
Principal Typings in a Restricted Intersection

Type System for Beta Normal Forms with de

Bruijn Indices

Daniel Lima Ventura1∗and Mauricio Ayala-Rincón1†and
Fairouz Kamareddine2

1Grupo de Teoria da Computação, Dep. de Matemática
Universidade de Braśılia, Braśılia D.F., Brasil

2 School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh, Scotland

{ventura,ayala}@mat.unb.br, fairouz@macs.hw.ac.uk

July 28, 2009

Abstract

The λ-calculus with de Bruijn indices assembles each α-class of λ-
terms in a unique term, using indices instead of variable names. Inter-
section types provide finitary type polymorphism and can characterise
normalisable λ-terms, that is a term is normalisable if and only if it is
typeable. To be closer to computations and to simplify the formalisa-
tion of the atomic operations involved in β-contractions several calculi of
explicit substitution were developed and some of them are written with
de Bruijn indices. Versions of explicit substitutions calculi without types
and with simple type systems are well investigated in contrast to versions
with more elaborated type systems such as intersection types. In previous
work, we introduced a de Bruijn version of the λ-calculus with an inter-
section type system and proved it preserves the subject reduction, a basic
type system property. In this paper a version with de Bruijn indices of
an intersection type system originally introduced to characterise principal
typings for β-normal forms (β-nf for short) is presented. We present the
characterisation in this new system and the corresponding versions for
the type inference and the reconstruction of normal forms from principal
typings algorithms. We briefly discuss about the failure of the subject
reduction property and some possible solutions for it.

∗Supported by a PhD scholarship at the Universidade de Braśılia.
†Supported by the Fundação de Apoio à Pesquisa do Distrito Federal [FAPDF 8-004/2007]

1

1 Introduction

The λ-calculus à la de Bruijn [dB72] was introduced by the Dutch mathemati-
cian N.G. de Bruijn in the context of the project Automath [NGdV94] and has
been adopted for several calculi of explicit substitutions ever since (e.g. [dB78],
[ACCL91], [KR95]). Term variables in the λ-calculus à la de Bruijn are rep-
resented by indices instead of names, assembling each α-class of terms in the
λ-calculus [Bar84] in a unique term with de Bruijn indices, thus turning it more
“machine-friendly” than its counterpart. Those calculi with de Bruijn indices
have been investigated for both type free and simply typed versions but to the
best of our knowledge there is no work on more elaborated type systems such
as intersection types.

Intersection types were introduced to provide a characterisation of strongly
normalising λ-terms [CDC78, CDC80, Pot80]. In programming, the intersection
type discipline is of interest because λ-terms corresponding to correct programs
not typeable in the standard Curry type assignment system [CF58], or in exten-
sions allowing some sort of polymorphism as the one present in ML [Mil78], are
typeable with intersection types. In [VAK08] an intersection type system for
the λ-calculus with de Bruijn indices was introduced, based on the type system
given in [KN07], and proved to satisfy the subject reduction property (SR for
short); that is the property of preserving types under β-reduction: whenever
Γ `M : σ and M β-reduces into N , Γ ` N : σ.

A relevant problem in type theory is whether the system has principal typings
(PT for short), which means that for any typeable term M there is a type
judgement Γ ` M : τ representing all possible typings (Γ′, τ ′) of M in this
system. The system in [VAK08] was not proved to have PT while the system
introduced here is proved to have PT for β-nf. The concept of a most general
typing is usually linked to syntactic operations and they vary from system to
system. For example, the operations to obtain one typing from another in simply
typed systems are weakening and type substitutions, mapping type variables to
types, while in an intersection type system expansion is performed to obtain
intersection types replicating a simple type through some specific rules. In
[We02] J. Wells introduced a system-independent definition of PT and proved
that it was the correct generalisation of well known system-dependent definitions
such as Hindley’s PT for simple type systems [Hi97]. Principal typings has
been studied for some intersection type systems ([CDV80], [RV84], [Roc88],
[Bak95], [KW04]) and in [CDV80, RV84] were proved that PT for some term’s
β-nf is principal for the term itself. Partial algorithms, yielding PT whenever
succeeds, were proposed in [Roc88, KW04]. In [CW04a] S. Carlier and Wells
presented the exact correspondence between the inference mechanism for their
intersection type system and the β-reduction. They introduce the expansion
variables, integrating expansion operations into the type system (see [CW04b]).

We present in this paper a de Bruijn version of the intersection type system
originally introduced in [SM96a], with the purpose of characterising the syntac-
tic structure of PT for β-nfs. E. Sayag and M. Mauny intended to develop a
system such that, similarly to simply typed systems, the definition of PT would

2

depends on type substitutions only and, as a consequence, the typing system
in [SM96a] does not have SR. Although SR is the most basic property and
should be satisfied by any typing system, the system infers types to all β-nfs
and, because it is a restriction of more complex and well studied systems, is a
reasonable way to characterise PT for intersection type systems. In fact, the
system in [SM96a] is a proper restriction of some systems presented in [Bak95].

Following, we give some definitions and properties for the untyped λ-calculus
with de Bruijn indices, as in [VAK08]. We introduce the type system in Section
2, where some properties are stated and counterexamples for another properties,
such as SR, are presented. The type inference algorithm introduced here, its
soundness and completeness are at the end of Section 2. The characterisation of
PT for β-nfs and the reconstruction algorithm are presented in Section 3. Both
algorithms introduced here are similar to the ones presented in [SM96a].

1.1 λ-calculus with de Bruijn indices

Definition 1 (Set ΛdB). The syntax of the λ-calculus with de Bruijn indices,
the λdB-calculus, is defined inductively by:

Terms M ::= n | (M M) |λ.M where n ∈ N∗= Nr{0}.

Definition 2. FI(M), the set of free indices of M ∈ ΛdB, is defined by:

FI(n)={n} FI(M1 M2)=FI(M1) ∪ FI(M2)

FI(λ.M)={n−1,∀n ∈ FI(M), n > 1}

The free indices corresponds to the notion of free variables in the λ-calculus
with names, hence M is called closed when FI(M) ≡ ∅. The greatest value
of FI(M) is denoted by sup(M). In [VAK08] we give the formal definitions of
those concepts. Following, a lemma stating properties about sup related with
the structure of terms.

Lemma 1 ([VAK08]). 1. sup(M1 M2) = max(sup(M1), sup(M2)).

