ∇′ ` uσ′ ≈{α,C} vσ′, and; fourth, there exists λ such that
∇′ ` σλ ≈ σ′.

Except for the third condition, all other conditions hold trivially. The third
condition also holds, since (by the inference rules of ≈{α,C} and Lemma 2)
∇′ ` sσ′ ≈{α,C} tσ′ if only if ∇′ ` [a]sσ′ ≈{α,C} [a]tσ′; hence, UC(P ′) ⊆ UC(P).
Notice that a solution 〈∇′, σ′〉 in UC(P), satisfies the four conditions for P ′,
hence one has that UC(P ′) = UC(P) indeed.

A similar analysis shows that UC(P) = UC(P ′) also for rules (≈? refl),
(≈? pair), (≈? app).
• Rule (≈? C): Consider a derivation of the form below, where i = 0 or i = 1:

P=〈∇, σ, P]{fCk 〈s0, s1〉≈? f
C
k 〈t0, t1〉}〉⇒≈ 〈∇, σ, P∪{〈s0, s1〉≈? 〈ti, t(i+1)〉}〉=P ′

As for the previous rules, for 〈∇′, σ′〉 ∈ UC(P ′), the first, second and fourth
conditions in Def. 4 are preserved trivially. Regarding the third condition, it
also holds since ∇′ ` 〈s0, s1〉σ′ ≈{α,C} 〈ti, ti+1〉σ′ implies for the commutative
function symbol fCk that ∇′ ` fCk 〈s0, s1〉σ′ ≈{α,C} fCk 〈t0, t1〉σ′. Thus, UC(P ′) ⊆
UC(P).
• Rule (≈? [ab]):

P = 〈∇, σ, P ] {[a]s ≈? [b]t}〉 ⇒≈ 〈∇, σ, P ∪ {s ≈? (a b) t, a#?t}〉 = P ′

Let 〈∇′, σ′〉 be a solution in UC(P ′). Again, the interesting condition to be
checked is the third condition in Def. 4. Since 〈∇′, σ′〉 is a solution of P ′, one has
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that ∇′ ` a# tσ′ and ∇′ ` sσ′ ≈{α,C} ((a b) · t)σ′. By Lemma 1, one has ((a b) ·
t)σ′ = (a b) · (tσ′). Hence, by application of the α-equivalence rule (≈{α,C} [ab])
in Fig. 2, one concludes that∇′ ` [a](sσ′) ≈{α,C} [b](tσ′), which by the definition
of substitution action (Def. 2) can be written as ∇′ ` ([a]s)σ′ ≈{α,C} ([b]t)σ′.
Thus, UC(P ′) ⊆ UC(P).

Notice that in this case UC(P) ⊆ UC(P ′) too; indeed, if ∇′ ` ([a]s)σ′≈{α,C}
([b]t)σ′, by Def. 2, reverse application of the α-equivalence rule (≈α [ab]) (Lemma
2) and Lemma 1, one has that ∇′ ` sσ′ ≈{α,C} ((a b) t)σ′ and ∇′ ` a# tσ′.
• Rule (≈? inst). Consider the reduction

P=〈∇, σ, P ]{π.X ≈? t}〉⇒≈
〈
∇, σ′′, P{X/π−1 · t} ∪ ⋃

Y∈dom(σ′′),
a#Y∈∇

{a#?Y σ
′′}
〉

=P ′

where σ′′ := σ{X/π−1 · t} and X /∈ V ar(t).
Let 〈∇′, σ′〉 ∈ UC(P ′). First, we analyse the the third condition in Def. 4.

Let u ≈? v be an equation in P . We have that ∇′ ` u{X/π−1 · t}σ′ ≈{α,C}
v{X/π−1 · t}σ′ and ∇′ ` σ′ ≈ σ{X/π−1 · t}λ, for some λ. Thus, ∇′ ` u{X/π−1 ·
t}(σ{X/π−1 · t}λ) ≈{α,C} v{X/π−1 · t}(σ{X/π−1 · t}λ), which implies ∇′ `
u{X/π−1 · t}λ ≈{α,C} v{X/π−1 · t}λ. For the last part we use the general as-
sumption that P and P ′ are valid triples; hence, by Lemma 7, dom(σ) does not
intersect the set V ar(P ) ∪ V ar(t) ∪ {X}. Thus, ∇′ ` uσ{X/π−1 · t}λ ≈{α,C}
vσ{X/π−1 · t}λ, and finally, by the hypothesis ∇′ ` σ′ ≈ σ{X/π−1 · t}λ, one
concludes that ∇′ ` uσ′ ≈{α,C} vσ′.

To conclude the analysis of the third condition, π.X ≈? t should be consid-
ered. One has that π.X(σ{X/π−1 ·t}λ) = π ·(π−1 ·t)λ. The last term corresponds
to tλ that is equal to t(σ{X/π−1 · t}λ). So by reflexivity of ≈{α,C} (Lem. 6) one
concludes that ∇′ ` π.Xσ′ ≈{α,C} tσ′.

The first condition in Def. 4 is immediate. The second condition is more
interesting and depends on the third one. We need to prove that for any a#?u ∈
P , ∇′ ` a#uσ′. The proof proceeds by induction in u. The cases in which
u = 〈〉, u = b̄, u = [a]v and u = φ.Y , for Y 6= X, are immediate. The case
in which u = ā is not possible since it contradicts the hypothesis. The cases
in which u = fv or u = 〈u1, u2〉 and u = [b]v follow by direct application of
the induction hypothesis. The interesting case is when u = φ.X for which the
hypothesis is that ∇′ ` a#φ.X{X/π−1 · t}σ′. By application of the substitution
we have ∇′ ` a#φ · (π−1 · t)σ′; by application of nominal properties for the
freshness relation # this gives ∇′ ` π · φ−1 · a# tσ′. By freshness preservation
(Lemma 3) and the fact that ∇′ ` π.Xσ′ ≈{α,C} tσ′ (proved in the analysis of
the third condition of Def. 4) one obtains∇′ ` π φ−1·a#π.Xσ′; thus, by nominal
properties one obtains ∇′ ` φ−1 · a#Xσ′ and finaly that ∇′ ` a#φ.Xσ′.

The analysis of the fourth condition in Def. 4 uses the hypothesis that there
exists a λ such that ∇′ ` σ′′λ ≈ σ′ and, given that σ′′ := σ{X/π−1 · t}, for
P one has that the substitution {X/π−1 · t}λ satisfies the requirement that
∇′ ` σ{X/π−1 · t}λ ≈ σ′.
• Finally, for the rule (≈? inv) consider a derivation:

P = 〈∇, σ, P ] {π.X ≈? π
′.X}〉 ⇒≈ 〈∇, σ, P ∪ {π ⊕ (π′)−1.X ≈? X}〉 = P ′
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Suppose that 〈∇′, σ′〉 ∈ UC(P ′). All conditions in Def. 4 hold trivially (in
both directions) except the third. Suppose ∇′ ` (π ⊕ (π′)−1.X)σ′ ≈{α,C} Xσ′,
by substitution properties (Def. 2), this holds if and only if ∇′ ` π ⊕ (π′)−1 ·
(Xσ′) ≈{α,C} Xσ′, and by equivariance (Lemma 5) and the definition of action
of substitutions (Def. 2), the last holds if and only if, ∇′ ` π.Xσ′ ≈{α,C} π′.Xσ′.
One concludes that UC(P) = UC(P ′).

Lemma A2 (Preservation of solutions by ⇒#) If P⇒#P ′ then UC(P) =
UC(P ′).

