
Principal Typings for Explicit Substitutions Calculi?

Daniel Lima Ventura??, Mauricio Ayala-Rincón? ? ?, and Fairouz Kamareddine2

1 Grupo de Teoria da Computação, Departamento de Matemática, Universidade de Braśılia, Braśılia D.F., Brasil
{ayala,ventura}@mat.unb.br

2 School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, Scotland
fairouz@macs.hw.ac.uk

Abstract. Having principal typings (for short PT) is an important property of type systems. This
property guarantees the possibility of type deduction which means it is possible to develop a complete
and terminating type inference mechanism. It is well-known that the simply typed λ-calculus has this
property, but recently, J. Wells has introduced a system-independent definition of PT which allows to
prove that some type systems do not satisfy PT. The main computational drawback of the λ-calculus
is the implicitness of the notion of substitution, a problem which in the last years gave rise to a number
of extensions of the λ-calculus where the operation of substitution is treated explicitly. Unfortunately,
some of these extensions do not necessarily preserve basic properties of the simply typed λ-calculus
such as preservation of strong normalization. We consider two systems of explicit substitutions (λσ and
λse) and we show that they can be accommodated with an adequate notion of PT. Specifically, our
results can be summarized as follows:
• We introduce PT notions for the simply typed versions of the λσ and the λse-calculus according to
Wells’ system-independent notion of PT.
• We show that these versions of the λσ and the λse satisfy PT by revisiting previously introduced
type inference algorithms.

1 Introduction

The development of well-behaved calculi of explicit substitutions is of great interest in order to bridge the
formal study of the λ-calculus and its real implementations. Since β contraction depends on the definition
of the operation of substitution, which is informally given in the theory of λ-calculus, explicit substitutions
calculi are in fact made explicit, but obscurely developed (in and ad hoc manner), when most computational
environments based on the λ-calculus are implemented. A remarkable exception is λProlog, for which its
explicit substitutions calculus, the suspension calculus, has been extracted and formally studied [10].

In the study of making substitutions explicit, several alternatives rose out and all of them are directed to
guarantee essential properties such as simulating beta-reduction, confluence, noetherianity (of the associated
substitution calculus), subject reduction (SR for short), having principal typings (for short PT), preservation
of strong normalization etc. This is a non trivial task; for instance, the λσ-calculus [1], that is one of the first
proposed calculi of explicit substitutions, was reported to break the latter property after some years of its
introduction [9]: this implies that infinite derivations starting from well-typed λ-terms are possible in this
calculus, which is at least questionable for any mechanism supposed to simulate the λ-calculus explicitly.
Here our focus is on the PT property, which means that for any typable term a, there exists a type judgment
Γ ` a : A, representing all possible typings for a, where for a typing of a one understands the pair (Γ,A). In
the simply typed λ-calculus this corresponds to the existence of more representative typings. PT guarantees
compositional type inference helping in making a complete/terminating type inference algorithm.

In section 2 we present the type-free versions of λ-calculus in de Bruijn notation, λσ and λse-calculi. In
section 3 we present the type assignment systems background and then we present simply typed systems for
? Research supported by the CNPq. Accepted for presentation at HOR 2007.

?? Corresponding author, currently supported by a PhD scholarship of the Brazilian CNPq Research Council at the
Heriot-Watt University.

? ? ? Author partially supported by the Brazilian CNPq Research Council.

each calculus. Following type systems presentation, we discuss the general notion of principal typings defined
in [11] and present notions of principal typings for λ-calculus in de Bruijn notation, λσ and λse and prove
they are adequate ones. Then we conclude and present future work.

2 The type free calculi

N. G. de Bruijn presented in [6] a λ-term notation where indices replace variable names. This notation is
computationally adequated as, for instance, eliminates α-conversions. Besides that, it has the same properties
of λ-calculus with names. It follows a presentation of λ-calculus in de Bruijn notation and two explicit
substitution calculi, λσ and λse, which uses de Bruijn notation as well.

2.1 λ-calculus in de Bruijn notation

Definition 1. The set ΛdB of λ-terms in de Bruijn notation is defined inductively as
Terms a ::= n | (a a) |λ.a where n ∈ N∗= Nr{0}

Terms like ((((a1 a2) a3) . . .) an) are written as usual (a1 a2 . . . an). This simple description of λ-terms
structure in de Bruijn notation turns easy the application of induction technique on its structure. An im-
portant concept concerning term structure is the depth of a subterm.

Definition 2. Let a be a λ-term. A subterm a1 of a is n-deep in a, if the least possible index of any free
variable in a1 is greater than n. In other words, a1 is in between n abstractors.

Let i ∈ N∗. We say that i occurs as free index in a term a if any occurrence of i + n is n-deep in a. The
β-contraction definition in this notation needs a mechanism which detects and update free indices of terms.
It follows an operator similar to the one presented in [3].

Definition 3. Let a ∈ ΛdB and i ∈ N. The i-lift of a, denoted as a+i, is defined inductively as

1 . (a1 a2)+i = (a+i
1 a+i

2) 2 . (λ.a1)+i = λ.a
+(i+1)
1 3 . n+i =

{
n + 1 , if n > i
n , if n ≤ i.

The lift of a term a is its 0-lift, denoted as a+. Intuitively, the lift of a corresponds to increment by 1 all
free indices occurring in a. Using the i-lift, we are able to present the definition of the substitution used by
β-contractions, similar to the one presented in [3].

Definition 4. Let m,n ∈ N∗. The β-substitution for free ocurrences of n in a ∈ ΛdB by term b, denoted
as {n /b}a, is defined inductively as

1 . {n /b}(a1 a2) = ({n /b}a1 {n /b}a2) 3 . {n /b}m =

m− 1 , if m > n
b, if m = n
m , if m < n.2 . {n /b}λ.a1 = λ.{n + 1 /b+}a1

Observe that, in item 2 of Definition 4, the lift operator is used to avoid captures of free indices in b. We
present the β-contraction as defined in [3].

Definition 5. β-contraction of λ-terms in de Bruijn notation is defined as (λ.a b) →β {1 /b}a.

Notice that item 3 in Definition 4, for n = 1, is the mechanism which does the substitution and updates the
free indices in a as consequence of the lead abstractor elimination.

2

2.2 The λσ-Calculus

The λσ-calculus is given by a first-order rewriting system, which makes substitutions explicit by extending
the language with two sorts of objects: terms and substitutions.

Definition 6. The syntax of the type free λσ-calculus is given by
Terms a ::= 1 | (a a) |λ.a | a[s] Substitutions s ::= id | ↑ | a.s | s ◦ s

Substitutions are lists of the form b/i indicating that the index i should be changed to the term b. id
represents a substitution of the form {1 /1 , 2 /2 , . . . } and ↑ is the substitution { i + 1 / i |i∈N∗}. s◦s represents
the composition of substitutions. 1 [↑n], where n ∈ N∗, codifies the de Bruijn index n + 1 . i [s] represents
the value of i through the substitution s, which can be seen as a function s(i). The substitution a.s has the
form {a/1 , s(i)/i + 1 }, called the cons of a in s. a[b.id] starts the simulation of the β-reduction of (λ.a b)
in λσ. Thus, in addition to the substitution of the free occurrences of the index 1 by the corresponding term,
free occurrences of indices should be decremented because of the elimination of the abstractor. The Table 1
includes the rewriting system of the λσ-calculus, as presented in [7].