2. If sup(M)=0, then sup(λ.M)=0. Otherwise, sup(λ.M)=sup(M)− 1.

Terms like ((. . . ((M1 M2) M3) . . .) Mn) are written as (M1M2 · · · Mn), as
usual. The β-contraction definition in this notation needs a mechanism which
detects and updates free indices of terms. Intuitively, the lift of M , denoted by
M+, corresponds to an increment by 1 of all free indices occurring in M . Thus,
we are able to present the definition of the substitution used by β-contractions,
similarly to the one presented in [ARK01].

Definition 3. Let m,n ∈ N∗. The β-substitution for free occurrences of n in
M ∈ ΛdB by term N , denoted as {n /N}M , is defined inductively by

1 . {n /N}(M1 M2) = ({n /N}M1 {n /N}M2) 3 . {n /N}m =

8<:
m− 1 , if m > n
N, if m = n
m , if m < n2 . {n /N}(λ.M1) = λ.{n+ 1 /N+}M1

3

Observe that in item 2 of Definition 3, the lift operator is used to avoid captures
of free indices in N . We present the β-contraction as defined in [ARK01].

Definition 4. β-contraction in λdB is defined by (λ.M N)→β {1 /N}M .

Notice that item 3 in Definition 3 is the mechanism which does the substitu-
tion and updates the free indices in M as consequence of the lead abstractor
elimination. The β-reduction is defined to be the λ-compatible closure of the
β-contraction defined above. A term is in β-normal form, β-nf for short, if
there is no β-reduction to be done.

Lemma 2. A term N ∈ ΛdB is a β-nf iff N is one of the following :

- N ≡ n, for any n ∈ N∗.

- N ≡ λ.N ′ and N ′ is a β-nf.

- N ≡ nN1 · · ·Nm, for some n ∈ N∗ and ∀1≤j≤m, Nj is a β-nf.

Proof. The necessary proof is straightforward from β-nf definition. Now, sup-
pose that N is a β-nf. The sufficient proof is by induction on the structure of
N ∈ΛdB :

• If N≡ n then N is a β-nf.

• Let N ≡λ.N ′. If N ′ is not a β-nf then, by the definition of β-reduction,
N would not be a β-nf. Hence, N ′ is a β-nf.

• Let N ≡ N1 N2. Since N is a β-nf, one has that both N1 and N2 are
β-nfs. Hence, by IH, N1 ≡ λ.N ′, for N ′ a β-nf, or nN ′1 · · ·N ′m for m≥0
and ∀1≤ j≤m, N ′j a β-nf. If N≡λ.N ′ then N would β-contract. Hence,
N ≡ nN ′1 · · ·N ′m N2.

2 The type system and properties

Definition 5. 1. Let A be a denumerably infinite set of type variables
and let α, β range over A.

2. The set T of restricted intersection types is defined by:

τ, σ ∈ T ::= A |U→T u ∈ U ::= ω | U ∧ U | T

Types are quotiented by taking ∧ to be commutative, associative and to
have ω as the neutral element.

3. Contexts are ordered lists of u ∈ U , defined by: Γ ::= nil |u.Γ
Γi denotes the i-th element of Γ and |Γ| denotes the length of Γ.

ω n denotes the sequence ω.ω. · · · .ω of length n and let ω 0 .Γ = Γ.

4

The extension of ∧ to contexts is done by taking nil as the neutral element
and (u1.Γ) ∧ (u2.∆) = (u1 ∧ u2).(Γ ∧ ∆). Hence, ∧ is commutative and
associative on contexts.

4. Type substitution maps type variables to types. Given a type substitu-
tion s :A → T , the extension for types in T is given by s(u→τ) = s(u)→
s(τ) and for elements in U by s(ω) = ω and s(u ∧ v) = s(u) ∧ s(v). The
extension for contexts is given by s(nil)=nil and s(u.Γ)=s(u).s(Γ). The
domain of a substitution s is defined by Dom(s)={α | s(α) 6= α} and, for
two substitutions s1 and s2 with disjoint domains, let s1 + s2 be defined by

(s1 + s2)(α)
{
si(α) if α ∈ Dom(si), for i ∈ {1, 2}
α if α /∈ Dom(s1) ∪Dom(s2)

5. TypeV ar(u) is the set of type variables occurring in u ∈ U . The
extension to contexts is straightforward.

The set T defined here is equivalent to the one defined in [SM96a].

Lemma 3. 1. If u∈U , then u=ω or u=∧ni=1τi where n>0 and ∀ 1≤ i≤n,
τi∈T .

2. If τ ∈ T , then τ = α, τ = ω→ σ or τ = ∧ni=1τi→ σ, where n > 0 and
σ, τ1, . . . , τn ∈ T .

Proof. 1. By induction on u∈U .

2. By induction on τ ∈T and Lemma 3.1.

Definition 6. 1. The typing rules for system SM are given as follows:

1:〈τ.nil ` τ〉 var
M :〈u.Γ ` τ〉

λ.M :〈Γ ` u→τ〉 →i

n :〈Γ ` τ〉
n+1:〈ω.Γ ` τ〉 varn

M :〈nil ` τ〉
λ.M :〈nil ` ω→τ〉 →

′
i

M1 :〈Γ ` ω→τ〉 M2 :〈∆ ` σ〉
M1 M2 :〈Γ ∧∆ ` τ〉 →′e

M1 :〈Γ ` ∧n
i=1σi→τ〉 M2 :〈∆1 ` σ1〉 . . . M2 :〈∆n ` σn〉
M1 M2 :〈Γ ∧∆1 ∧ · · · ∧∆n ` τ〉 →e

2. System SMr is obtained from system SM , replacing rule var by rule

1:〈σ1 → · · · → σn→α.nil ` σ1 → · · · → σn→α〉
(n ≥ 0) varr

Type judgements will be of the form M : 〈Γ `S τ〉, meaning that term M
has type τ in system S provided Γ for FI(M) . Briefly, M has type τ with Γ
in S or (Γ, τ) is a typing of M in S. The S is omitted whenever its is clear to
which system we are referring to.

5

Lemma 4. SM is a proper extension of SMr.

Proof. If M : 〈Γ `SMr
τ〉 then one has M : 〈Γ `SM τ〉, trivially. As a counter

example on the opposite direction, take M ≡ (1 λ.1). Then one has that
M : 〈τ ∧ (τ→τ)→β.nil `SM β〉, for τ = α→α, and (τ ∧ (τ→τ)→ β.nil, β) is
not a typing of M in SMr.