Proof. The proof is by case analysis on one step ⇒#-reduction. The interesting
case is rule (#?var). For rules (#?〈〉), (#?ab̄), (#?app), (#?a[a]) (#?a[b]) and
(〈#〉pair) the analysis is simple and similar.
• Let us analyse, for example, the case of rule (#?a[b]):

P = 〈∇, σ, P ] {a#?[b]t}〉 ⇒# 〈∇, σ, P ∪ {a#?t}〉 = P ′

Supposing 〈∇′, σ′〉 ∈ UC(P), except for the second condition in Def. 4, all other
three conditions hold trivially for P ′. The same happens when 〈∇′, σ′〉 ∈ UC(P ′):
conditions first, third and fourth in Def. 4 hold for P. For the second condition
in Def. 4, by application of rule (# a[b]) of the freshness relation (Fig. 1) and
inversion property of these inference rule and, substitution action (Def. 2), one
has that ∇′ ` a# tσ′ if and only if ∇′ ` a# [b]tσ′ if and only if ∇′ ` a# ([b]tσ′).
Hence, UC(P) = UC(P ′).
• Now, consider the interesting case of (#?var):

P = 〈∇, σ, P ] {a#?π.X}〉 ⇒# 〈{(π−1 · a)#X} ∪ ∇, σ, P 〉 = P ′

On the one hand, if 〈∇′, σ′〉 ∈ UC(P), the second, third and fourth conditions
in Def. 4 hold trivially for P ′. To prove the first condition for P ′, by the second
condition in Def. 4 for P one has that ∇′ ` a#π.Xσ′, which, by nominal
properties and substitution action (Def. 2), implies that ∇′ ` π−1 · a#Xσ′.
Since by hypothesis ∇′ ` ∇σ′ (first condition of Def. 4 for P), one has that
∇′ ` ({(π−1 · a)#X} ∪ ∇)σ′. Therefore, UC(P) ⊆ UC(P ′).

On the other hand, if 〈∇′, σ′〉 ∈ UC(P ′), the first, third and fourth conditions
in Def. 4 hold trivially for P. For proving the second condition for P, by the
first condition in Def. 4 one has that ∇′ ` (π−1 · a) #Xσ′, which again by
nominal properties and Def. 2 implies that ∇′ ` a# (π.X)σ′. Thus, by the last
and the second condition in Def. 4 for P ′, one obtains the second condition for
P. Therefore, UC(P ′) ⊆ UC(P).

Theorem 1 (Soundness of T〈∆,P 〉). T〈∆,P 〉 is correct, i.e., if P ′ = 〈∇, σ, P ′〉
is the label of a leaf in T〈∆,P 〉, then

1. UC(P ′) ⊆ UC(〈∆, id , P 〉), and
2. if P ′ contains non FP equations or freshness constraints then UC(P ′) = ∅.

Proof. The first is proved by induction on the number of steps of ⇒≈ and ⇒#,
using Lemmas A1 and A2. The second is a direct application of Lemma 9.
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Theorem 2 (Completeness of T〈∆,P 〉). Let T〈∆,P 〉 be a derivation tree for the
unification problem 〈∆, P 〉, where P = 〈∆, id , P 〉. Then

UC(P) =
⋃

Q∈ST (T〈∆,P〉)

UC(Q)

Proof. From soundness (Theorem 1), UC(P) ⊇
⋃
Q∈ST (T〈∆,P〉) UC(Q). The other

inclusion is proved by induction on the size of subtrees of T〈∆,P 〉. This is done
verifying that in the preservation lemmas for ⇒≈ and ⇒# (Lemmas A1 and
A2) all rules, except (≈? C) and (≈? inst) preserve exactly the same sets of
solutions.
• For one step application of rule (≈? C) on a triple Q, labelling a node in T〈∆,P 〉,
one has two sibling nodes labelled with triples Q1 and Q2 such that

Q=〈∇, σ,Q ] {fC〈s0, s1〉 ≈? f
C〈t0, t1〉}〉,

Q1 =〈∇, σ,Q ∪ {〈s0, s1〉≈? 〈t0, t1〉}〉 and Q2 =〈∇, σ,Q ∪ {〈s0, s1〉≈? 〈t1, t0〉}〉.

If 〈∇′, σ′〉 ∈ UC(Q) then it satisfies the four conditions in Def. 4 for Q. It can
be easily checked that 〈∇′, σ′〉 satisfies the first, second and fourth conditions for
both Q1 and Q2. Regarding the third condition, since it holds for Q, it holds for
any equation in Q and also ∇′ ` fC〈s0, s1〉σ′ ≈{α,C} fC〈t0, t1〉σ′. From the last,
by substitution action one has that ∇′ ` fC〈s0σ

′, s1σ
′〉 ≈{α,C} fC〈t0σ′, t1σ′〉.

Then, by Lemma 2 either ∇′ ` s0σ
′ ≈{α,C} t0σ′ and ∇′ ` s1σ

′ ≈{α,C} t1σ′, or
∇′ ` s0σ

′ ≈{α,C} t1σ′ and∇′ ` s1σ
′ ≈{α,C} t0σ′. Thus, the third condition holds

for Q1 or for Q2, and it can be concluded that 〈∇′, σ′〉 ∈ UC(Q) if and only if
〈∇′, σ′〉 ∈ UC(Q1) or 〈∇′, σ′〉 ∈ UC(Q2). Therefore UC(Q) = UC(Q1) ∪ UC(Q2).
By induction hypothesis, the solutions of the successful leaves in the subtrees
rooted by Q1 and Q2 are exactly the set UC(Q).
• For one step application of rule (≈? inst) on a triple Q, labelling a node in
T〈∆,P 〉, one has a sibling node labelled with a triple Q′ such that

Q=〈∇, σ,Q ] {π.X≈? t}〉 ⇒≈
〈
∇, σ′′, Q{X/π−1 · t}∪

⋃
Y∈dom(σ′′),
a#Y∈∇

{a#?Y σ
′′}
〉

=Q′

where σ′′ := σ{X/π−1 · t} and X /∈ V ar(t).
Suppose that 〈∇′, σ′〉 ∈ UC(Q). We will check that 〈∇′, σ′〉 satisfies the four

conditions in Def. 4 for Q′.
− The first condition, that is ∇′ ` ∇σ′, is the same for Q and Q′.
− Proving that the second condition holds for Q′, requires proving that:

1. a#?u ∈ Q implies ∇′ ` a#(u{X/π−1 · t})σ′ and
2. for all Y ∈ dom(σ′′) such that a#Y ∈ ∇, ∇′ ` a#Y σ′′σ′.

For the first subcase we use induction in u similarly to the case of rule (≈? inst)
in Lemma A1, being the interesting case, when u = φ.X, for which the hy-
potheses of interest are that ∇′ ` a#φ.Xσ′ and ∇′ ` π.Xσ′ ≈{α,C} tσ′,
by the second and third conditions in Def. 4 for Q, respectively. From the
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first hypothesis, by nominal properties of the freshness relation one has that
∇′ ` φ−1 ·a#Xσ′; by nominal properties of the freshness relation, also it follows
that ∇′ ` π ·φ−1 ·a#π ·Xσ′; by the second hypothesis and freshness preservation
(Lemma 3) one obtains ∇′ ` π · φ−1 · a#tσ′; again by nominal properties the
last gives ∇′ ` a#φ · π−1 · tσ′, which by substitution application gives finally
∇′ ` a#(φ.X{X/π−1 · t})σ′.