(λ.a b) −→ a[b.id] (Beta) ↑◦ (a.s) −→ s (ShiftCons)
(a b)[s] −→ (a[s] b[s]) (App) (s1 ◦ s2) ◦ s3 −→ s1 ◦ (s2 ◦ s3) (AssEnv)
1[a.s] −→ a (V arCons) (a.s) ◦ t −→ a[t].(s ◦ t) (MapEnv)
a[id] −→ a (Id) s ◦ id −→ s (IdR)
(λ.a)[s] −→ λ.(a[1.(s◦↑)]) (Abs) 1.↑ −→ id (V arShift)
(a[s])[t] −→ a[s ◦ t] (Clos) 1[s].(↑◦s) −→ s (Scons)
id ◦ s −→ s (IdL) λ.(a 1) → b if a=σb[↑] (Eta)

Table 1. The rewriting system for the λσ-calculus with Eta rule

This system without (Eta) is equivalent to that of [1]. The associated substitution calculus, denoted as
σ, is the one induced by all the rules except (Beta) and (Eta), and its equality is denoted as =σ.

2.3 The λse-Calculus

In contrast with the λσ-calculus, the λse-calculus has a sole sort of objects maintaining its syntax closer to
the λ-calculus. The λse-calculus controls the atomization of the substitution operation by introducing the
use of arithmetic constraints through two operators σ and ϕ, for substitution and updating, respectively.

Definition 7. The syntax of the untyped λse-calculus, where n, i, j ∈ N∗ and k ∈ N is given as
Terms a ::= n | (a a) |λ.a | a σia |ϕj

k a

The term a σib represents the term {i /b}a; i.e., substitution of free occurrences of i in a by b, updating
free variables in a (and in b). The term ϕj

k a represents j − 1 applications of the k-lift to the term a; i.e.,
a+k(j−1)

. Table 2 contains the rewriting rules of the λse-calculus and the rule (Eta), as given in [3].
=se

denotes the equality for the associated substitution calculus, denoted as se, induced by all the rules
except (σ-generation) and (Eta).

3 The Type Systems

Definition 8. The syntax of the simple types and contexts is given as follows:
Types A ::= K |A → A Contexts Γ ::= nil |A.Γ

3

(λ.a b) −→ a σ1b (σ-generation)
(λ.a) σib −→ λ.(a σi+1b) (σ-λ-transition)
(a1 a2) σib −→ ((a1 σib) (a2 σib)) (σ-app-transition)

n σib −→

8<:
n − 1 if n > i
ϕi

0 b if n = i
n if n < i

(σ-destruction)

ϕi
k (λ.a) −→ λ.(ϕi

k+1 a) (ϕ-λ-transition)
ϕi

k (a1 a2) −→ ((ϕi
k a1) (ϕi

k a2)) (ϕ-app-transition)

ϕi
k n −→

n + i − 1 if n > k
n if n ≤ k

(ϕ-destruction)

(a1 σia2) σjb −→ (a1 σj+1b) σi(a2 σj−i+1b) if i ≤ j (σ-σ-transition)
(ϕi

k a) σjb −→ ϕi−1
k a if k < j < k + i (σ-ϕ-transition 1)

(ϕi
k a) σjb −→ ϕi

k (a σj−i+1b) if k + i ≤ j (σ-ϕ-transition 2)
ϕi

k (a σjb) −→ (ϕi
k+1 a) σj(ϕi

k+1−j b) if j ≤ k + 1 (ϕ-σ-transition)

ϕi
k (ϕj

l a) −→ ϕj
l (ϕi

k+1−j a) if l + j ≤ k (ϕ-ϕ-transition 1)

ϕi
k (ϕj

l a) −→ ϕj+i−1
l a if l ≤ k < l + j (ϕ-ϕ-transition 2)

λ.(a 1) → b if a=seϕ2
0 b (Eta)

Table 2. The rewriting system of the λse-calculus with Eta rule

K ranges over type variables. A type assignment system S is a set of rules which allows some terms
of a given system be associated with a type. A context gives the necessary information used by S rules to
associate a type to a term. In simply typed λ-calculi [8], the typable terms are strongly normalizing. In other
words, the computation corresponding to the typed term stops. The ordered pair (Γ,A), of a context and a
type, is called a typing in S. For a term a, Γ ` a : A denotes that a has type A in context Γ , and (Γ,A)
is called a typing of a. Let τ = (Γ,A) be a typing in S. S � a : τ denotes that τ is a typing of a in S. Let
T (A) be the set of type variables occurring in A. Then, an extension for contexts and typings can be defined
as T (B.Γ) = T (B) ∪ T (Γ), where T (nil) = ∅, and T ((Γ,A)) = T (Γ) ∪ T (A).

The contexts for λ-terms in de Bruijn notation are sequences of types. Let Γ be some context and
n ∈ N. Then Γ<n denotes the first n − 1 types of Γ . Similarly we define Γ>n, Γ≤n and Γ≥n. For n = 0,
Γ≤0.Γ = Γ<0.Γ = Γ . The length of Γ is defined as |A.Γ ′| = 1 + |Γ ′| and |nil| = 0. The addition of some
type A at the end of a context Γ is defined as Γ.A = Γ≤m.A.nil, where |Γ | = m.

Given a term a, an interesting question is whether it is typable in S or not. Note that, we are using the
so-called Curry-style or implicit typing, where in terms of the form λ.a we did not specify the type of the
bound variable(1). Such terms have many types, depending on the context. Another important question is
whether given a term, its so-called most general typing can be found. An answer to this question, which
represents in some sense any other answer, is called principal typing. Principal typing(which is context
independent) is not to be confused with a principal type(which is context dependent). Let τ be a typing in S
and TermsS(τ)={a|S � a:τ}. J. Wells introduced in [11] a system-independent definition of PT and proved
that it generalises previous system-specific definitions.

Definition 9 ([11]). A typing τ in system S is principal for some term a if S � a : τ and for any τ ′ such
that S � a : τ ′ we have that τ ≤S τ ′, where τ1 ≤S τ2 ⇐⇒ TermsS(τ1) ⊆ TermsS(τ2).

In simply typed systems the principal typing notion is tied to type substitution and weakening. Weaken-
ing allows one to add unnecessary information to contexts. Type substitution maps type variables to types.
Given a type substitution s, the extension for functional types is straightforward as s(A→B) = s(A)→s(B)
and the extension for sequential contexts as s(A.Γ) = s(A).s(Γ) and s(nil) = nil. The extension for typings
is done as s(τ) = (s(Γ), s(A)).

4

3.1 Principal typings for the simply typed λ-calculus in de Bruijn notation

Definition 10. (The System TAλdB) The System of Simple Types for λ-Calculus in de Bruijn
Notation, denoted as TAλdB, is given by the following typing rules

(λdB-var) A.Γ ` 1 : A (λdB-varn)
Γ ` n : B

A.Γ ` n + 1 : B

(λdB-lambda)
A.Γ ` b : B

Γ ` λ.b : A → B
(λdB-app)

Γ ` a : A → B Γ ` b : A

Γ ` (a b) : B

This system is similar to TAλ([8]). The rule (λdB-varn) allows the construction of contexts as sequences.

Example 1. Deduction of A → B.nil ` λ.(2 1) : A → B

A → B.nil ` 1 : A → B

A.A → B.nil ` 2 : A → B
(λdB-varn) A.A → B.nil ` 1 : A(λdB-var)

A.A → B.nil ` (2 1) : B

A → B.nil ` λ.(2 1) : A → B
(λdB-lambda)

(λdB-app)

Lemma 1. Let i ∈ N. If Γ `TAλdB
a : A, then Γ≤i.B.Γ>i `TAλdB

a+i : A.

Proof. Induction on a structure. Note that if i ≥ m, where m = |Γ |, then B is added at the end of Γ .

1) a = n : Suppose Γ ` n : A. If n ≤ i, then n+i = n . The B addition at i+1-th position changes only
types of indices greater or equal to i + 1 , thus one has trivially that Γ≤i.B.Γ>i ` n : A. If n > i, then
n+i = n + 1 . By (TAdB-varn) i times one has Γ>i ` n− i : A. Thus, by (TAdB-varn) applied i + 1
times, one has that Γ≤i.B.Γ>i ` n + 1 : A.