Hence, properties stated for the system SM are also true for the system
SMr. The following lemma states that SM is relevant in the sense of [DG94].

Lemma 5. If M : 〈Γ `SM τ〉, then |Γ|=sup(M) and ∀1≤ i≤|Γ|, Γi 6= ω iff i∈
FI(M).

Proof. By induction on the derivation M :〈Γ ` u〉.

• If
1 :〈τ.nil ` τ〉

, then |Γ| = 1 = sup(1). Note that FI(1) = { 1 } and

Γ1 =τ .

• If
n :〈Γ ` τ〉

n+ 1:〈ω.Γ ` τ〉
, then by IH one has |Γ| = sup(n) = n, Γn 6= ω and

∀1 ≤ i < n, Γi = ω. Thus, |ω.Γ| = 1 + |Γ| = n+ 1 = sup(n+1),
(ω.Γ)n+1 = Γn 6= ω, (ω.Γ)1 = ω and ∀1 ≤ i < n, (ω.Γ)i+1 = Γi = ω.

• Let
M :〈u.Γ ` σ〉

λ.M :〈Γ ` u→σ〉
. By IH, |u.Γ| = sup(M) and ∀0 ≤ i ≤ sup(M)−1,

(u.Γ)i+1 6= ω iff i+1∈FI(M). Hence, sup(M) = 1+|Γ| > 0 and, by Lemma
1.2, sup(λ.M) = sup(M)−1 = |Γ|. By Definition 2, ∀1 ≤ i ≤ sup(λ.M),
i∈FI(λ.M) iff i+1∈FI(M), thus, (u.Γ)i+1 = Γi 6= ω iff i∈FI(λ.M).

• Let
M :〈nil ` σ〉

λ.M :〈nil ` ω→σ〉
. By IH one has |nil| = sup(M) = 0. Thus, by

Lemma 1.2, sup(λ.M)=sup(M)= |nil|. Note that FI(M)=FI(λ.M)=∅.

• Let
M1 :〈Γ ` ω→τ〉 M2 :〈∆ ` σ〉

M1 M2 :〈Γ ∧∆ ` τ〉
. By IH, |Γ|=sup(M1), ∀1≤ i≤ |Γ|

one has Γi 6= ω iff i ∈ FI(M1), |∆| = sup(M2) and ∀1 ≤ j ≤ |∆| one
has ∆j 6= ω iff j ∈ FI(M2). By Lemma 1.1 one has sup(M1 M2) =
max(sup(M1), sup(M2))=max(|Γ|, |∆|) = |Γ∧∆|. Let 1≤ l≤|Γ∧∆| and
suppose w.l.o.g. that l ≤ |Γ|, |∆|. Thus, (Γ∧∆)l = Γl∧∆l 6=ω iff Γl 6=ω or
∆l 6=ω iff l∈FI(M1) or l∈FI(M2) iff l∈FI(M1)∪FI(M2)=FI(M1 M2).

• Let
M1 :〈Γ ` ∧nk=1σk→τ〉 M2 :〈∆1 ` σ1〉 . . . M2 :〈∆n ` σn〉

M1 M2 :〈Γ ∧∆1∧ · · · ∧∆n ` τ〉
. By IH,

|Γ| = sup(M1), ∀1≤ i≤|Γ| one has Γi 6= ω iff i∈FI(M1) and ∀1≤ k≤n,
|∆k| = sup(M2) and ∀1≤ j ≤ |∆k| one has ∆k

j 6= ω iff j ∈ FI(M2). Let
∆′ = ∆1∧ · · · ∧ ∆n. Thus, |∆′| = sup(M2) and ∀1 ≤ j ≤ |∆′|, ∆′j 6=
ω iff j ∈ FI(M2). The proof is analogous to the one above.

6

Note that, by Lemma 5 above, system SM is not only relevant but there
is a strict relation between the free indices of terms and the length of contexts
in their typings. Following, a generation lemma is presented for typings in SM
and some specific for SMr

Lemma 6 (Generation). 1. If n :〈Γ `SM τ〉, then Γn=τ .

2. If n :〈Γ `SMr
τ〉, then τ = σ1 → · · · → σk→α for k ≥ 0.

3. If λ.M : 〈nil `SM τ〉, then either τ = ω → σ and M : 〈nil ` σ〉 or τ =
∧ni=1σi→σ, n > 0, and M :〈∧ni=1σi.nil `SM σ〉 for some σ, σ1, . . . , σn∈T .

4. If λ.M : 〈Γ `SM τ〉 and |Γ| > 0, then τ =u→σ for some u∈U and σ∈T ,
where M :〈u.Γ `SM σ〉.

5. If n M1 · · ·Mm : 〈Γ `SMr
τ〉, then Γ = (ω n−1 .σ1 → · · · → σm→τ.nil) ∧

Γ1∧ · · · ∧ Γm, τ = σm+1 → · · · → σm+k→α and ∀1≤ i≤m, Mi : 〈Γi `SMr

σi〉.

Proof. 1. By induction on the derivation n :〈Γ `SM τ〉. Note that (ω.Γ)n+1 =
Γn.

2. By induction on the derivation n :〈Γ `SMr
τ〉.

3. By case analysis on the derivation λ.M :〈nil `SM τ〉.

4. By case analysis on the derivation λ.M :〈Γ `SM τ〉, for |Γ| > 0.

5. By induction on m.

If m = 0, then, by Lemma 6.2, τ = σ1 → · · · → σk→α. Thus, by Lemmas
5 and 6.1, Γ = ω n−1 .τ.nil.

If m = m′ + 1, then by case analysis the last step of the derivation is

n M1 · · ·Mm′ :〈Γ ` ∧lj=1τj→τ〉 Mm′+1 :〈∆1 ` τ1〉 . . . Mm′+1 :〈∆l ` τl〉
n M1 · · ·Mm′ Mm′+1 :〈Γ ∧∆1∧ · · · ∧∆l ` τ〉

By IH, Γ = (ω n−1 .σ1 → · · · → σm′→(∧lj=1τj→τ).nil) ∧ Γ1∧ · · · ∧ Γm
′
,

∧lj=1τj→ τ =σm′+1 → · · · → σm′+k→α and ∀1≤ i≤m′, Mi : 〈Γi `SMr σi〉.
Hence, l= 1, τ1 = σm′+1 and τ = σm′+2 → · · · → σm+k→α. Thus, taking
Γm

′+1 = ∆1 and σm′+1 = τ1, the result holds.