For the second subcase above, observe initially that for a Y ∈ dom(σ′′) such
that a#Y ∈ ∇, ∇′ ` a#Y σ′′σ′ equals ∇′ ` a#Y σ{X/π−1 · t}σ′. We will use
induction on Y σ. The cases in which Y σ = 〈〉, Y σ = b̄ and Y σ = [a]v are
immediate. The case in which Y σ = ā is not possible since it contradicts the
hypothesis, the first condition in Def. 4 for Q: namely, it contradicts ∇′ ` a#Y σ′

that is ∇′ ` a#ā since ∇′ ` σλ ≈ σ′ (fourth condition in Def. 4 for Q). The cases
in which Y σ = fv, Y σ = 〈u1, u2〉 and Y σ = [b]v proceed by direct application
of the induction hypothesis. The interesting cases happen when Y σ = φ.Z.
If Z 6= X, by the first condition for Q one has that ∇′ ` a#Y σ′, that by
the fourth condition gives ∇′ ` a#Y σλ; thus, ∇′ ` a#φ.Zλ from which one
has (since we are dealing with valid triples, Lemma 7) ∇′ ` a#φ.Zσλ and
then ∇′ ` a#φ.Z{X/π−1 · t}σλ, and finally, ∇′ ` a#Y σ{X/π−1 · t}σλ that is
∇′ ` a#Y σ′′σ′. Otherwise, if Z = X, that is Y σ = φ.X, by the first and fourth
conditions for Q one has that ∇′ ` a#Y σ′ and then that ∇′ ` a#Y σλ; thus,
∇′ ` a#φ.Xλ. On the other side, by the third and fourth conditions for Q,
one has that ∇′ ` π.Xσλ ≈{α,C} tσλ, which by equivariance (Lemma 5) and
since Q is a valid triple gives ∇′ ` Xλ ≈{α,C} π−1 · tλ. Again, by equivariance
and substitution and permutation properties one obtains ∇′ ` φ.Xλ ≈{α,C}
φ · π−1 · tλ. From the last and ∇′ ` a#φ.Xλ, by freshness preservation (Lemma
3) one obtains ∇′ ` a#φ · π−1 · tλ and, by freshness properties this gives ∇′ `
π · φ−1 · a#tλ. Then, ∇′ ` π · φ−1 · a#π · X{X/π−1 · t}λ which, since Q is
a valid triple, gives ∇′ ` π · φ−1 · a#π · X{X/π−1 · t}σλ and by permutation
and freshness properties ∇′ ` a#φ.X{X/π−1 · t}σλ. The last gives the desired
property: ∇′ ` a#Y σ{X/π−1 · t}σλ, that is ∇′ ` a#Y σ′′σ′.
− Now, we consider the third condition in Def. 4 for Q′. It should be proved
that for any equation u ≈? v in Q, except π.X ≈? t, ∇′ ` u{X/π−1 · t}σ′ ≈{α,C}
v{X/π−1 · t}σ′. This is done by induction in u and v.

– Case u = 〈〉. Since ∇′ ` 〈〉σ′ ≈{α,C} vσ′ (by the third condition for Q), either
v = 〈〉 or v = φ.Y . The former subcase is trivial. For the latter subcase,
it is necessary to consider whether X 6= Y or X = Y . If X 6= Y , ∇′ `
〈〉{X/π−1·t}σ′ ≈{α,C} φ.Y {X/π−1·t}σ′. IfX = Y , we have the following chain
using nominal properties and the hypothesis that ∇′ ` 〈〉σ′ ≈{α,C} φ.Xσ′:
∇′ ` π · φ−1 · 〈〉σ′ ≈{α,C} π.Xσ′ implies ∇′ ` π · φ−1 · 〈〉σ′ ≈{α,C} tσ′,
since ∇′ ` π.Xσ′ ≈{α,C} tσ′ (by the third property for Q), implies ∇′ `
φ−1·〈〉σ′ ≈{α,C} π−1·tσ′ iff∇′ ` φ−1·〈〉σ′ ≈{α,C} X{X/π−1·t}σ′, implies∇′ `
〈〉σ′ ≈{α,C} φ.X{X/π−1·t}σ′ iff∇′ ` 〈〉{X/π−1·t}σ′ ≈{α,C} φ.X{X/π−1·t}σ′.

– Case u = ā Since ∇′ ` āσ′ ≈{α,C} vσ′ (third condition for Q), either v = ā or
v = φ.Y . The former subcase is trivial. For the latter, either X 6= Y or X = Y
as in the case of the unity. If X 6= Y , ∇′ ` ā{X/π−1 ·t}σ′ ≈{α,C} φ.Y {X/π−1 ·
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t}σ′ since ∇′ ` āσ′ ≈{α,C} φ.Y σ′ holds. If X = Y , we have the following chain
using nominal properties and the hypothesis that ∇′ ` āσ′ ≈{α,C} φ.Xσ′:
∇′ ` π · φ−1 · āσ′ ≈{α,C} π.Xσ′ implies ∇′ ` π · φ−1 · āσ′ ≈{α,C} tσ′, since
∇′ ` π.Xσ′ ≈{α,C} tσ′ (by the third property for Q), implies ∇′ ` φ−1 ·
āσ′ ≈{α,C} π−1 · tσ′ iff ∇′ ` φ−1 · āσ′ ≈{α,C} X{X/π−1 · t}σ′, implies ∇′ `
āσ′ ≈{α,C} φ.X{X/π−1 ·t}σ′ iff ∇′ ` ā{X/π−1 ·t}σ′ ≈{α,C} φ.X{X/π−1 ·t}σ′.

– Case u = [a]s. Since ∇′ ` [a]sσ′ ≈{α,C} vσ′, either v is an abstraction or
v = φ.Y . The former subcase gives rise to two subcases:
• v=[a]w which holds by induction hypothesis, i.e.,∇′`s{X/π−1·t}σ′ ≈{α,C}
w{X/π−1 · t}σ′ implies ∇′ ` [a]s{X/π−1 · t}σ′ ≈{α,C} [a]w{X/π−1 · t}σ′ by
rule (≈α [aa]),

• and v = [b]w which holds by induction hypothesis also; indeed, since ∇′ `
[a]sσ′ ≈{α,C} [b]wσ′, by rule (≈α [ab]) it holds that ∇′ ` sσ′ ≈{α,C}
(a b)wσ′ and ∇′ ` a#wσ′. Thus, one has that ∇′ ` s{X/π−1 · t}σ′ ≈{α,C}
(a b)w{X/π−1 · t}σ′ and, if also ∇′ ` a#w{X/π−1 · t}σ′ holds, one obtains,
again by rule (≈α [ab]), that ∇′ ` [a]s{X/π−1 · t}σ′ ≈{α,C} [b]w{X/π−1 ·
t}σ′. To prove that ∇′ ` a#w{X/π−1 ·t}σ′ observe that if X /∈ V ar(w) this
holds since ∇′ ` a#wσ′; otherwise, if X ∈ V ar(w), it would be proved by
induction on w being the elaborated case the case of a suspended variable:
∇′ ` a#φ.X{X/π−1 ·t}σ′ or equivalently that ∇′ ` a#φ·π−1 ·tσ′. For prov-
ing this notice that since ∇′ ` a#wσ′ and X ∈ V ar(w), ∇′ ` a#φ.Xσ′;
from the last and since ∇′ ` π.Xσ′ ≈? tσ′ implies that ∇′ ` φ.Xσ′ ≈?