2) a = (b c): Suppose Γ ` (b c) : A. By (TAdB-app) one has that Γ ` b : C → A and Γ ` c : C. By IH one
has Γ≤i.B.Γ>i ` b+i : C → A and Γ≤i.B.Γ>i ` c+i : C. Thus, by (TAdB-app), Γ≤i.B.Γ>i ` (b+i c+i) : A.

3) a = λ.b: Suppose Γ ` λ.b : A. By (TAdB-lambda) one has that C.Γ ` b : D, where A = C → D. By IH
one has C.Γ≤i.B.Γ>i ` b+(i+1) : A. Thus, by (TAdB-lambda), Γ≤i.B.Γ>i ` λ.b+(i+1) : C → D = A. 2

Proposition 1. The rule (λdB-weak) is admissible in System TAλdB, where Γ ` a : A

Γ.B ` a : A
(λdB-weak) .

Proof. Let Γ `TAλdB
a : A. As for λ-calculus with names, all information about a free varibles is in context

Γ . Then, a maximum value for a free index occurrence, at 0-deep in a, is m = |Γ |. Consequently, a+j = a
for any j ≥ m. Using the statement of Lemma 1 for i = m, we have that Γ.B `TAλdB

a : A, for any type
B. Then a weak rule for TAλdB is admissible, adding types at the end of the context. A type addition in
any other position of context Γ would require updating some free indices, then a+i would correspond to a
different function from the one to which term a corresponds. 2

Using the rule (λdB-weak) and type substitution, we can define principal typing for the λ-calculus in de
Bruijn notation similarly to the definition of [11] for Hindley’s Principal Typing.

Definition 11. A principal typing in TAλdB of a λ-term a is the typing τ = (Γ,B) such that
1. TAλdB � a : τ
2. If TAλdB � a : τ ′ for any typing τ ′ = (Γ ′, B′), then exists some substitution s such that s(Γ) = Γ ′

≤|Γ |.nil

and s(B) = B′.

As is the case for the simply typed λ-calculus with names, the best way to assure that Definition 11 is
the correct translation of the PT concept, is to verify that Definition 11 corresponds to Definition 9.

Theorem 1. A typing τ is principal in TAλdB according to Definition 11 iff τ is principal in TAλdB ac-
cording to Definition 9.

5

Proof. ⇒ proof: Let τ = (Γ,B) be a PT of some term a, according to Definition 11, and τ ′ = (Γ ′, B′) be
a typing of a. By Definition 11, we have that exists a type substitution s such that s(Γ) = Γ ′

≤|Γ |.nil and
s(B) = B′. By the property which says that if TAλdB �a : τ , then TAλdB �a : s(τ), for any type substitution
s, we have τ ≤TAλdB

s(τ). By (λdB-weak), we have that s(τ) ≤TAλdB
τ ′. Thus, τ is PT of a, according to

Definition 9.
⇐ proof: Let τ = (Γ, B) be a PT of some term a, according to Definition 11, and τ ′ = (Γ ′, B′) be

a typing of a which is not PT according to this definition. Then, exists a type substitution s such that
s(Γ) = Γ ′

≤|Γ |.nil and s(B) = B′ and does not exist any substitution s′ such that s′(Γ ′) = Γ≤|Γ ′|.nil and
s′(B′) = B.

1. Suppose s(Γ) 6= Γ ′. Then, m = |Γ | < |Γ ′|. Let b = (λ.a+ m + 1).
2. Otherwise, s(Γ) = Γ ′. Let K be a type variable. Define the function φ1 as:

φ1(K, K) = λ.λ.
(
1 (2 4) (2 3)

)
φ1(A → B,K) = λ.λ.

(
1 (3 2) ((λ.φ1(A,K))+

3
2)

)
, if K ∈ T (A)

φ1(A → B,K) = λ.
(
(λ.φ1(B,K))+

2
(2 1)

)
, otherwise

and define function φ2 as:

φ2(K, K) = λ.λ.
(
1 (2 3) (2 4)

)
φ2(A → B,K) = λ.λ.

(
1 (4 2) ((λ.φ1(A,K))+

2
2)

)
, if K ∈ T (A)

φ2(A → B,K) = λ.
(
(λ.φ1(B,K))+ (3 1)

)
, otherwise

(a) Suppose s(K) is not a type variable for K ∈ T (τ)
i. Suppose K ∈ T (B). Let b =

(
λ.

(
λ. 2 λ.((λ.φ2(B,K))+ λ. 2)

)
a
)
.

ii. Suppose K ∈ T (Γi). Let b =
(
λ.a+ λ.(λ.λ.φ2(Γi,K) i + 1 λ. 2)

)
.

(b) Suppose s(K1) = s(K2) = L for distinct K1,K2 ∈ T (τ)
i. Suppose Kj ∈ T (Γij

) for j ∈ {1, 2}. Let pj =
(
λ.φ1(Γij

,Kj) ij + 1
)

and p = λ.λ.
(
1 p+

1 p+
2

)
. Let

b =
(
λ.λ. 2 a p

)
.

ii. Suppose K1∈T (Γi) and K2∈T (B). Let p = λ.λ.
(
1

(
(λ.φ1(Γi,K1))+ i + 3

)
(φ2(B,K2))+

)
and

b =
(
λ.(λ. 2 p) a

)
.

iii. Suppose Ki ∈ T (B) for i ∈ {1, 2}. Let p = λ.λ.
(
1 (φ2(B,K1))+ (φ2(B,K2))+

)
and b =(

λ.(λ. 2 p) a
)
.

Then, b ∈ TermsTAλdB
(τ ′) r TermsTAλdB

(τ). Thus, τ ′ �TAλdB
τ .

As consequence, if τ ′ is not PT according to Definition 11, τ ′ is not PT according to Definition 9. 2

A type inference algorithm for terms from TAλdB is presented, similar to the one in [4] for λse. Given
any term a, decorate each subterm with a new type variable as subscript and a new context variable as
superscript, obtaining a new term denoted as a′. For example, for term λ.(2 1) we have the decorated term
(λ.(2 Γ1

A1
1 Γ1

A2
)Γ3
A3

)Γ4
A4

. Then, rules from Table 3 are applied to pairs of the form 〈R,E〉, where R is a set of
decorated terms and E a set of equations on type and context variables.

Type inference for a starts with 〈R0, ∅〉, where R0 is the set of all a′ subterms. The rules from Table 3
are applied until reaches 〈∅, Ef 〉, where Ef is a set of first-order equations over context and type variables.

Example 2. Let a=λ.(2 1). Then a′ =(λ.(2 Γ1
A1

1 Γ2
A2

)Γ3
A3

)Γ4
A4

and R0 ={(2 Γ1
A1

1 Γ2
A2

)Γ3
A3

, (λ.(2 Γ1
A1

1 Γ2
A2

)Γ3
A3

)Γ4
A4

,

2 Γ1
A1

, 1 Γ2
A2
}. Using the rules in Table 3 we have the following reduction

〈R0, ∅〉 → 〈R1 = R0 r { 2 Γ1
A1
}, E1 = {Γ1 = A′

1.A1.Γ
′
1}〉 (Varn)

→ 〈R2 = R1 r { 1 Γ2
A2
}, E2 = E1 ∪ {Γ2 = A2.Γ

′
2}〉 (Var)

→ 〈R3 = R2 r {(2 Γ1
A1

1 Γ2
A2

)Γ3
A3
}, E3 = E2 ∪ {Γ1 = Γ2, Γ2 = Γ3, A1 = A2→A3}〉 (App)

→ 〈R4 = R3 r {(λ.(2 Γ1
A1

1 Γ2
A2

)Γ3
A3

)Γ4
A4
}, E4 = E3 ∪ {A4 = A∗

1→A3, Γ3 = A∗
1.Γ4}〉 (Lambda)

6

(Var) 〈R ∪ {1Γ
A }, E〉 → 〈R, E ∪ {Γ = A.Γ ′}〉,where Γ ′ is a fresh context variable;