In the following, we will give counterexamples to show that neither subject
expansion nor reduction holds.

Example 1. In order to have the subject expansion property, we need to prove
the statement: If { 1 /N}M : 〈Γ ` τ〉 then (λ.M N) : 〈Γ ` τ〉. Let M ≡ λ. 1
and N ≡ 3, hence { 1 / 3 }λ. 1 = λ. 1. We have that, by generation lemmas,
λ. 1:〈nil ` α→α〉. Thus, λ.λ. 1:〈nil ` ω→α→α〉 and 3:〈ω.ω.β.nil ` β〉, then
λ.λ. 1 3:〈ω.ω.β.nil ` α→α〉.

7

For subject reduction, we need the statement: If (λ.M N) : 〈Γ ` τ〉 then
{ 1 /N}M :〈Γ ` τ〉. Note that if we take M and N as in the example above, we
have the same problem as before but in the other way round. In other words, we
have a restriction on the original context after the β-reduction, since we loose
the typing information regarding N ≡ 3.

One possible solution for those problems is to replace rule →′e by

M :〈Γ ` ω→τ〉
M N :〈Γ ` τ〉

This approach was originally presented in [SM96b], but a new notion replacing
free index should be introduced since we would not have the typing information
for all free indices occurring in a term. In [SM96b], and in [SM97], no notion
is presented instead of the usual free variables, which is wrongly used to state
things that are not actually true.

The other way to achieve the desired properties is to think about the meaning
of the properties itself. Since, by Lemma 5, the system is related to relevant
logic (see [DG94]), the notion of expansion and restriction of contexts is an
interesting way to talk about subject expansion and reduction. These concepts
were presented in [KN07] for environments.

Even though, any β-nf is typeable with system SMr. We introduce the type
inference algorithm Infer for β-nfs, similarly to [SM96a].

Definition 7 (Type inference algorithm). Let N be a β-nf:

Infer(N) =

Case N = n
let α be a fresh type variable
return (ω n−1 .α.nil, α)

Case N = λ.N ′

let (Γ′, σ) = Infer(N ′)
if (Γ′ = u.Γ) then
return (Γ, u→σ)
else
return (nil, ω→σ)

Case N = nN1 · · · Nm

let (Γ1, σ1) = Infer(N1)
...

(Γm, σm) = Infer(Nm)
α be a fresh type variable

return ((ω n−1 .σ1 → · · · → σm→α.nil) ∧ Γ1∧ · · · ∧ Γm, α)

Remark The notion of fresh type variables is used to prove completeness. The
freshness of a variable is to guarantee that each time some type variable is picked
up from A it is a new one. Therefore, two non overlapped calls to Infer return
pairs with disjoints sets of type variables.

8

Theorem 1 (Soundness). If N is a β-nf and Infer(N) = (Γ, σ), then N :
〈Γ `SMr

σ〉.

Proof. By structural induction on N .

• If N ≡ n then Infer(n) = (ω n−1 .α.nil, α). By rule varr, 1 : 〈α.nil ` α〉
and, by rule varn applied n−1 times, n :〈ω n−1 .α.nil ` α〉.

• Let N ≡ λ.N ′. If (Γ′, σ) =Infer(N ′) then, by IH, N ′ : 〈Γ′ ` σ〉. Thus, if
Γ′=u.Γ then Infer(λ.N ′)=(Γ, u→σ) and, by rule→i, λ.N ′ :〈Γ ` u→σ〉,
otherwise Infer(λ.N ′)=(nil, ω→σ) and, by rule→′i, λ.N ′ :〈nil ` ω→σ〉.

• Let N ≡ nN1 · · ·Nm. If ∀1≤i≤m, (Γi, σi) = Infer(Ni) then, by IH,
∀1≤i≤m, Ni : 〈Γi ` σi〉. Let ∆ = ω n−1 .σ1 → · · · → σm→ α.nil. Hence
Infer(N) = (∆∧Γ1∧ · · · ∧ Γm, α) for some fresh type variable α. By rule
varr and by rule varn n−1-times, n : 〈∆ ` σ1 → · · · → σm→α〉 and, by
rule →e m-times, N :〈∆ ∧ Γ1∧ · · · ∧ Γm ` α〉.

Note that, since the choice of the new type variables is not fixed, Infer is
well defined up to the name of type variables.

Corollary 1. If N is a β-nf then N is typeable in system SMr.

Theorem 2 (Completeness). If N : 〈Γ `SMr σ〉, N a β-nf, then for (Γ′, σ′) =
Infer(N) exists a type substitution s such that s(Γ′) = Γ and s(σ′) = σ.

Proof. By structural induction on N

• Let N ≡ n. If n : 〈Γ ` σ〉 then, by Lemmas 5 and 6.1, Γ ≡ ω n−1 .σ.nil.
One has that Infer(n) = (ω n−1 .α.nil, α), then take s = [α/σ].

• Let N ≡ λ.N ′ and suppose that λ.N ′ :〈Γ ` σ〉.
If Γ ≡ nil, then by Lemma 6.3 either σ = ω → τ and N ′ : 〈nil ` τ〉 or
σ=∧nj=1σj→τ and N ′ :〈∧nj=1σj .nil ` τ〉. The former, by IH, Infer(N ′)=
(Γ′, τ ′) and there exists s such that s(τ ′)=τ and s(Γ′)=nil, then one has
Γ′=nil. Hence, Infer(λ.N ′)=(nil, ω→τ ′) and s(ω→τ ′)=s(ω)→s(τ ′)=
σ. The latter, by IH, Infer(N ′) = (Γ′, τ ′) and there exists s such that
s(τ ′)=τ and s(Γ′)=∧nj=1σj .nil. Then Γ′=u.nil for s(u)=∧nj=1σj , hence
Infer(λ.N ′)=(nil, u→τ ′) and s(u→τ ′)=s(u)→s(τ ′)=σ.

Otherwise, by Lemma 6.4 one has that σ=u→τ and N ′ : 〈u.Γ ` τ〉. The
proof is analogous to the one above.