φ · π−1 · tσ′, one concludes that ∇ ` a#φ · π−1 · tσ′.
For the subcase in which v = φ.Y , notice that Y σ′ = [b]w. If X = Y , the
hypothesis that ∇′ ` [a]sσ′ ≈{α,C} φ.Xσ′ implies that X /∈ V ar(s), and
since also ∇′ ` π.Xσ′ ≈{α,C} tσ′, we obtain ∇′ ` [a]s{X/π−1 · t}σ′ ≈{α,C}
φ.X{X/π−1 · t}σ′. Otherwise, let Y ′ be a new variable and extend Q with
the equation Y ≈? [b]Y ′, ∇′ with the constraints c#Y ′ for all c#Y ∈ ∇′
except b#Y ′, and σ′ with the bind {Y ′/w}, so that Y ′σ′ = w. Thus, ∇′ `
[a]sσ′ ≈{α,C} [φ · b]φ.Y ′σ′. If φ · b = a, by rule (≈α [aa]) we have ∇′ `
sσ′ ≈{α,C} φ.Y ′σ′ and by i.h. ∇′ ` s{X/π−1 · t}σ′ ≈{α,C} φ ·Y ′{X/π−1 · t}σ′,
which again by rule (≈α [aa]) gives∇′ ` [a]s{X/π−1·t}σ′ ≈{α,C} φ.Y {X/π−1·
t}σ′. If φ · b = c, by rule (≈α [ab]) we have ∇′ ` sσ′ ≈{α,C} (a c)φ.Y ′σ′ and
∇′ ` a#φ.Y ′σ′. Thus, ∇′ ` a#φ.Y ′{X/π−1 · t}σ′ and since by i.h. ∇′ `
s{X/π−1 · t}σ′ ≈{α,C} (a c)φ.Y ′{X/π−1 · t}σ′, by application of rule (≈α [ab])
we can conclude that ∇′ ` [a]s{X/π−1 · t}σ′ ≈{α,C} [φ · b]φ.Y ′{X/π−1 · t}σ′
or equivalently that ∇′ ` [a]s{X/π−1 · t}σ′ ≈{α,C} φ.Y {X/π−1 · t}σ′.

– Case u = 〈s, w〉, either v = 〈v1, v2〉 or v = φ.Y . The former case holds
by induction: by the third condition for Q one has ∇′ ` 〈s, w〉σ′ ≈{α,C}
〈v1, v2〉σ′, and by rule (≈α pair), this holds iff ∇′ ` sσ′ ≈{α,C} v1σ

′ and ∇′ `
wσ′ ≈{α,C} v2σ

′; this gives, by i.h.,∇′ ` s{X/π−1·t}σ′ ≈{α,C} v1{X/π−1·t}σ′
and ∇′ ` w{X/π−1 · t}σ′ ≈{α,C} v2{X/π−1 · t}σ′ and finally, again by rule
(≈α pair), ∇′ ` 〈s, w〉{X/π−1 · t}σ′ ≈{α,C} 〈v1, v2〉{X/π−1 · t}σ′.
When v = φ.X, since ∇′ ` 〈s, w〉σ′ ≈{α,C} φ.Xσ′, X /∈ V ar〈s, w〉; thus, since
also ∇′ ` π.Xσ′ ≈{α,C} tσ′, one has that ∇′ ` 〈s, w〉{X/π−1 · t}σ′ ≈{α,C}
φ.X{X/π−1 · t}σ′. For the case in which v = φ.Y , for X 6= Y , notice that
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Y σ′ ≈? 〈v1, v2〉. Let Y1 and Y2 be new variables and extend Q with the
equation Y = 〈Y1, Y2〉, ∇′ with constraints a#Yi for i = 1, 2 for all a#Y ∈ ∇′,
and σ′ with the binds {Yi/vi} for i = 1, 2, so that Yiσ

′ = vi, for i = 1, 2.
Then by the hypothesis and (≈α pair) we have, ∇′ ` sσ′ ≈{α,C} φ.Y1σ

′ and
∇ ` wσ′ ≈{α,C} φ.Y2σ

′ and by i.h. ∇′ ` s{X/π−1 · t}σ′ ≈{α,C} φ.Y1{X/π−1 ·
t}σ′ and ∇ ` wσ′{X/π−1 · t} ≈{α,C} φ.Y2{X/π−1 · t}σ′; thus, again by rule
(≈α pair), one has ∇′ ` 〈s, w〉{X/π−1 · t}σ′ ≈{α,C} φ · 〈v1, v2〉{X/π−1 · t}σ′,
that is ∇′ ` 〈s, w〉{X/π−1 · t}σ′ ≈{α,C} φ.Y {X/π−1 · t}σ′.

– Case u = fs, with f non commutative or s a non pair term. In this case
v should be either of the form fw or φ.Y . The former case holds by induc-
tion: ∇′fsσ′ ≈{α,C} fwσ′ iff ∇′ ` sσ ≈{α,C} wσ′, by rule (≈{α,C} app);
then, by i.h. ∇′ ` s{X/π−1 · t}σ ≈{α,C} w{X/π−1 · t}σ′, and, again by rule
(≈{α,C} app) one has that ∇′ ` fs{X/π−1 · t}σ ≈{α,C} fw{X/π−1 · t}σ′.
For the case in which v = φ.X, notice that X /∈ V ar(s) since ∇ ` fsσ′ ≈{α,C}
φ.Xσ′; thus, ∇ ` fs{X/π−1 · t}σ′ ≈{α,C} φ.X{X/π−1 · t}σ′. For the case in
which v = φ.Y , with X 6= Y , notice that Y σ′ = fw. Let Y ′ be a new variable
and extend Q with the equation Y ≈? fY

′, ∇′ including the constraint a#Y ′

for all a#Y ∈ ∇′ and σ′ with the bind {Y ′/w}; so Y ′σ′ = w. First, ∇′ `
sσ′ ≈{α,C} φ.Y ′σ′ by the hypothesis and application of rule (≈{α,C} app);
then, by i.h. one has that ∇′ ` s{X/π−1 · t}σ′ ≈{α,C} φ.Y ′{X/π−1 · t}σ′
and by application of the rule (≈{α,C} app) one has that ∇′ ` fs{X/π−1 ·
t}σ′ ≈{α,C} fφ.Y ′{X/π−1 · t}σ′ or equivalently ∇′ ` fs{X/π−1 · t}σ ≈{α,C}
φ.Y {X/π−1 · t}σ′.

– Case u = f〈u0, u1〉 with f commutative. In this case v should be of the
form f〈v0, v1〉 or φ.Y . The former case holds by induction, since by i.h., ei-
ther ∇′ ` u0{X/π−1 · t}σ′ ≈{α,C} v0{X/π−1 · t}σ′ and ∇′ ` u1{X/π−1 ·
t}σ′ ≈{α,C} v1{X/π−1 · t}σ′, or ∇′ ` u0{X/π−1 · t}σ′ ≈{α,C} v1{X/π−1 ·
t}σ′ and ∇′ ` u1{X/π−1 · t}σ′ ≈{α,C} v0{X/π−1 · t}σ′ and, by applica-
tion of rule (≈{α,C} pair), one obtains ∇′ ` f〈u0, u1〉{X/π−1 · t}σ′ ≈{α,C}
f〈v0, v1〉{X/π−1 · t}σ′.
For the case in which v = φ.X, one has that X /∈ V ar(u) since ∇′ `
f〈u0, u1〉σ′ ≈{α,C} φ.Xσ′. Thus, since ∇′ ` π.Xσ′ ≈{α,C} tσ′, we obtain
that ∇′ ` f〈u0, u1〉{X/π−1 · t}σ′ ≈{α,C} π.X{X/π−1 · t}σ′. For the case
in which v = φ.Y and X 6= Y , let Y0 and Y1 be new variables and ex-
tend ∇′ with a#Yi for i = 0 and i = 1 and all a#Y ∈ ∇′, and σ′ with
the binds {Y0/ui, Y2/ui+1} for i = 0 or i = 1. Then, one has that ∇′ `
f〈u0, u1〉σ′ ≈{α,C} f〈Y0, Y1〉σ′ which by rule (≈{α,C} pair) and i.h. implies
that either ∇′ ` u0{X/π−1 ·t}σ′ ≈{α,C} Y0{X/π−1 ·t}σ′ and ∇′ ` u1{X/π−1 ·
t}σ′ ≈{α,C} Y1{X/π−1 · t}σ′ or, ∇′ ` u0{X/π−1 · t}σ′ ≈{α,C} Y1{X/π−1 · t}σ′
and ∇′ ` u1{X/π−1 ·t}σ′ ≈{α,C} Y0{X/π−1 ·t}σ′. From the last and by appli-
cation of rule (≈{α,C} pair) we conclude ∇′ ` f〈u0, u1〉{X/π−1 · t}σ′ ≈{α,C}
f〈Y0, Y1〉{X/π−1 · t}σ′.