(Varn) 〈R ∪ {nΓ
A }, E〉 → 〈R, E ∪ {Γ = A′

1. · · · .A′
n−1.A.Γ ′}〉,where A′

1, . . . , A
′
n−1

and Γ ′ are fresh type and context variables;

(Lambda) 〈R ∪ {(λ.aΓ1
A1

)Γ2
A2
}, E〉 → 〈R, E ∪ {A2 = A∗ → A1, Γ1 = A∗.Γ2}〉, where A∗ is a

fresh type variable;

(App) 〈R ∪ {(aΓ1
A1

bΓ2
A2

)Γ3
A3
}, E〉 → 〈R, E ∪ {Γ1 = Γ2, Γ2 = Γ3, A1 = A2 → A3}〉

Table 3. Rules for Type Inference in System TAλdB

Thus, E4 = Ef . Solving the trivial equation over context variables, i.e. Γ1 = Γ2 = Γ3, and using variables
of smaller subscripts, one gets {A1 = A2→A3, A4 = A∗

1→A3, Γ1 = A′
1.A1.Γ

′
1, Γ1 = A2.Γ

′
2, Γ1 = A∗

1.Γ4}.
Thus, simplifying one gets {A1 = A2→A3, A4 = A∗

1→A3, A
′
1.A1.Γ

′
1 = A2.Γ

′
2 = A∗

1.Γ4}. From these equations
one gets the most general unifier (mgu for short) A4 = A2→A3 and Γ4 = (A2→A3).Γ ′

1, for the variables of
interest.

From Definition 11 and by the uniqueness of the solutions of the type inference algorithm, one deduces
that TAλdB satisfies PT. The next theorem says that every typable term has a principal typing.

Theorem 2 (Principal Typings for TAλdB.). TAλdB satisfies the property of having principal typings.

Proof. For a term a type inference starts with the pair 〈R0, ∅〉, where R0 is the set of all a′ subterms. As each
subterm is an atomic term, an application or an abstraction, mutually exclusive, only one of these rules can
be applied on an element of R0. The rule (Varn) can be extended, allowing application on term 1Γ

A , however,
the rules are kept according to system TAλdB . Thus, each rule from Table 3 corresponds to one TAλdB rule
and includes new equations in E about context and type variables, which satisfies the corresponding TAλdB

rule. Each application of one of the above rules decrements the number of elements in set R. Thus, after
a finite number of steps we have the pair 〈∅, En〉, where En is a set of equations about context and type
variables, representing a first order unification problem. It can be seen that: if the unification fails, the term
is not typable; otherwise, a mgu, which applied to the outermost context and type variables, gives Γ and A
such that Γ ` a : A and (Γ,A) satifies the condition of Definition 11. Thus, we have the PT of a in TAλdB .
2

3.2 Principal typings for the simply typed λσ

The typed version is presented in Curry style, instead of Church style presented in [7]. Thus, the syntax of
λσ-terms and the rules are the same as the untyped version.

The typing rules of the λσ-calculus provide types for objects of sort term as well as for objects of
sort substitution. An object of sort substitution, due to its semantics, can be viewed as a list of terms.
Consequently, its type is a context. s � Γ denotes that the object of sort substitution s has type Γ .

Definition 12 (The System TAλσ). The System of Simple Types for λσ, denoted as TAλσ, is given
by the following typing rules.

(var) A.Γ ` 1 : A (lambda)
A.Γ ` b : B

Γ ` λ.b : A → B

(app)
Γ ` a : A → B Γ ` b : A

Γ ` (a b) : B
(clos)

Γ ` s � Γ ′ Γ ′ ` a : A

Γ ` a[s] : A
(id) Γ ` id � Γ (shift) A.Γ ` ↑ �Γ

(cons)
Γ ` a : A Γ ` s � Γ ′

Γ ` a.s � A.Γ ′ (comp)
Γ ` s′′ � Γ ′′ Γ ′′ ` s′ � Γ ′

Γ ` s′ ◦ s′′ � Γ ′

7

Observe that the name of the typing rules begin with lower-case letters, while the rewriting rules with upper-
case letters. We have verified that this version of λσ in Curry style has the same properties as the version of
λσ in Church style given in [7].

Example 3. In TAλ (and TAλσ), (B.C.nil, (C→A)→A) is a typing of a = (λ.(λ.(1 2)) 2). By (Beta) and
(Abs), a reduces to b = λ.((1 2)[1 .(2 .id) ◦ ↑]). Note that 2 abbreviates 1 [↑]. We show that B.C.nil ` b :
(C → A) → A. For brevity, contexts in a deduction are denoted without nil.

First, we have
B.C ` ↑ �C (shift) C ` 1 : C (var)

B.C ` 1 [↑] : C
(clos).

Analogously we have C → A.C.B.C ` 1 [↑] : C. Furthermore,

C → A.B.C ` ↑ �B.C (shift)
B.C ` 2 : C B.C ` id � B.C (id)

B.C ` 2 .id � C.B.C
(cons)

C → A.B.C ` (2 .id) ◦↑ �C.B.C
(comp)

Hence,
C → A.B.C ` 1 : C → A (var) C → A.B.C ` (2 .id) ◦↑ �C.B.C

C → A.B.C ` 1 .(2 .id) ◦↑ �C → A.C.B.C
(cons)

Also,
C → A.C.B.C ` 1 : C → A (var) C → A.C.B.C ` 2 : C

C → A.C.B.C ` (1 2) : A
(app)

Consequently,
C → A.B.C ` 1 .(2 .id) ◦↑ �C → A.C.B.C C → A.C.B.C ` (1 2) : A

C → A.B.C ` (1 2)[1 .(2 .id) ◦↑] : A

B.C ` λ.((1 2)[1 .(2 .id) ◦↑]) : (C → A) → A
(lambda)

(clos)

Since subterms of λσ-terms can be of sort either term or substitution, we will enclose both sorts by the
denomination λσ-expression (sub-expression). For TAλσ the notion of typing has to be adapted since the
λσ-expression of sort substitution is decorated with contexts variables as types and as contexts. Thus, one
may say that τ = (Γ, T) is a typing of a λσ-expression in TAλσ, where T can be either a type or a context.
If the analysed expression belongs to the λ-calculus, the notion of typing corresponds to that of TAλdB .

Lemma 2 (Weakening for λσ). Let a be a λσ-term and s a λσ-substitution. If Γ ` a : A, then Γ.B ` a : A,
for any type B. Similarly, if Γ ` s � Γ ′, then Γ.B ` s � Γ ′.B.

Proof. see appendix.

Proposition 2. The rules (λσ-tweak) and (λσ-sweak) are admissible in System TAλσ, where
Γ ` a : A

Γ.B ` a : A
(λσ-tweak)

Γ ` s � Γ ′

Γ.B ` s � Γ ′.B
(λσ-sweak)

The rules given in Proposition 2 and the type substitution allow us present a definition for PT in TAλσ.

Definition 13 (Principal Typings in TAλσ). A principal typing of an expression a in TAλσ is a typing
τ = (Γ, T) such that

1. TAλσ � a : τ
2. If TAλσ �a : τ ′ for any typing τ ′ = (Γ ′, T′), then there exists a substitution s such that s(Γ) = Γ ′

≤|Γ |.nil

and if T is a type, s(T) = T′, otherwise we have that s(T) = T′
≤|T|.nil.

We might verify if this PT definition has a correspondence with Wells’ system-independent definition [11].

Theorem 3. A typing τ is principal in TAλσ according to Definition 13 iff τ is principal in TAλσ according
to Definition 9.

8

Proof. For brevity, 1 [↑n] is denoted as n + 1 .
Let a be a λσ-term.