• Let N ≡ nN1 · · · Nm. If nN1 · · ·Nm : 〈Γ ` σ〉 then, by Lemma 6.5,
Γ = (ω n−1 .σ1 → · · · → σm→σ.nil) ∧ Γ1∧ · · · ∧ Γm and ∀1 ≤ i ≤ m, Ni :
〈Γi ` σi〉. By IH, ∀1 ≤ i ≤ m, Infer(Ni) = (Γi

′
, σ′i) and there is a

si such that si(σ′i) = σi and si(Γi
′
) = Γi. One has that Infer(N) =

((ω n−1 .σ′1 → · · · → σ′m→α.nil) ∧ Γ1′∧ · · · ∧ Γm
′
, α), for some fresh type

9

variable α. The domain of each si is compounded by the type variables
returned by each call of Infer for the corresponding Ni, consequently they
are disjoint. Thus, for s=[α/σ] + s1 + · · ·+ sm the result holds.

Hence, the pair returned by Infer for some β-nfN is a most general typing of
N is SMr. Note that these typings are unique up to renaming of type variables.

Corollary 2. If N is a β-nf, then (Γ, σ) = Infer(N) is a principal typing of
N in SMr.

3 Characterisation of principal typings

Following, we give some characterisation of principal typings for β-nfs, analogue
to [SM96a]. To begin with, we introduce proper subsets of T and U containing
the pairs returned by Infer.

Definition 8. 1. Let TC , TNF and UC be defined by:

ρ ∈ TC ::= A | TNF→TC ϕ ∈ TNF ::= A |UC→TNF

v ∈ UC ::= ω | UC ∧ UC | TC

2. Let C be the set of contexts Γ ::= nil | v.Γ such that v ∈ UC . Observe that
C is closed under ∧.

Lemma 7. If Infer(N) = (Γ, σ), N a β-nf, then (Γ, σ) ∈ C×TNF .

Proof. By structural induction on N .

• Let N ≡ n. One has that Infer(n)=(ω n−1 .α.nil, α). Note that α∈TNF
and ω, α∈UC , then ω n−1 .α.nil∈C.

• Let N ≡ λ.N ′. If (Γ′, σ) = Infer(N ′) then, by IH, σ ∈ TNF and Γ′ ∈ C.
If Γ′= v.Γ then Infer(λ.N ′) = (Γ, v→ σ), hence Γ∈C and, since v ∈UC ,
v→σ∈TNF . Otherwise, Infer(λ.N ′) = (nil, ω→σ) and the result holds.

• Let N ≡ nN1 · · ·Nm. If ∀1≤i≤m, (Γi, σi) = Infer(Ni) then, by IH,
Γi ∈ C and σi ∈ TNF . Let ∆ = ω n−1 .σ1 → · · · → σm→ α.nil, for some
fresh type variable α, hence Infer(N)=(∆∧Γ1∧ · · · ∧ Γm, α). Note that
σ1 → · · · → σm→ α ∈ TC ⊂ UC . Thus, since ∆,Γ1, . . . ,Γm ∈ C, one has
that ∆ ∧ Γ1∧ · · · ∧ Γm∈C and α∈TNF .

Definition 9. Let Im(Infer) be defined as the set of pairs (Γ, σ) such that
(Γ, σ) = Infer(N) for some β-nf N .

Corollary 3. Im(Infer) ⊆ C×TNF .

10

We use the usual notion of positive and negative occurrences of type vari-
ables and of final occurrences for elements u ∈ U (see [Kri93]). For contexts,
the positive and negative occurrences are the respective occurrences in the types
forming the contexts’ sequences.

Definition 10. Let Γ ∈ C and ϕ ∈ TNF . The C-types T are defined by

T ::= Γ⇒ϕ |∆⇒ s.t. |∆| > 0

Note that, for any β-nf N , Infer(N) has a unique corresponding C-type TN .
The corresponding A-types in [SM96a] are defined by taking the set of multisets
associated to an environment and transforming them in a single multiset used
on the left hand of ⇒. Thus, for an environment A and type τ , A⇒ τ is the
A-type with A being the multiset obtained from A. On Definition 10 above the
sequential structure of contexts are preserved.

Definition 11. Let T = Γ⇒ϕ be a C-type, T ′ is held in T if T ′ = Γ′⇒ or
Γ′⇒ϕ, such that Γ = Γ′ ∧∆ for Γ′ 6= ω n and some context ∆. If T ′ 6= T then
T ′ is strictly held in T .

Observe that on Definition 11 above we have that Γ′ can be nil for T ′ =
Γ′⇒ϕ and ∆ = ω n for any n ≤ |Γ| when Γ′ = Γ.

Definition 12. The set L(T) of the left subtypes for some C-type T is defined
by structural induction:

- L(Γ⇒) = L(Γ).

- L(Γ⇒ϕ) = L(Γ) ∪ L(ϕ).

- L(v.Γ) = {v} ∪ L(Γ) if v 6= ω and L(Γ) otherwise.

- L(nil) = ∅.

- L(v→ϕ) = {v} ∪ L(ϕ) if v 6= ω and L(ϕ) otherwise.

- L(α) = ∅.

The notion of sign of occurrences for type variable are straightforward ex-
tended to C-types, where the polarity changes on the left side of ⇒. We have
that TypeV ar(Γ⇒ϕ) = TypeV ar(Γ) ∪ TypeV ar(ϕ).

Definition 13. A C-type T is closed if each type variable α ∈ TypeV ar(T)
has exactly one positive and one negative occurrences in T .

Lemma 8. 1. v.Γ⇒ϕ is closed iff Γ⇒v→ϕ is closed.

2. nil⇒ϕ is closed iff nil⇒ω→ϕ is closed.

3. If ∀1≤ i≤m, Ti = Γi⇒ϕi is closed and TypeV ar(Ti) are pairwise dis-
joint, then (ω n−1.ϕ1 → · · · → ϕm→α.nil) ∧ Γ1∧ · · · ∧ Γm ⇒ α is closed
for any fresh type variable α.

11

Proof. 1. Let T = v.Γ⇒ϕ and T ′ = Γ⇒ v→ϕ. Note that TypeV ar(T) =
TypeV ar(T ′) and that the sign for type variable occurrences in v for both
T and T ′ are exactly the same.

2. analogous to the proof above.

3. Let T = (ω n−1.ϕ1 → · · · → ϕm→α.nil) ∧ Γ1∧ · · · ∧ Γm⇒α be the C-type
as described. Since TypeV ar(Ti) are pairwise disjoint, TypeV ar(T) =
∪mi=1TypeV ar(Ti) ∪ {α} and T has exactly two occurrences of each type
variable. Note that ∀1≤i≤m the type variable occurrences in Γi and ϕi
have exactly the same sign on both Ti and T and that α has one positive
and one negative occurrence in T . Hence, T is closed.