– Case u = φ.Y . All cases, except the case of v a suspended variable are treated
as previously interchanging u and v. When v = φ′.Y ′, we have to consider
whether both Y and Y ′ are equal to X, both different from X or only one
of them is equal to X. Case Y = Y ′ = X, we have that ∇′ ` φ.Xσ ≈{α,C}
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φ′.Xσ′, since ∇′ ` π.Xσ′ ≈{α,C} tσ′, we conclude that ∇′ ` φ.X{X/π−1 ·
t}σ′ ≈{α,C} φ′.X{X/π−1 · t}σ′. Case Y 6= X = Y ′, we also use the hypotheses
that ∇′ ` φ.Xσ ≈{α,C} φ′.Xσ′ and ∇′ ` π.Xσ′ ≈{α,C} tσ′ to conclude that
∇′ ` φ.Y {X/π−1 · t}σ′ ≈{α,C} φ′.X{X/π−1 · t}σ′; the case Y = X 6= Y ′

follows analogously. The case Y 6= X 6= Y ′ requires only the hypothesis that
∇′ ` φ.Xσ ≈{α,C} φ′.Xσ′.

− To prove the fourth condition in Def. 4 for Q′, select λ′ = λ \ {X/Xλ}. We
have to prove that for any variable Y , ∇′ ` Y σ′′λ′ ≈{α,C} Y σ′ assuming that
∇′ ` Y σλ ≈{α,C} Y σ′.

– First, we consider the case in which Y ∈ V ar(Q) ∪ {X} ∪ V ar(t). Since Q is
a valid triple Y /∈ dom(σ). If Y 6= X then ∇′ ` Y σ′′λ′ ≈{α,C} Y λ′ and, since
∇′ ` Y λ′ ≈{α,C} Y λ, applying the hypothesis we obtain ∇′ ` Y σ′′λ′ ≈{α,C}
Y σ′. If Y = X then ∇′ ` Xσ′′λ′ ≈{α,C} π−1 · tλ′ and since X /∈ V ar(t), we
also have that ∇′ ` tλ′ ≈{α,C} tλ, which gives ∇′ ` Xσ′′λ′ ≈{α,C} π−1 · tσλ,
and by the hypothesis (∇′ ` σλ ≈ σ′) and the third condition for Q, more
specifically by the hypothesis ∇′ ` π.Xσ′ ≈{α,C} tσ′, one concludes that
∇′ ` Xσ′′λ′ ≈{α,C} Xσ′.

– Second, when Y ∈ dom(σ) we prove that∇′ ` Y σ′′λ′ ≈{α,C} Y σ′ by induction
in the nominal term Y σ. All cases except when Y σ = φ.Z follow by simple
application of the induction hypothesis. For instance, consider Y σ = 〈u1, u2〉.
Let Yi for i = 1, 2 be new variables, extend σ′ with bindings {Yi/ui}, for
i = 1, 2. Since ∇′ ` 〈u1, u2〉λ ≈{α,C} Y σ′, Y σ′ should be of the form 〈v1, v2〉.
Then, extend σ′ with binds {Yi/vi} for i = 1, 2. Thus, we have that ∇′ `
Yiσλ ≈{α,C} Yiσ′, for i = 1, 2 and by i.h. that ∇′ ` Yiσ

′′λ′ ≈{α,C} Yiσ′;
so by rule (≈{α,C} pair) we can conclude that ∇′ ` 〈Y1, Y2〉σ′′λ′ ≈{α,C}
〈Y1, Y2〉σ′ that implies ∇′ ` Y σ′′λ′ ≈{α,C} Y σ′. For the interesting case in
which Y σ = φ.Z, we have ∇′ ` Y σ′′λ′ ≈{α,C} φ.Z{X/π−1 · t}λ′. If Z 6= X,
then ∇′ ` φ.Z{X/π−1 · t}λ′ ≈{α,C} φ.Zλ′ and ∇′ ` φ.Zλ′ ≈{α,C} φ.Zλ; thus,
∇′ ` Y σ′′λ′ ≈{α,C} Y σλ which by hypothesis implies ∇′ ` Y σ′′λ′ ≈{α,C}
Y σ′. If Z = X, then ∇′ ` Y σ′′λ′ ≈{α,C} φ · π−1 · tλ′; since X /∈ V ar(t),
∇′ ` φ · π−1 · tλ′ ≈{α,C} φ · π−1 · tλ; also, since Q is a valid triple dom(σ) ∩
V ar(t) = ∅, thus, ∇′ ` φ · π−1 · tλ ≈{α,C} φ · π−1 · tσλ, and then ∇′ `
φ · π−1 · tσλ ≈{α,C} φ · π−1 · tσ′. By the third condition for Q, we have that
∇′ ` π.Xσ′ ≈{α,C} tσ′, then ∇′ ` φ · π−1 · tσ′ ≈{α,C} φ.Xσ′. Until this
point we have proved that ∇′ ` Y σ′′λ′ ≈{α,C} φ.Xσ′. To conclude, since
∇′ ` φ.Xσ′ ≈{α,C} φ.Xσλ, we have that ∇′ ` φ.Xσ′ ≈{α,C} Y σσλ and, since
Q is a valid triple im(σ) ∩ dom(σ) = ∅, thus, ∇′ ` φ.Xσ′ ≈{α,C} Y σλ, from
which we conclude that ∇′ ` Y σ′′λ′ ≈{α,C} Y σ′.

B Proofs of Section 4

The notion of equivalence between pseudo-cycles can be extended to equivalence
modulo commutativity of a binary operator ∗:
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Definition B1 (Pseudo-cycle C equivalence) Let κ1 and κ2 be two pseudo-
cycles w.r.t. the pseudo-cycle κ. They are said to be equivalent modulo commu-
tativity of ∗, denoted by κ1 ≈(C,∗) κ2, if each element A of κ1 is equivalent
modulo commutativity of ∗ to one element B of κ2, i.e., A ≈(C,∗) B and they
have the same successor, that is, κ ·A ≈(C,∗) κ ·B.

Example B1 ((A ∗B) (C ∗D) (E ∗ F )) ≈C ((F ∗ E) (A ∗B) (D ∗ C))

[κ](C,∗) denotes the equivalence class modulo commutativity of ∗ of the
pseudo-cycle κ, that is, [κ](C,∗) = {κ′ | κ ≈C κ′}. When the operator ∗ is clear
from the context, we will denote it by ≈C and the congruence class of the pseudo-
cycle κ by [κ]C . So, pseudo-cycle equivalence modulo C can be determined by a
single element:

Lemma B1 If κ1 and κ2 are two pseudo-cycles w.r.t. the cycle κ, and there
exists t ∈ κ1 such that t ≈C t′, for some t′ ∈ κ2, then κ1 ≈C κ2.

Proof. The proof follows directly from the fact that κ.t ≈C κ.t′.

Remark 8. The elements of pseudo-cycles can be represented by the coefficients
of κ. Thus, if one chooses an element A0 of κ, the pseudo-cycle κ′ = ((κ0 ·
A0) · · · (κk−1 ·A0)) can be represented by (0 · · · k − 1), the choice of A0 will only
reorder the pseudo-cycle. Then, one can define an operation + between elements
of (0 · · · k − 1) where i+ j = i+ j and i+ k = i.