⇒ proof: Let τ = (Γ,B) be a PT of a, according to Definition 13, and τ ′ = (Γ ′, B′) be a typing of a.
By Definition 13, we have that exists a type substitution s such that s(Γ) = Γ ′

≤|Γ |.nil and s(B) = B′. By
the property which says that if TAλσ � a : τ , then TAλσ � a : s(τ), for any type substitution s, we have
τ ≤TAλσ

s(τ). By (λσ-tweak), we have that s(τ) ≤TAλdB
τ ′. Thus, τ is PT of a, according to Definition 9.

⇐ proof: Let τ = (Γ,B) be a PT of a, according to Definition 13, and τ ′ = (Γ ′, B′) be a typing of a
which is not PT according to this definition. Then, exists a type substitution s such that s(Γ) = Γ ′

≤|Γ |.nil

and s(B) = B′ and does not exist any substitution s′ such that s′(Γ ′) = Γ≤|Γ ′|.nil and s′(B′) = B.

1. Suppose s(Γ) 6= Γ ′. Then, m = |Γ | < |Γ ′|. Let b =
(
λ.(a[↑]) m + 1

)
.

2. Otherwise, s(Γ) = Γ ′. Let K be a type variable. Define the function φ1 as:

φ1(K, K) = λ.λ.
(
1 (2 4) (2 3)

)
φ1(A → B,K) = λ.λ.

(
1 (3 2) ((λ.φ1(A,K))[↑3] 2)

)
, if K ∈ T (A)

φ1(A → B,K) = λ.
(
(λ.φ1(B,K))[↑2] (2 1)

)
, otherwise

and define function φ2 as:

φ2(K, K) = λ.λ.
(
1 (2 3) (2 4)

)
φ2(A → B,K) = λ.λ.

(
1 (4 2) ((λ.φ1(A,K))[↑2] 2)

)
, if K ∈ T (A)

φ2(A → B,K) = λ.
(
(λ.φ1(B,K))[↑] (3 1)

)
, otherwise

(a) Suppose s(K) is not a type variable for K ∈ T (τ)
i. Suppose K ∈ T (B). Let b =

(
λ.

(
λ. 2 λ.((λ.φ2(B,K))[↑] λ. 2)

)
a
)
.

ii. Suppose K ∈ T (Γi). Let b =
(
λ.(a[↑]) λ.(λ.λ.φ2(Γi,K) i + 1 λ. 2)

)
.

(b) Suppose s(K1) = s(K2) = L for distinct K1,K2 ∈ T (τ)
i. Suppose Kj∈T (Γij

) for j∈{1, 2}. Let pj=
(
λ.φ1(Γij

,Kj) ij + 1
)

and p=λ.λ.
(
1 p1[↑] p2[↑]

)
. Let

b =
(
λ.λ. 2 a p

)
.

ii. Suppose K1∈T (Γi) and K2∈T (B). Let p = λ.λ.
(
1

(
(λ.φ1(Γi,K1))[↑] i + 3

)
φ2(B,K2)[↑]

)
and

b =
(
λ.(λ. 2 p) a

)
.

iii. Suppose Ki ∈ T (B) for i ∈ {1, 2}. Let p = λ.λ.
(
1 φ2(B,K1)[↑] φ2(B,K2)[↑]

)
and let b =(

λ.(λ. 2 p) a
)
.

Then, b ∈ TermsTAλσ
(τ ′) r TermsTAλσ

(τ). Thus, τ ′ �TAλσ
τ .

As consequence, if a typing τ ′ of some λσ-term is not PT according to Definition 13, τ ′ is not PT according
to Definition 9.
Let a be a λσ-substitution t.

⇒ proof: Let τ = (Γ,∆) be a PT of t, according to Definition 13, and τ ′ = (Γ ′,∆′) be a typing of t. By
Definition 13, we have that exists a type substitution s such that s(Γ) = Γ ′

≤|Γ |.nil and s(∆) = ∆′
≤|∆|.nil. By

the property which says that if TAλσ � t : τ , then TAλσ � t : s(τ) = (s(Γ), s(∆)), for any type substitution
s, we have τ ≤TAλσ

s(τ). By (λσ-sweak), we have that s(τ) ≤TAλσ
τ ′. Thus, τ is PT of t, according to

Definition 9.
⇐ proof: Let τ = (Γ,∆) be a PT of t, according to Definition 13, and τ ′ = (Γ ′,∆′) be a typing of t which

is not PT according to this definition. Then, exists a type substitution s such that s(Γ) = Γ ′
≤|Γ |.nil and

s(∆) = ∆′
≤|∆|.nil and does not exist any substitution s′ such that s′(Γ ′) = Γ≤|Γ ′|.nil and s′(∆′) = ∆≤|∆′|.nil.

1. Suppose s(Γ) 6= Γ ′. Then, m = |Γ | < |Γ ′|. Let si = (1 . 2 . · · · .m + 1 . ↑m+1) and r = t ◦ si.
2. Otherwise, s(Γ) = Γ ′. Let K be a type variable. Define the functions φ1 and φ2 as above.

(a) Suppose s(K) is not a type variable for K ∈ T (τ)
i. Suppose K ∈ T (∆i). Let b =

(
λ.

(
λ. 2 λ.((λ.φ2(∆i,K))[↑] λ. 2)

)
i
)

and s′i be a λσ-substitution

such that = (1 . 2 . · · · . i− 1 .b. ↑i). Let r = s′i ◦ t.

9

ii. Suppose K ∈ T (Γi). Let b =
(
λ.

(
λ. 2 λ.((λ.φ2(Γi,K))[↑] λ. 2)

)
i
)

and let s′i be as above. Let
r = t ◦ s′i.

(b) Suppose s(K1) = s(K2) = L for distinct K1,K2 ∈ T (τ)
i. Suppose Kj∈T (Γij) for j∈{1, 2}. Let pj=

(
λ.φ1(Γij ,Kj) ij + 1

)
and p=λ.λ.

(
1 p1[↑] p2[↑]

)
. Let

bj =
(
λ.λ. 2 ij p

)
, where j can be either 1 or 2 and let sij

= (1 . 2 . · · · . ij − 1 .bj . ↑ij). Let
r = t ◦ sij

.
ii. Suppose Kj∈T (∆ij

) for j∈{1, 2}. Let pj=
(
λ.φ1(∆ij

,Kj) ij + 1
)
. Then, for p, bj and sij

as
above, let r = sij ◦ t.

iii. Suppose K1 ∈ T (Γi) and K2 ∈ T (∆j). Let b =
(
λ.(λ. 2 p) j [t]

)
, where

p = λ.λ.
(
1

(
(λ.φ1(Γi,K1))[↑] i + 3

)
φ2(∆j ,K2)[↑]

)
. Let r =

(
1 [t]. 2 [t]. · · · . j − 1 [t].b.(↑j ◦ t)

)
.

Then, r ∈ TermsTAλσ
(τ ′) r TermsTAλσ

(τ). Thus, τ ′ �TAλσ
τ

As consequence, if a typing τ ′ of some λσ-substitution is not PT according to Definition 13, τ ′ is not PT
according to Definition 9. 2

An algorithm for type inference is presented, to verify if TAλσ has PT according to Definition 13. Thus,
given an expression a, we will work with the decorated expression a′ but the type for substitutions is a
context as well. We use the same syntax for decorated expressions as in [5].