Definition 14. A C-type T = Γ⇒ ϕ is finally closed, f.c. for short, if the
final occurrence of ϕ is also the final occurrence of a type in L(T).

Lemma 9. 1. v.Γ⇒ϕ is finally closed iff Γ⇒v→ϕ is finally closed.

2. nil⇒ϕ is finally closed iff nil⇒ω→ϕ is finally closed.

Proof. 1. Let T =v.Γ⇒ϕ and T ′=Γ⇒v→ϕ. Note that the final occurrence
of v→ϕ is the same as of ϕ. If v 6= ω, by Definition 12, L(T)=L(v.Γ)∪
L(ϕ)={v}∪L(Γ)∪L(ϕ)=L(Γ)∪L(v→ϕ)=L(T ′). Otherwise, L(T)=L(ω.Γ)∪
L(ϕ)=L(Γ)∪L(ϕ)=L(Γ)∪L(ω→ϕ)=L(T ′). Hence, T is f.c. iff T ′ is f.c.

2. analogous to the proof above.

Definition 15. A C-type T is said minimally closed, m.c. for short, if there
is no closed T ′ strictly held in T .

Lemma 10. 1. If v.Γ⇒ϕ is m.c. for v 6= ω, then Γ⇒v→ϕ is m.c.

2. ω.Γ⇒ϕ is m.c. iff Γ⇒ω→ϕ is m.c.

3. nil⇒ϕ is m.c. iff nil⇒ω→ϕ is m.c.

4. If ∀1≤ i≤m, Ti = Γi⇒ϕi is m.c. and TypeV ar(Ti) are pairwise disjoint,
then T = (ω n−1.ϕ1 → · · · → ϕm→α.nil) ∧ Γ1∧ · · · ∧ Γm⇒α is m.c. for
any fresh type variable α.

Proof. 1. Let T = v.Γ⇒ϕ be m.c. for v 6=ω and let T ′ = Γ⇒v→ϕ. Let T ′′

be strictly held in T ′. If T ′′ = Γ′⇒ v→ϕ then T ′′′ = v.Γ′⇒ϕ is strictly
held in T . By Lemma 8.1, T ′′ is closed iff T ′′′ is closed. Thus, since T is
m.c., T ′′ cannot be closed. If T ′′ = Γ′⇒ then one has similarly that T ′′

cannot be closed. Hence, T ′ is m.c.

12

2. Let T be strictly held in ω.Γ⇒ϕ. One has that T = ω.Γ′⇒ϕ is strictly
held in ω.Γ⇒ϕ iff T ′ = Γ′⇒ω→ϕ is strictly held in Γ⇒ω→ϕ. There
is a corresponding T ′ for T = nil⇒ϕ and for T = ω.Γ′⇒ . Therefore, by
Lemma 8.1, there is a closed T strictly held in ω.Γ⇒ϕ iff there is a closed
T ′ strictly held in Γ⇒ω→ϕ.

3. analogous to the proof above.

4. Let T ′ be held in T defined above and suppose that T ′ is closed. If
T ′ = Γ′⇒ then, since |Γ′|>0, Γ′ = ∆i ∧ Γ′′ for some i s.t. Γi = ∆i ∧∆′,
|∆i| > 0. Note that TypeV ar(Γi) are pairwise disjoint, thus if ∆i 6= Γi

(∆′ 6= nil) then ∆i ⇒ would be closed and strictly held in T i. Hence,
∆i=Γi (∆′=nil) and similarly ϕ1 → · · · → ϕm→α must be in Γ′, giving
a non closed C-type T ′. If T ′ = Γ′⇒α then with a similar argument one
has that Γ′ = (ω n−1.ϕ1 → · · · → ϕm→α.nil) ∧ Γ1∧ · · · ∧ Γm. Therefore,
T ′ is closed iff T is closed and T ′=T . Hence, T is m.c.

Definition 16. A C-type T is called complete if T is closed, finally closed and
minimally closed.

Lemma 11. 1. If v.Γ⇒ϕ is complete for v 6= ω then Γ⇒v→ϕ is complete.

2. ω.Γ⇒ϕ is complete iff Γ⇒ω→ϕ is complete.

3. nil⇒ϕ is complete iff nil⇒ω→ϕ is complete.

4. If ∀1≤i≤m, Ti = Γi ⇒ ϕi is complete and TypeV ar(Ti) are pairwise
disjoint, then T = (ω n−1.ϕ1 → · · · → ϕm→α.nil) ∧ Γ1∧ · · · ∧ Γm⇒α is
complete for any fresh type variable α.

Proof. 1. By Lemmas 8.1, 9.1 and 10.1.

2. By Lemmas 8.1, 9.1 and 10.2.

3. By Lemmas 8.2, 9.2 and 10.3.

4. By Lemmas 8.3 and 10.4 one has that the T described above is respectively
closed and m.c. Note that (ϕ1 → · · · → ϕm→α)∧(Γ1∧ · · · ∧ Γm)n∈L(T),
thus T is f.c.

Lemma 12. If N is a β-nf then TN is complete.

Proof. By structural induction on N .

• Let N ≡ n. One has that Infer(N) = (ω n−1 .α.nil, α), hence TN =
ω n−1 .α.nil⇒α. Note that L(TN) = {α}. Thus, TN is closed and finally
closed. The only two C-types strictly held in TN are ω n−1 .α.nil⇒ and
nil⇒α which are not closed, hence TN is minimally closed.

13

• Let N ≡ λ.N ′. If (Γ′, ϕ) = Infer(N ′) then, by IH, TN
′

= Γ′ ⇒ ϕ is
complete.

If Γ′= v.Γ then Infer(λ.N ′) = (Γ, v→ϕ) and TN = Γ⇒ v→ϕ. If v 6=ω,
then by Lemma 11.1 TN is complete. Otherwise, by Lemma 11.2, TN is
complete.

If Γ′ = nil then Infer(λ.N ′) = (nil, ω→ ϕ) and, by Lemma 11.3, TN is
complete.

• Let N ≡ nN1 · · ·Nm. If ∀1≤i≤m, (Γi, ϕi)=Infer(Ni) then, by IH, TNi

is complete. Observe that TypeV ar(TNi) are pairwise disjoint because
they correspond to disjoint calls of Infer. One has that Infer(N) =
((ω n−1 .ϕ1 → · · · → ϕm→α.nil) ∧ Γ1∧ · · · ∧ Γm, α), for some fresh type
variable α. Thus, by Lemma 11.4, TN is complete.