With the aim to compute the first instance pseudo-cycles for a commutative
symbol ∗, we define below the matrix associated with a pseudo-cycle κ repre-
sented by its coefficients:

Definition B2 The first-instance pseudo-cycle matrix M(k−1)×k of a pseudo-

cycle κ = (0 · · · k − 1) for a commutative function symbol ∗, is defined as the
(k − 1)× k-matrix with components aij := j − 1 ∗ i+ j − 1.

M(k−1)×k =



0 ∗ 1 1 ∗ 2 · · · k − 1 ∗ 0

0 ∗ 2 1 ∗ 3 · · · k − 1 ∗ 1

. . .
. . .

. . .
. . .

0 ∗ k − 2 1 ∗ k − 1 · · · k − 1 ∗ k − 3

0 ∗ k − 1 1 ∗ 0 · · · k − 1 ∗ k − 2


(k−1)×k

When the function symbol ∗ is clear from the context M(k−1)×k will be called
simply first instance pseudo-cycle matrix of κ.

Remark 9. We want to establish a relationship between the rows of the matrix
M(k−1)×k related to κ and the first instance pseudo-cycles of κ: for each i,
1 ≤ i ≤ k − 1, we map the i-th row [ai1 ai2 . . . aik] of M(k−1)×k to the k-cycle:

κi = (0 ∗ i 1 ∗ i+ 1 . . . k − 1 ∗ i− 1).
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Example B2 The first-instance pseudo-cycle matrix of κ = (0 1 2 3) isM3×4 =

 0 ∗ 1 1 ∗ 2 2 ∗ 3 3 ∗ 0

0 ∗ 2 1 ∗ 3 2 ∗ 0 3 ∗ 1
0 ∗ 3 1 ∗ 0 2 ∗ 1 3 ∗ 2


Not all the rows of M3×4 are pseudo-cycles of κ:
the second row doesn’t, since it contradicts con-
dition 2.b) of the Definition 12; however, it con-
tains two first instance pseudo-cycles of κ, both
with length 2. Also note that the first and third
rows are equivalent modulo C.

The next results will establish properties of the matrix M(k−1)×k and con-
ditions that should be satisfied for the rows of M(k−1)×k to be pseudo-cycles of
κ.

Example B3 For the 4-cycle κ = (a b c d), if one considers its pseudo-cycle
κ = (a b c d), the representation κ = (0 1 2 3) of κ via coeffients, does not
depend on the choice of A0.

– if A0 = a, then (0 1 2 3) corresponds to ((κ0 ·a) (κ1 ·a) (κ2 ·a) (κ3 ·a)) =
(a b c d).

– if A0 = b, then (0 1 2 3) corresponds to ((κ0 ·b) (κ1 ·b) (κ2 ·b) (κ3 ·b)) =
(b c d a).

and so on.
If one chooses the pseudo-cycle k1 = ((a∗c) (b∗d)) of κ, we can still represent

it via coefficients (0 1).

– if A0 = (a ∗ c) then (0 1) corresponds to the κ1, itself.
– if A0 = (b ∗ d) then (0 1) corresponds to ((κ0

1 · (b ∗ d)) (κ1
1 · (b ∗ d))) =

((b ∗ d) (a ∗ c))).

Lemma B2 Let M = (aij)k−1×k be a first-instance pseudo-cycle matrix for a
pseudo-cycle κ. The following properties are valid in M:

1. ai(j+1) = κ · aij, for j < k .
2. κ · aik = ai1;
3. The element aij is equivalent modulo commutativity of ∗ to the element

a(k−i)(i+j), i.e., aij ≈C a(k−i)(i+j), for 1 ≤ i ≤ bk−1
2 c.

4. Suppose k = 2n for some positive integer n.
(a) ani ≈C an(n+i), for 1 ≤ i ≤ k.
(b) If κn1

= (an1 an2 . . . ann) and κn2
= (an(n+1) an(n+2) . . . ank) then

κn1
≈C κn2

.
That is, when k is even, the k

2 -th row of the matrix , has two equivalent

modulo C pseudo-cycles with relation to κ, both with length k
2 .

Proof. The proof of all items follows by algebraic manipulation, using the com-
mutativity of ∗ and Definition B2:

1.
ai(j+1) = (j + 1− 1) ∗ (i+ j + 1− 1) = (j − 1) + 1 ∗ (i+ j − 1) + 1

= (κ · j − 1) ∗ (κ · i+ j − 1) = κ · aij
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2.
κ · aik = (κ · k − 1) ∗ (κ · i+ k − 1) = k − 1 + 1 ∗ i+ k − 1 + 1

= (1− 1) + k ∗ (i+ 1− 1) + k = 1− 1 ∗ i+ 1− 1 = ai1

3.
a(k−i)(i+j) = i+ j − 1 ∗ k − i+ i+ j − 1 ≈C k − i+ i+ j − 1 ∗ i+ j − 1

= (j − 1) + k ∗ i+ j − 1 = j − 1 ∗ i+ j − 1 = aij

4. (a) By Definition B2, it follows that
an(n+i) = n+ i− 1 ∗ n+ n+ i− 1 = n+ i− 1 ∗ (i− 1) + k ≈C i− 1 ∗
n+ i− 1 = ani

(b) The proof follows directly from Definition B1 and the mapping from the
rows of M(k−1)×k to cycles.

Example B4 Let ρ = (a b c d e) be a 5-cycle, its pseudo-cyce representation via
coefficients is κ = (0 1 2 3 4), and the corresponding first-instance pseudo-cycle
matrix is

M3×4 =


0 ∗ 1 1 ∗ 2 2 ∗ 3 3 ∗ 4 4 ∗ 0

0 ∗ 2 1 ∗ 3 2 ∗ 4 3 ∗ 0 4 ∗ 1

0 ∗ 3 1 ∗ 4 2 ∗ 0 3 ∗ 1 4 ∗ 2

0 ∗ 4 1 ∗ 0 2 ∗ 1 3 ∗ 2 4 ∗ 3


Notice that, for instance, a12 ≈C a43 which implies that κ1 ≈C κ4. Similarly,
a23 ≈C a35 implies κ2 ≈C κ3. Every row ofM3×4 is a first instance pseudo-cycle
of κ, with length 5.

– Assuming that A0 = a, the matrix of coefficients M3×4 corresponds to the
matrix of pseudo-cycles of ρ:

M′3×4


a ∗ b b ∗ c c ∗ d d ∗ e e ∗ a
a ∗ c b ∗ d c ∗ e d ∗ a e ∗ b
a ∗ d b ∗ e c ∗ a d ∗ b e ∗ c
a ∗ e b ∗ a c ∗ b d ∗ c e ∗ d


The pseudo-cycles in rows 2 and 3 are equivalent modulo commutativity.

– When A0 = b, c, d or e, we obtain another matrix, whose rows are equivalent
to the rows in M′3×4.

The following lemma shows that for a first-instance matrix M = (aij)k−1×k
w.r.t a pseudo-cycle κ, if there exist two elements equivalent modulo C, in a row
n, then k is even.

Lemma B3 Let M = (aij)k−1×k be a first-instance pseudo-cycle matrix for a
pseudo-cycle κ . If there exists a positive integer n ≤ k such that ani ≈C ani′ ,
for some i 6= i′, then k = 2n.

Proof. Suppose that ani ≈C ani′ with i 6= i′. Then, i− 1 ∗ i+ n− 1 ≈C i′ − 1 ∗
i′ + n− 1. Since i 6= i′, it follows that i− 1 = i′ + n− 1 and i′ − 1 = i+ n− 1.
Therefore, i = i′ + n and i′ = i+ n, which imply, i+ i′ = (i+ i′) + 2n. Hence,
0 = 2n and k = 2n.
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The next results states that every row of the first instance pseudo-cycle ma-
trix of a pseudo-cycle κ with odd length, is also a first instance pseudo-cycle of
κ.