(Var) 〈R ∪ {1Γ
A }, E〉 → 〈R, E ∪ {Γ = A.Γ ′}〉,where Γ ′ is a fresh context variable;

(Lambda) 〈R ∪ {(λ.aΓ1
A1

)Γ2
A2
}, E〉 → 〈R, E ∪ {A2 = A∗ → A1, Γ1 = A∗.Γ2}〉, where A∗ is a

fresh type variable;

(App) 〈R ∪ {(aΓ1
A1

bΓ2
A2

)Γ3
A3
}, E〉 → 〈R, E ∪ {Γ1 = Γ2, Γ2 = Γ3, A1 = A2 → A3}〉

(Clos) 〈R ∪ {(aΓ1
A1

[sΓ2
Γ3

])Γ4
A2
}, E〉 → 〈R, E ∪ {Γ1 = Γ3, Γ2 = Γ4, A1 = A2}〉

(Id) 〈R ∪ {idΓ1
Γ2
}, E〉 → 〈R, E ∪ {Γ1 = Γ2}〉

(Shift) 〈R ∪ {↑Γ1
Γ2
}, E〉 → 〈R, E ∪ {Γ1 = A′.Γ2}〉,where A′ is a fresh type variable;

(Cons) 〈R ∪ {(aΓ1
A1

.sΓ2
Γ3

)Γ4
Γ5
}, E〉 → 〈R, E ∪ {Γ1 = Γ2, Γ2 = Γ4, Γ5 = A1.Γ3}〉

(Comp) 〈R ∪ {(sΓ1
Γ2

◦ tΓ3
Γ4

)Γ5
Γ6
}, E〉 → 〈R, E ∪ {Γ1 = Γ4, Γ2 = Γ6, Γ3 = Γ5}〉

Table 4. Type inference rules for the λσ-calculus

The inference rules presented in the Table 4 are given according to the typing rules of the system TAλσ

presented in the Definition 12. The rules are applied to pairs 〈R,E〉, starting from the pair 〈R0, ∅〉, as was
done to TAλdB .

Example 4. For a = (2 .id) ◦↑ one has a′ = (((1Γ1
A1

[↑Γ2
Γ3

])Γ4
A2

.idΓ5
Γ6

)Γ7
Γ8
◦↑Γ9

Γ10
)Γ11
Γ12

. Then

R0 = {1Γ1
A1

, ↑Γ2
Γ3

, idΓ5
Γ6

, ↑Γ9
Γ10

, (1Γ1
A1

[↑Γ2
Γ3

])Γ4
A2

, ((1Γ1
A1

[↑Γ2
Γ3

])Γ4
A2

.idΓ5
Γ6

)Γ7
Γ8

, (((1Γ1
A1

[↑Γ2
Γ3

])Γ4
A2

.idΓ5
Γ6

)Γ7
Γ8
◦↑Γ9

Γ10
)Γ11
Γ12

}

Applying the rules from Table 4 to the pair 〈R0, ∅〉, until obtain the pair 〈∅, Ef 〉 and simplifying Ef , as in
example 2, one obtains the set of equations {A1 = A2, Γ11 = Γ12 = A2.Γ2, Γ2 = A′

1.Γ1, Γ1 = A1.Γ
′
1}

From this equational system one obtains the mgu Γ11 = Γ12 = A1.A
′
1.A1.Γ

′
1, for the variables of interest.

Theorem 4 (Principal Typings for TAλσ). TAλσ satisfies the property of having principal typings.

Proof. Let a be any λσ-expression and a′ its associated decorated expression. Let R0 be the set of all sub-
expression of a′. Starting with the pair 〈R0, ∅〉 and applying the rules of the type inference algorithm in the
Table 4 one obtains a final pair after a finite number of steps, because after each step the number of elements
in the set of decorated sub-expressions of the pair is decremented. By the uniqueness in the decomposition

10

of the sub-expressions of the λσ, one has that a unique rule can be applied to each sub-expression of R0.
Thus, the process finish with a pair 〈∅, Ef 〉, where Ef is a set of first-order equations over context and type
variables, according to the rules of the type system TAλσ. An adequate first-order unification algorithm is
then applied. And by the correctness, completeness and uniqueness of first-order unification, one has that
the algorithm will find a mgu in the case that a is typable. Otherwise, the algorithm will report that there
are no unifier. Consequently, the typing system TAλσ satisfies PT. 2

3.3 Principal typings for TAλse , the simply typed λse

Definition 14 (The System TAλse
). TAλse

is given by the following typing rules.

(Var) A.Γ ` 1 : A (Varn)
Γ ` n : B

A.Γ ` n + 1 : B

(Lambda)
A.Γ ` b : B

Γ ` λ.b : A → B
(App)

Γ ` a : A → B Γ ` b : A

Γ ` (a b) : B

(Sigma)
Γ≥i ` b : B Γ<i.B.Γ≥i ` a : A

Γ ` a σib : A
(Phi)

Γ≤k.Γ≥k+i ` a : A

Γ ` ϕi
k a : A

As for λσ, the typed version of λse-calculus presented is in Curry style, which has the same properties of
the version in Church style presented in [3].
Example 5. As in the Example 3, starting from the λ-term (λ.λ.(1 2)) 2 applying rules of λse one obtains
the λse-term λ.((1σ22) (ϕ2

0 2)). The deduction of B.C.nil `TAλse
λ.((1σ22) (ϕ2

0 2)) : (C → A) → A is
presented. For brevity, contexts in a deduction are denoted without nil.

Initially, one has
C ` 1 : C (Var)

B.C ` 2 : C
(Varn). Thus

B.C ` 2 : C C→A.C.B.C ` 1 : C → A

C → A.B.C ` 1 σ22 : C → A
(Sigma)

B.C ` 2 : C

C → A.B.C ` ϕ2
0 2 : C

(Phi)

C → A.B.C ` ((1σ22) (ϕ2
0 2)) : A

B.C ` λ.((1σ22) (ϕ2
0 2)) : (C → A) → A

(Lambda)
(App)

Lemma 3 (Weakening for λse). Let a be a λse-term. If Γ ` a : A, then Γ.B ` a : A, for any type B.

Proof. Induction on a structure.

1) a = n : Let Γ ` n : A. Since the type addition at the end of Γ do not change any free index type, one
has trivially that Γ.B ` n : A.

2) a = (b c): Let Γ ` (b c) : A. By (App) one has that Γ ` b : C → A and Γ ` c : C, for some C. By IH one
has Γ.B ` b : C → A and Γ.B ` c : C. Thus, by (App), Γ.B ` (b c) : A

3) a = λ.b: Let Γ ` λ.b : A. By (Lambda) one has that C.Γ ` b : D, where A = C → D. By IH one has
C.Γ.B ` b : D. Thus, by (Lambda), Γ.B ` λ.b : A

4) a = b σic: Let Γ ` b σic : A. By (Sigma) one has that Γ≥i ` c : C and Γ<i.C.Γ≥i ` b : A. By IH one has
Γ≥i.B ` c : C and Γ<i.C.Γ≥i.B ` b : A. Thus, by (Sigma), Γ.B ` b σic : A.

5) a = ϕi
kb: Let Γ ` ϕi

kb : A. By (Phi) one has that Γ≤k.Γ≥k+i ` b : A. By IH one has Γ≤k.Γ≥k+i.B ` b : A.
Thus, by (Phi), Γ.B ` ϕi

kb : A. 2

Proposition 3. The rule (λse-weak) is admissible in System TAλse , where
Γ ` a : A

Γ.B ` a : A
(λse-weak) .

Definition 15 (Principal Typings in TAλse
). A principal typing of a term a in TAλse

is a typing
τ = (Γ,B) such that
1. TAλse

� a : τ
2. If TAλse

�a : τ ′ for any typing τ ′ = (Γ ′, B′), then there exists a substitution s such that s(Γ) = Γ ′
≤|Γ |.nil

and s(B) = B′.

11

Theorem 5. A typing τ is principal in TAλse according to Definition 15 iff τ is principal in TAλse according
to Definition 9.

Proof. ⇒ proof: Let τ = (Γ,B) be a PT of some term a, according to Definition 15, and τ ′ = (Γ ′, B′) be
a typing of a. By Definition 15, we have that exists a type substitution s such that s(Γ) = Γ ′

≤|Γ |.nil and
s(B) = B′. By the property which says that if TAλse �a : τ , then TAλse �a : s(τ), for any type substitution
s, we have τ ≤TAλse

s(τ). By (λse-weak), we have that s(τ) ≤TAλse
τ ′. Thus, τ is PT of a, according to

Definition 9.
⇐ proof: Let τ = (Γ,B) be a PT of some term a, according to Definition 15, and τ ′ = (Γ ′, B′) be

a typing of a which is not PT according to this definition. Then, exists a type substitution s such that
s(Γ) = Γ ′

≤|Γ |.nil and s(B) = B′ and does not exist any substitution s′ such that s′(Γ ′) = Γ≤|Γ ′|.nil and
s′(B′) = B.