Note that on items 1 and 4 in Lemma 11 we only have sufficiency proofs.
Following we give counterexamples for each necessary condition.

Example 2. Let T = Γ⇒ ϕ be complete. Then, for any fresh α ∈ A, take
T ′ = Γ⇒(α→α)→ϕ. Therefore, T ′ is complete but α→α.Γ⇒ϕ is not m.c.

Example 3. Let T = β1→(β2→β3)→β4.(β1→β4)→(β3→β2)→α.nil ⇒ α.
Note that T is complete but there is no such a partition of complete C-types.

Hence, to have complete C-types which satisfy those necessary conditions,
we present the notion of principal C-types, as done in [SM96a].

Definition 17. Let T be a complete C-type. T is called principal if:

- T = ω n−1 .α.nil⇒α.

- T = nil⇒ω→ϕ and nil⇒ϕ is principal.

- T = Γ⇒v→ϕ such that either Γ 6= nil or v 6= ω and v.Γ⇒ϕ is principal.

- T = Γ ⇒ α and there are Γ1, . . . ,Γm ∈ C and n ∈ N∗ such that Γ =
(ω n−1 .ϕ1 → · · · → ϕm→α.nil) ∧ Γ1∧ · · · ∧ Γm and ∀1≤i≤m, Γi⇒ϕi is
principal.

Observe that in Definition 17 above we explicitly require the existence of
the corresponding partition in the case T = Γ⇒α for Γ 6=ω n−1 .α.nil and that
v.Γ⇒ϕ is also principal thus complete for T = Γ⇒ v→ϕ such that Γ 6=nil or
v 6=ω. Although we have that, by Lemma 11.2, T =nil⇒ω→ϕ is complete iff
T ′=nil⇒ϕ is complete, this case has to be defined similarly. If in Definition
17 we only have instead: “T = nil⇒ω→ϕ” then we would guarantee only the
completeness of T ′, letting a counterexample as in Example 2 to be presented.

Lemma 13. If N is a β-nf then TN is principal.

14

Proof. By structural induction on N . By Lemma 12, TN is complete:

• If N ≡ n then TN = ω n−1 .α.nil⇒α.

• Let N ≡ λ.N ′ and TN
′
=Γ′⇒ϕ. By IH TN

′
is principal.

If Γ′=v.Γ then Tλ.N
′
=Γ⇒v→ϕ. Observe that if Γ=nil then, by Lemma

5, v 6=ω. Hence, Tλ.N
′

is principal.

Otherwise Tλ.N
′
=nil⇒ω→ϕ, hence Tλ.N

′
is principal.

• Let N ≡ nN1 · · ·Nm and ∀1≤i≤m, TNi = Γi⇒ϕi. One has that TN =
(ω n−1 .ϕ1 → · · · → ϕm→α.nil) ∧ Γ1∧ · · · ∧ Γm⇒α for some fresh α∈A
and, by IH, TNi is principal ∀1≤i≤m. Thus, TN is principal.

Therefore, the syntactic definition of principal C-types contains the principal
typings for β-nfs returned by Infer.

Definition 18. Let P = {(Γ, ϕ) ∈ C×TNF |Γ⇒ϕ is principal}.

In other words, by Lemma 13 and analogously to [SM96a]:

Im(Infer) ⊆ P

Definition 19. Let FO(α,Γ) be a set defined as

FO(α,Γ) = {(i,Γi) |α is the final occurrence of Γi,∀1≤i≤|Γ|}

The set FO(α,Γ) for T = Γ⇒ α principal, specifically closed and finally
closed, has properties used in the reconstruction algorithm’s definition.

Lemma 14. Let T = Γ⇒α be a C-type. If T is finally closed then FO(α,Γ) 6=
∅. If T is also closed then FO(α,Γ) has exactly one element (i, v), such that
v = (ϕ1 → · · · → ϕm→α) ∧ v′, for m ≥ 0, α /∈ TypeV ar(v′) and v′∈ UC .

Proof. Let T = Γ⇒α. By Definition 12, L(T) = {Γi 6=ω,∀1≤i≤|Γ|}, hence if T
is finally closed then at least one element of Γ has α as its final occurrence. Let
(i, v)∈FO(α,Γ). If T is also closed then Γ has exactly one positive occurrence
of α, hence α occurs uniquely in v=Γi. Note that v ∈ UC . If v ∈ TC then by
induction on its structure v = ϕ1 → · · · → ϕm→ α for m≥0 (v = α if m= 0).
Otherwise, v = v1 ∧ v2 and α occurs positively either in v1 or in v2. Thus, by
induction on the structure of elements in UC , commutativity and associativity
of ∧, the result holds.

We introduce the algorithm Recon, to reconstruct a β-nf N from (Γ, ϕ) ∈ P
such that Infer(N) = (Γ, ϕ), similar to the algorithm introduced in [SM96a].

15

Definition 20 (Reconstruction algorithm). .

Recon(Γ, τ) =

Case (nil, α)
fail

Case (Γ, α)
let {(i1, u1), . . . , (im, um)} = FO(α,Γ)
if m = 1 and u1 = (τ1 → · · · → τn→α) ∧ u′ s.t. α /∈TypeV ar(u′)

then if ∀1≤i≤n there is Γi s.t. Γ = Γi ∧Xi

and Γi⇒τi is principal
then let (N1,∆

1) = Recon(Γ1, τ1)
...

(Nn,∆
n) = Recon(Γn, τn)

∆′ = ω i1−1.τ1 → · · · → τn→α.nil
Γ′ = ∆′ ∧ Γ1∧ · · · ∧ Γn

Γ = Γ′ ∧∆, s.t. ∆ 6= ω j, ∀1≤j≤|Γ|
return (i1N1 · · · Nn,∆ ∧∆1∧ · · · ∧∆n)
else fail

else fail

Case (Γ, u→τ)
if Γ = nil and u = ω

then let (N,∆) = Recon(nil, τ)
else let (N,∆) = Recon(u.Γ, τ)

if ∆ = nil
then return (λ.N,∆)
else fail

Lemma 15. Let (Γ, ϕ) ∈ P. Then Recon(Γ, ϕ) = (N,nil), N a β-nf such that
Infer(N) = (Γ, ϕ).

Proof. By recurrence on the number of calls to Recon.

• Case (Γ, α). Let T = Γ⇒α.