Theorem B1 Let κ be a pseudo-cycle with k elements and M its first instance
matrix, with k an odd number. The k − 1 rows of M are first instance pseudo-
cycles with relation to κ, with k elements.

Proof. For each row ri = [ai1 ai2 . . . aik] of M, for 1 ≤ i ≤ k, we use the
mapping from Remark 9, to obtain the candidate a pseudo-cycle of κ : κi =
(0 ∗ i 1 ∗ i+ 1 . . . k − 1 ∗ i− 1). whose elements clearly satisfy the conditions
b. and c. of Definition 12. Also, since k is odd, it follows from Lemma B2, that
the elements of κi satisfy condition a. of the Definition 12.

Lemma B4 Let M(k−1)×k be first instance matrix of the pseudo-cycle κ, with
k = 2n+ 1 for some positive integer n. If κi is the pseudo-cycle in the i-th row
of M, for 1 ≤ i ≤ k − 1, then κi ≈C κk−i.

Proof. By Lemma B2, a(k−i)(i+j) ≈C aij , for each 1 ≤ i ≤ k − 1, therefore, by
Lemma B1, κi ≈C κk−i.

The next lemma says that the first-instance pseudo-cycle matrix of κ contains
all possible first-instance pseudo-cycles of κ.

Theorem B2 κ′ is a first-instance pseudo-cycle of κ iff it is equivalent to a
pseudo-cycle that is in a row of the first instance pseudo-cycle matrix M(k−1)×k
of κ.

Proof. Let A0 ∈ κ′, by definition, A0 = B1 ∗B2 for some B1, B2 ∈ κ. If B1 6= B2

then A0 = m ∗ n with m 6= n and 0 ≤ m,n ≤ k − 1. But for all m,n exist
i, j so that m ∗ n ≈C aij ∈ M(k−1)×k. On one hand, if k is odd and κ′′ =

(A0 κA0 . . . κ(k−1)A0) then, by Theorem B1, κ′′ is a pseudo-cycle in a row
of M(k−1)×k, with k elements. Besides, by Lemma B1, κ′ ≈C κ′′. On the other

hand, if k is even and κ′′ = (A0 κA0 . . . κ(k−1)A0), by Lemma B2, either
κ′′ is equivalent to a row i for 1 ≤ i ≤ bk−1

2 c, and therefore, κ′′ is equivalent
to a first instance pseudo-cycle of κ with k elements, or κ′′ can be split in two
pseudo-cycles κ′′1 and κ′′2 of length k

2 , both containing an element equivalent to
A0, by Lemma B1, κ′ ≈C κ′′i (i = 1, 2), and therefore, κ′ is in a row of M(k−1)×k.

Theorem B3 Let κ be a pseudo-cycle with k elements and M be its first in-
stance pseudo-cycle matrix. The following properties hold

1. if k is even, then κ has exactly bk−1
2 c first-instance pseudo-cycles with k

elements, and one with k
2 elements.

2. if k is odd, then κ has exactly k−1
2 first-instance pseudo-cycles with k ele-

ments.
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Proof. 1. Suppose k = 2n for some positive integer n. By Lemma B2, it follows
that rows 1 to bk−1

2 c ofM are first instance pseudo-cycles of κ with k elements
and κi ≈C κk−i, for 1 ≤ i ≤ b 2n−1

2 c. According to Lemmas B2 and B3, the
n-th row of M contains two equivalent first instance pseudo-cycles of κ both
with k

2 elements.
2. Suppose k = 2n + 1, for some non-negative integer n. By Theorem B1 the
k − 1 rows of M are first instance pseudo-cycles of κ with length k. From
Lemma B2, it follows that κi ≈C κk−i, for 1 ≤ i ≤ bk−1

2 c and the result
follows.

Theorem 3. A pseudo-cycle κ contains a unitary pseudo-cycle iff |κ| is power
of two.

Proof. Let κ be of the form κ = (a0 a1 . . . ak−1).
(⇐) The proof is by induction on n.

– Base Case. n = 1
In this case, k = 2 and the first instance pseudo-cycle matrix w.r.t. κ and ∗ is

M12× =
[

0 ∗ 1 1 ∗ 0
]

Notice that 0∗1 ≈C 1∗0, and this single row ofM12× contains two equivalent
first instance unitary pseudo-cycles κ1 = (0 ∗ 1) and κ2 = (1 ∗ 0) .

– Induction Step. Suppose that the result holds for k = 2n. We will show that
it holds for k = 2n+1.
Let κl be a pseudo-cycle of length l = 2n+1 = 2.(2n). By Theorem B3, κl has
a first instance pseudo-cycle of length l

2 = 2n, and by IH, the result follows.

(⇒) Let κ1 and κ2 be pseudo-cycles w.r.t. a pseudo-cycle κ such that κ2 a
first-instance pseudo-cycle of κ1. By Lemma B2 , |κ2| < |κ1| only if |κ1| = 2.|κ2|.

Notice that κ = (a0 · · · ak−1) is an immediate first-instance pseudo-cycle of
κ with k elements.

– If k = 1 = 20, the result follows.
– Suppose that k > 1. Then, there exists a pseudo-cycle κp regarding to κ, with
|κp| = 1 only if one has a chain of pseudo-cycles κ, κ1, · · · , κp−1, κp, where κ1

is a first-instance pseudo-cycle of κ, and κi+1 is a first-instance pseudo-cycle
of κi, for all i = 1, · · · , (p− 1). Besides,

|κ| = 2.|κ1|, |κ1| = 2.|κ2|, · · · , |κp−1| = 2.|κp| and |κp| = 1.

So, k must be equal to 2p, and the result follows.

Theorem 4. Let P = 〈∅, {π.X ≈? X}〉 be a fixed point problem. P has a com-
binatory solution iff there exists a unitary pseudo-cycle κ w.r.t. π.

Proof. (⇐) Suppose that π has a unitary pseudo-cycle, say κ = ( t ), then
κ · t ≈C t, by definition of pseudo-cycles, and π · t ≈C t. Therefore, {X/t} is a
solution for P.
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(⇒) Suppose that π does not have a unitary pseudo-cycle, then by Theorem 3,
every pseudo-cycle κ w.r.t. π has length k = 2n(2r+1), for some positive integer
r.

Suppose, by contradiction, that there is a combinatory solution for P, say
{X/t}. If any atom from dom(κ) is in t, then all atoms of κ have to occur in t,
otherwise we would not have π·t ≈C t. Since we only work modulo commutativity,
terms may change their positions pairwise, inside t, respecting the parentheses.
Therefore, we should be able to arrange the atoms in κ pairs, and permute them
around the commutative symbols. To do so, we have to take the k elements and
organise them in pairs, interactively. But if k has an odd factor, different from
1, it will not be possible.