1. Suppose s(Γ) 6= Γ ′. Then, m = |Γ | < |Γ ′|. Let b = (λ.(ϕ2
0 a) m + 1).

2. Otherwise, s(Γ) = Γ ′. Let K be a type variable. Define the function φ1 as:

φ1(K, K) = λ.λ.
(
1 (2 4) (2 3)

)
φ1(A → B,K) = λ.λ.

(
1 (3 2) (ϕ4

0 (λ.φ1(A,K)) 2)
)
, if K ∈ T (A)

φ1(A → B,K) = λ.
(
ϕ3

0 (λ.φ1(B,K)) (2 1)
)
, otherwise

and define function φ2 as:

φ2(K, K) = λ.λ.
(
1 (2 3) (2 4)

)
φ2(A → B,K) = λ.λ.

(
1 (4 2) (ϕ3

0 (λ.φ1(A,K)) 2)
)
, if K ∈ T (A)

φ2(A → B,K) = λ.
(
ϕ2

0 (λ.φ1(B,K)) (3 1)
)
, otherwise

(a) Suppose s(K) is not a type variable for K ∈ T (τ)
i. Suppose K ∈ T (B). Let b =

(
λ.

(
λ. 2 λ.(ϕ2

0 (λ.φ2(B,K)) λ. 2)
)

a
)
.

ii. Suppose K ∈ T (Γi). Let b =
(
λ.(ϕ2

0 a) λ.(λ.λ.φ2(Γi,K) i + 1 λ. 2)
)
.

(b) Suppose s(K1) = s(K2) = L for distinct K1,K2 ∈ T (τ)
i. Suppose Kj ∈ T (Γij) for j ∈ {1, 2}. Let pj =

(
λ.φ1(Γij ,Kj) ij + 1

)
and p = λ.λ.

(
1 ϕ2

0 p1 ϕ2
0 p2

)
.

Let b =
(
λ.λ. 2 a p

)
.

ii. Suppose K1∈T (Γi) and K2∈T (B). Let p = λ.λ.
(
1

(
ϕ2

0 (λ.φ1(Γi,K1)) i + 3
)
ϕ2

0 (φ2(B,K2))
)

and b =
(
λ.(λ. 2 p) a

)
.

iii. Suppose Ki ∈ T (B) for i ∈ {1, 2}. Let p = λ.λ.
(
1 ϕ2

0 (φ2(B,K1)) ϕ2
0 (φ2(B,K2))

)
and b =(

λ.(λ. 2 p) a
)
.

Then, b ∈ TermsTAλse
(τ ′) r TermsTAλse

(τ). Thus, τ ′ �TAλse
τ .

As consequence, if τ ′ is not PT according to Definition 15, τ ′ is not PT according to Definition 9. 2

A type inference algorithm for the λse-calculus is presented, similarly to that of [4]. The decorated term
associated with a, denoted as a′, has syntax closer to the one of decorated λ-terms: any subterm is decorated
with its type and its context variables.

Similarly to the previous algorithm, the rules of Table 5, developed according to the rules of Definition
14, are applied to pairs 〈R,E〉, where R is a set of decorated subterms of a′ and E a set of equations over
type and context variables.

Example 6. For the term a = λ.((1σ22) (ϕ2
0 2)) one has a′ = (λ.((1Γ1

A1
σ22Γ2

A2
)Γ3
A3

(ϕ2
0 2Γ4

A4
)Γ5
A5

)Γ6
A6

)Γ7
A7

. Then

R0 =
{

1Γ1
A1

, 2Γ2
A2

, (1Γ1
A1

σ22Γ2
A2

)Γ3
A3

, 2Γ4
A4

, (ϕ2
0 2Γ4

A4
)Γ5
A5

, ((1Γ1
A1

σ22Γ2
A2

)Γ3
A3

(ϕ2
0 2Γ4

A4
)Γ5
A5

)Γ6
A6

,

(λ.((1Γ1
A1

σ22Γ2
A2

)Γ3
A3

(ϕ2
0 2Γ4

A4
)Γ5
A5

)Γ6
A6

)Γ7
A7

}
Applying the rules in the Table 5 to the pair 〈R0, ∅〉, until obtaining the pair 〈∅, Ef 〉, and simplifying Ef ,

similarly to the example 2, one obtains the system of equations
˘

A1 = A4 → A6 , A7 = A∗
1 → A6 , A1.Γ

′
1 =

A′
2.A2.Γ2 , A′

2.Γ2 = A′
4.A

′
3.A4.Γ

′
3 = A∗

1.Γ7 , Γ2 = A′
1.A2.Γ

′
2

¯
from which one has the mgu A7 = (A2 → A6) → A6

and Γ7 = A′
1.A2.Γ

′
2 for variables of interest.

12

(Var) 〈R ∪ {1Γ
A }, E〉 → 〈R, E ∪ {Γ = A.Γ ′}〉,where Γ ′ is a fresh context variable;

(Varn) 〈R ∪ {nΓ
A }, E〉 → 〈R, E ∪ {Γ = A′

1. · · · .A′
n−1.A.Γ ′}〉,where A′

1, . . . , A
′
n−1

and Γ ′ are fresh type and context variables;

(Lambda) 〈R ∪ {(λ.aΓ1
A1

)Γ2
A2
}, E〉 → 〈R, E ∪ {A2 = A∗ → A1, Γ1 = A∗.Γ2}〉, where A∗ is a

fresh type variable;

(App) 〈R ∪ {(aΓ1
A1

bΓ2
A2

)Γ3
A3
}, E〉 → 〈R, E ∪ {Γ1 = Γ2, Γ2 = Γ3, A1 = A2 → A3}〉

(Sigma) 〈R ∪ {(aΓ1
A1

σibΓ2
A2

)Γ3
A3
}, E〉 → 〈R, E ∪ {A1 = A3, Γ1 = A′

1. · · · .A′
i−1.A2.Γ2, Γ3 = A′

1. · · · .A′
i−1.Γ2, }〉,

where A′
1, . . . , A

′
i−1 are new type variables and the sequence is empty

if i = 1;

(Phi) 〈R ∪ {(ϕi
k aΓ1

A1
)Γ2
A2
}, E〉 → 〈R, E ∪ {A1 = A2, Γ2 = A′

1. · · · .A′
k+i−1.Γ

′, Γ1 = A′
1. · · · .A′

k.Γ ′}〉,
where Γ ′ and A′

1, . . . , A
′
k+i−1 are new context and type variables and

if k + i − 1, k = 0 then the respectively sequences A′
1, . . . , A

′
k+i−1 and

A′
1, . . . , A

′
k are empty.

Table 5. Type inference rules for the λse-Calculus

Theorem 6 (Principal Typings for TAλse). TAλse satisfies the property of having principal typings.

Proof. Let a be any λse-term and a′ its decorated version. Let R0 be o set of decorated subterms of a′.
Starting from the pair 〈R0, ∅〉 and applying the type inference rules in the Table 5, one has that after each
application of a rule the number of decorated subterms in R0 decreases. Thus, the process terminates in a
finite number of steps. By the uniqueness in decomposition of subterms of the λse by these rules, one has
that a unique rule can be applied to each subterm of R0. When the process finishes, one obtains a pair of
the form 〈∅, Ef 〉, where Ef is a set of first-order equations over type and context variables, according to the
typing rules of TAλse . By applying any adequate first-order unification algorithm to Ef , one could obtain
a sole mgu in the case the term a is typable. Otherwise, a cannot be typable and the algorithm will report
the inexistence of unifiers. Consequently, the typing system TAλse

satisfies PT. 2

4 Conclusions and Future Work

We consider for λσ and λse particular notions of principal typings and presented respective definitions which
are proved to agree with the system-independent notion introduced by Wells in [11]. The adaptation of
this general notion of principal typings for the λσ requires special attention, since this calculus enlarges the
language of the λ-calculus by introducing a new sort of substitution objects, whose types are contexts. then
the provided PT notion has to deal with the principality of substitutions as well. Then, the property of
having principal typings is straightforwardly proved by revisiting type inference algorithms for the λσ and
the λse, previously presented in [5] and [4], respectively. The result is based on the correctness, completeness
and uniqueness of solutions given by adequate first-order unification algorithms.

Investigation of this property for more elaborated typing systems of explicit substitutions is an interesting
work to be done.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. J. of Functional Programming,
1(4):375–416, 1991.

2. M. Ayala-Rincón, F. de Moura, and F. Kamareddine. Comparing and Implementing Calculi of Explicit Substi-
tutions with Eta-Reduction. Annals of Pure and Applied Logic, 134:5–41, 2005.

3. M. Ayala-Rincón and F. Kamareddine. Unification via the λse-Style of Explicit Substitution. The Logical Journal
of the Interest Group in Pure and Applied Logics, 9(4):489–523, 2001.

4. M. Ayala-Rincón and C. Muñoz. Explicit Substitutions and All That. Revista Colombiana de Computación,
1(1):47–71, 2000.

13

5. P. Borovanský. Implementation of Higher-Order Unification Based on Calculus of Explicit Substitutions. In
M. Bartošek, J. Staudek, and J. Wiedermann, editors, Proceedings of the SOFSEM’95: Theory and Practice of
Informatics, volume 1012 of LNCS, pages 363–368. Springer Verlag, 1995.

6. N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation,
with application to the Church-Rosser theorem. Indagationes Mathematicae, 34:381–392, 1972.

7. G. Dowek, T. Hardin, and C. Kirchner. Higher-order Unification via Explicit Substitutions. Information and
Computation, 157(1/2):183–235, 2000.

8. J. R. Hindley. Basic Simple Type Theory. Number 42 in Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1997.

9. P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate. In Proc. of TLCA’95, volume 902
of LNCS, pages 328–334. Springer Verlag, 1995.

10. G. Nadathur and D. S. Wilson. A Notation for Lambda Terms A Generalization of Environments. Theoretical
Computer Science, 198:49–98, 1998.

11. J. Wells. The essence of principal typings. In Proc. 29th International Colloquium on Automata, Languages and
Programming, ICALP 2002, volume 2380 of LNCS, pages 913–925. Springer Verlag, 2002.

14

A Proofs

A.1 Proofs of weakening and PT for TAλσ

Some auxiliar definitions and lemmas are necessary to prove Lemma 2.

Definition 16. Let a be a λσ-object. Define ‖ · ‖ : Λσ → N as

‖(a b)‖ = ‖a‖+ ‖b‖ ‖1 ‖ = 0

‖λ.a‖ = ‖a‖ ‖id‖ = 0

‖a[s]‖ = ‖a‖+ ‖s‖ ‖ ↑ ‖ = 0

‖s ◦ t‖ = ‖s‖+ ‖t‖ ‖a.t‖ = 1 + ‖a‖+ ‖t‖

Lemma 4. Let s be a λσ-substitution such that ‖s‖ = 0. If Γ ` s � Γ ′, then Γ.B ` s � Γ ′.B

Proof. Induction on s structure.

1) s = id: By (id) it has Γ.B ` id � Γ ′.B, trivially.
2) s =↑: Let Γ `↑ �Γ ′ where, by (shift), Γ = A.Γ ′. Thus Γ.B `↑ �Γ ′.B
3) s = u◦t: Let Γ ` u◦t�Γ ′. By (comp), it has that Γ ` t�Γ ′′ and Γ ′′ ` u�Γ ′, for some Γ ′′. By induction

hypothesis(IH) it has Γ.B ` t � Γ ′′.B and Γ ′′.B ` u � Γ ′.B. Thus, by (comp), Γ.B ` u ◦ t � Γ ′.B. 2

Lemma 5. Let a be a λσ-term such that ‖a‖ = 0. If Γ ` a : A, then Γ.B ` a : A.

Proof. Induction on a structure.

1) a = 1 : Let Γ ` 1 : A. By (var) it has that Γ = A.Γ ′, for some Γ ′. Thus it has Γ.B ` 1 : A, trivially.
2) a = (b c): Let Γ ` (b c) : A. By (app) it has that Γ ` b : C → A and Γ ` c : C, for some C. By IH it has

Γ.B ` b : C → A and Γ.B ` c : C. Thus, by (app), Γ.B ` (b c) : A
3) a = λ.b: Let Γ ` λ.b : A. By (lambda) it has that C.Γ ` b : D, where A = C → D. By IH it has

C.Γ.B ` b : D. Thus, by (lambda), Γ.B ` λ.b : A
4) a = b[s]: Let Γ ` b[s] : A. By (clos) is has that Γ ` s � Γ ′ and Γ ′ ` b : A, for some Γ ′. It has

‖b[s]‖ = ‖b‖ + ‖s‖ = 0. Then, by Lemma 4, Γ.B ` s � Γ ′.B. By IH it has that Γ ′.B ` b : A. Thus, by
(clos), Γ.B ` b[s] : A. 2

Proof (Lemma 2). Induction on a structure with subinduction on ‖ · ‖, having Lemmas 4 and 5 as induction
base(IB).

1) a = 1 : Let Γ ` 1 : A. By (var) it has that Γ = A.Γ ′, for some Γ ′. Thus it has Γ.B ` 1 : A, trivially.
2) a = (b c): Let Γ ` (b c) : A. By (app) it has that Γ ` b : C → A and Γ ` c : C, for some C. By IH on

structure it has Γ.B ` b : C → A and Γ.B ` c : C. Thus, by (app), Γ.B ` (b c) : A
3) a = λ.b: Let Γ ` λ.b : A. By (lambda) it has that C.Γ ` b : D, where A = C → D. By IH on structure

it has C.Γ.B ` b : D. Thus, by (lambda), Γ.B ` λ.b : A
4) a = b[s]: Let Γ ` b[s] : A. By (clos) is has that Γ ` s�Γ ′ and Γ ′ ` b : A, for some Γ ′. By IH on structure

it has Γ ′.B ` b : A. Substitution s has to be examined. If ‖b‖ > 0, then by IH on ‖ · ‖, as ‖b[s]‖ > ‖s‖,
it has that Γ.B ` s � Γ ′.B.
Else, if ‖b‖ = 0:

- If ‖s‖ = 0, then Lemma 4 can be applied.
- Otherwise, s = c.t or s = u ◦ t. If s = c.t, then by (cons) it has that Γ ` c : C and Γ ` t � Γ ′′, where

Γ ′ = C.Γ ′′. As ‖c‖, ‖t‖ < ‖s‖ = ‖b[s]‖, by IH on ‖ · ‖ it has Γ.B ` c : C and Γ.B ` t � Γ ′′.B. Thus,
by (cons), Γ.B ` c.t � Γ ′.B. If s = u ◦ t, then by (comp) it has that Γ ` t � Γ ′′ and Γ ′′ ` u � Γ ′, for
some Γ ′′. If ‖u‖, ‖t‖ > 0, the result holds by IH on ‖ · ‖. Otherwise, at least one of the substitutions
has ‖ · ‖ greater than 0. Using induction on substitution s structure, where ‖s‖ > 0, the result holds.
Then, it has that Γ.B ` t � Γ ′′.B and Γ ′′.B ` u � Γ ′.B. Thus, by (comp), Γ.B ` u ◦ t � Γ ′.B.

Finally, by (clos), it has that Γ.B ` b[s] : A. 2

15