C Examples generated with the OCaml implementation
〈{}, id, {[d]fC

n 〈d, a〉 ≈? [b]fC
n 〈b, a〉}〉

〈{}, id, {fC
n 〈d, a〉 ≈? fC

n 〈d, a〉, d#?f
C
n 〈b, a〉}〉

〈{}, id, {d ≈? a, a ≈? d, d#?f
C
n 〈b, a〉}〉

≈ Fail

〈{}, id, {d ≈? d, a ≈? a, d#?f
C
n 〈b, a〉}〉

〈{}, id, {a ≈? a, d#?f
C
n 〈b, a〉}〉

〈{}, id, {d#?f
C
n 〈b, a〉}〉

〈{}, id, {d#?〈b, a〉}〉

〈{}, id, {d#?b, d#?a}〉

〈{}, id, {d#?a}〉

〈{}, id, {}〉

#Success

#At

#At

#Pr

#App

≈ Refl

≈ Refl

≈ C

≈ [ab]

Fig. 6. Derivation tree for Example 〈{}, id, {[d]fCn 〈d, a〉 ≈? [b]fCn 〈b, a〉}〉

The OCaml implementation is based on a straightforward algorithmic strat-
egy in which simplification paths are built choosing equations and freshness
constraints in the order in which they appear in the unification problem (using
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〈{a#X}, id, {[a]fC

n 〈fE
ma,X〉 ≈? [b]fC

n 〈fE
mb,X〉}〉

〈{a#X}, id, {fC
n 〈fE

ma,X〉 ≈? fC
n 〈fE

ma, (a b).X〉, a#?f
C
n 〈fE

mb,X〉}〉

〈{a#X}, id, {fE
ma ≈? (a b).X, X ≈? fE

ma, a#?f
C
n 〈fE

mb,X〉}〉

〈{a#X}, X/fE
mb, {fE

mb ≈? fE
ma, a#?f

C
n 〈fE

mb, fE
mb〉, a#?f

E
mb}〉

〈{a#X}, X/fE
mb, {b ≈? a, a#?f

C
n 〈fE

mb, fE
mb〉, a#?f

E
mb}〉

≈ Fail

≈ App

≈ Inst

〈{a#X}, id, {fE
ma ≈? fE

ma, X ≈? (a b).X, a#?f
C
n 〈fE

mb,X〉}〉

〈{a#X}, id, {a ≈? a, X ≈? (a b).X, a#?f
C
n 〈fE

mb,X〉}〉

〈{a#X}, id, {X ≈? (a b).X, a#?f
C
n 〈fE

mb,X〉}〉

〈{a#X}, id, {a#?f
C
n 〈fE

mb,X〉, (a b).X ≈? X}〉

〈{a#X}, id, {a#?〈fE
mb,X〉, (a b).X ≈? X}〉

〈{a#X}, id, {a#?f
E
mb, a#?X, (a b).X ≈? X}〉

〈{a#X}, id, {a#?b, a#?X, (a b).X ≈? X}〉

〈{a#X}, id, {a#?X, (a b).X ≈? X}〉

〈{a#X, a#X}, id, {(a b).X ≈? X}〉

#Success

#Su

#At

#App

#Pr

#App

≈ Inv

≈ Refl

≈ App

≈ C

≈ [ab]

Fig. 7. Derivation tree for 〈{a#X}, id, {[a]fCn 〈fEma,X〉 ≈? [b]fCn 〈fEmb,X〉}〉

a list data structure). The rules in ⇒≈ and ⇒# are applied in this order, ac-
cording to the construction of derivation trees in Definition 10. Each set of rules
is applied in the order in which the rules appear in Fig. 4 and Fig. 5. As soon as
an equation or a freshness constraint can not be simplified the algorithm fails.

The output for Example 3 and other interesting ones are included.
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〈{
},

id
,
{[
e]
f
C n
〈(
a
b)
.X

,Y
〉≈

?
[f
]f

C n
〈(
a
c)
(c

d
).
X
,Y
〉}
〉

〈{
},

id
,
{f

C n
〈(
a
b)
.X

,Y
〉≈

?
f
C n
〈(
a
c)
(c

d
)(
e
f
).
X
,(
e
f
).
Y
〉,

e#
?
f
C n
〈(
a
c)
(c

d
).
X
,Y
〉}
〉

〈{
},

id
,
{(
a
b)
.X
≈

?
(e

f
).
Y
,
Y
≈

?
(a

c)
(c

d
)(
e
f
).
X
,
e#

?
f
C n
〈(
a
c)
(c

d
).
X
,Y
〉}
〉

〈{
},

X
/
(e

f
)(
a
b)
.Y
,
{Y
≈

?
(e

f
)(
a
b)
(a

c)
(c

d
)(
e
f
).
Y
,
e#

?
f
C n
〈(
e
f
)(
a
b)
(a

c)
(c

d
).
Y
,Y
〉}
〉

〈{
},

X
/
(e

f
)(
a
b)
.Y
,
{e
#

?
f
C n
〈(
e
f
)(
a
b)
(a

c)
(c

d
).
Y
,Y
〉,

(e
f
)(
c
d
)(
a
c)
(a

b)
(e

f
).
Y
≈

?
Y
}〉

〈{
},

X
/
(e

f
)(
a
b)
.Y
,
{e
#

?
〈(
e
f
)(
a
b)
(a

c)
(c

d
).
Y
,Y
〉,

(e
f
)(
c
d
)(
a
c)
(a

b)
(e

f
).
Y
≈

?
Y
}〉

〈{
},

X
/
(e

f
)(
a
b)
.Y
,
{e
#

?
(e

f
)(
a
b)
(a

c)
(c

d
).
Y
,
e#

?
Y
,
(e

f
)(
c
d
)(
a
c)
(a

b)
(e

f
).
Y
≈

?
Y
}〉

〈{
f
#
Y
},

X
/
(e

f
)(
a
b)
.Y
,
{e
#

?
Y
,
(e

f
)(
c
d
)(
a
c)
(a

b)
(e

f
).
Y
≈

?
Y
}〉

〈{
e#

Y
,
f
#
Y
},

X
/
(e

f
)(
a
b)
.Y
,
{(
e
f
)(
c
d
)(
a
c)
(a

b)
(e

f
).
Y
≈

?
Y
}〉

#
S
u
c
c
e
s
s

#
S
u

#
S
u

#
P
r

#
A
p
p

≈
I
n
v

≈
I
n
s
t

〈{
},

id
,
{(
a
b)
.X
≈

?
(a

c)
(c

d
)(
e
f
).
X
,
Y
≈

?
(e

f
).
Y
,
e#

?
f
C n
〈(
a
c)
(c

d
).
X
,Y
〉}
〉

〈{
},

id
,
{Y
≈

?
(e

f
).
Y
,
e#

?
f
C n
〈(
a
c)
(c

d
).
X
,Y
〉,

(a
b)
(e

f
)(
c
d
)(
a
c)
.X
≈

?
X
}〉

〈{
},

id
,
{e
#

?
f
C n
〈(
a
c)
(c

d
).
X
,Y
〉,

(a
b)
(e

f
)(
c
d
)(
a
c)
.X
≈

?
X
,
(e

f
).
Y
≈

?
Y
}〉

〈{
},

id
,
{e
#

?
〈(
a
c)
(c

d
).
X
,Y
〉,

(a
b)
(e

f
)(
c
d
)(
a
c)
.X
≈

?
X
,
(e

f
).
Y
≈

?
Y
}〉

〈{
},

id
,
{e
#

?
(a

c)
(c

d
).
X
,
e#

?
Y
,
(a

b)
(e

f
)(
c
d
)(
a
c)
.X
≈

?
X
,
(e

f
).
Y
≈

?
Y
}〉

〈{
e#

X
},

id
,
{e
#

?
Y
,
(a

b)
(e

f
)(
c
d
)(
a
c)
.X
≈

?
X
,
(e

f
).
Y
≈

?
Y
}〉

〈{
e#

Y
,
e#

X
},

id
,
{(
a
b)
(e

f
)(
c
d
)(
a
c)
.X
≈

?
X
,
(e

f
).
Y
≈

?
Y
}〉

#
S
u
c
c
e
s
s

#
S
u

#
S
u

#
P
r

#
A
p
p

≈
I
n
v

≈
I
n
v

≈
C

≈
[a
b
]

Fig. 8. Derivation tree for Example 3
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