By hypothesis (Γ, α) ∈ P, thus T is principal and in particular closed and
finally closed. By Lemma 14, FO(α,Γ)={(i, (ϕ1 → · · · → ϕm→α)∧ v′)}
where α /∈ TypeV ar(v′). Since Γi is the only occurrence of α in Γ, Γ =
(ω i−1.ϕ1 → · · · → ϕm→α.nil) ∧∆′′ such that α /∈TypeV ar(∆′′).
If m=0, then in Recon one has Γ′=∆′=ω i−1.α.nil, hence T =Γ′ ∧∆′′⇒
α. T is minimally closed, thus ∆′′ = nil and Γ = Γ′. Then, Recon(Γ, α) =
(i , nil) and Infer(i) = (ω i−1 .α.nil, α).

Otherwise, since T is principal, there are Γ1, . . . ,Γm and n ∈ N∗ such that
Γ = (ω n−1 .ϕ1 → · · · → ϕm→α.nil)∧Γ1∧ · · · ∧ Γm and ∀1≤j≤m, Γj⇒ϕj
is principal. Hence, n = i and by IH ∀1≤j≤m, Recon(Γj , ϕj) = (Nj , nil),
Nj a β-nf such that Infer(Nj) = (Γj , ϕj). Hence, in Recon one has that
Γ=Γ′, consequently ∆=nil. Then, Recon(Γ, α) = (iN1 · · · Nm, nil) and
Infer(iN1 · · ·Nm) = ((ω i−1 .ϕ1 → · · · → ϕm→α.nil)∧Γ1∧ · · · ∧ Γm, α).

16

• Case (Γ, v→ϕ). Let T = Γ⇒v→ϕ.

By hypothesis (Γ, v→ϕ) ∈ P, thus T is principal.

If Γ = nil and v = ω then T ′ = nil ⇒ ϕ is principal and, by IH,
Recon(nil, ϕ) = (N,nil), N a β-nf such that Infer(N) = (nil, ϕ). Thus,
Recon(nil, ω→ϕ) = (λ.N, nil) and Infer(λ.N) = (nil, ω→ϕ).

Otherwise, T ′=v.Γ⇒ϕ is principal. By IH, Recon(v.Γ, ϕ)=(N,nil), N a
β-nf such that Infer(N) = (v.Γ, ϕ). Hence, Recon(Γ, v→ϕ) = (λ.N, nil)
and Infer(λ.N) = (Γ, v→ϕ).

Observe that, by Lemma 15, we have that:

P ⊆ Im(Infer)

Thus, P is the set of all, and only, principal typings for β-nfs in SMr. Therefore,

P = Im(Infer)

4 Conclusion

We intend to add intersection types for two calculi with explicit substitutions,
λσ and λse, both with de Bruijn indices. The investigation of systems with de
Bruijn indices, as the one presented here, helps to have a deep understanding
of their behaviour in this notation. There are works on intersection types and
explicit substitution, e.g. [LLDDvB04], but no work for systems where the
composition of substitutions is allowed.

The restriction in the system in [SM96a] prevents it, and consequently the
system introduced here, to have SR in the usual sense, in contrast with the
system in [VAK08]. However, every β-nf is typeable in the system in [SM96a],
a property that does not hold for the simply typed system. A characterisation
of PT for β-nfs is then given. We have introduced a de Bruijn version of the
typing system with similar characteristics as a first step towards some extended
systems in which PT depends on more complex syntactic operations such as
expansion. As future work, we will introduce a de Bruijn version for systems
such as the ones studied in [CDV80] and [RV84] and try to add similar systems
to both λσ and λse.

References
[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. J.

func. program., 1(4):375–416, 1991.

[ARK01] M. Ayala-Rincón and F. Kamareddine. Unification via the λse-Style of Explicit
Substitution. Logical journal of the IGPL, 9(4):489–523, 2001.

[Bak95] S. van Bakel. Intersection Type Assignment Systems. Theoret. comput. sci.,
151:385-435, 1995.

17

[BCDC83] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and
the completeness of type assignment. J. symbolic logic, 48:931–940, 1983.

[Bar84] H. Barendregt, The Lambda Calculus: Its Syntax and Semantics. North-Holland,
1984.

[dB72] N.G. de Bruijn. Lambda-Calculus Notation with Nameless Dummies, a Tool for
Automatic Formula Manipulation, with Application to the Church-Rosser Theo-
rem. Indag. Mat., 34(5):381–392, 1972.

[dB78] N.G. de Bruijn. A namefree lambda calculus with facilities for internal definition
of expressions and segments. T.H.-Report 78-WSK-03, Technische Hogeschool
Eindhoven, Nederland, 1978.

[CW04a] S. Carlier and J. B. Wells. Type Inference with Expansion Variables and Intersec-
tion Types in System E and an Exact Correspondence with β-reduction. In Proc.
of PPDP ’04, pp. 132–143. ACM, 2004.

[CW04b] S. Carlier and J. B. Wells. Expansion: the Crucial Mechanism for Type Inference
with Intersection Types: a Survey and Explanation. In ITRS ’04 workshop, 2004.

[CDC78] M. Coppo and M. Dezani-Ciancaglini. A new type assignment for lambda-terms.
Archiv für mathematische logik, 19:139–156, 1978.

[CDC80] M. Coppo and M. Dezani-Ciancaglini. An Extension of the Basic Functionality
Theory for the λ-Calculus. Notre dame j. formal logic, 21(4):685–693, 1980.

[CDV80] M. Coppo, M. Dezani-Ciancaglini and B. Venneri. Principal Type Schemes and λ-
calculus Semantics. In J.P. Seldin and J.R. Hindley (eds), To H.B. Curry: Essays
on combinatory logic, lambda calculus and formalism, pp. 536–560. Academic
Press, 1980.

[CF58] H. B. Curry and R. Feys. Combinatory Logic, vol. 1. North Holland, 1958.

[DG94] F. Damiani and P. Giannini. A Decidable Intersection Type System based on
Relevance. In Proc. of TACS94, LNCS 789:707725. Springer-Verlag, 1994.

[Hi97] J. R. Hindley. Basic Simple Type Theory. Number 42 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1997.

[KN07] F. Kamareddine and K. Nour. A completeness result for a realisability semantics
for an intersection type system. Annals pure and appl. logic, 146:180–198, 2007.

[KR95] F. Kamareddine and A. Ŕıos. A λ-calculus à la de Bruijn with Explicit Substitu-
tions. In Proc. of PLILP’95, LNCS 982:45–62. Springer, 1995.

[KW04] A.J. Kfoury and J.B. Wells. Principality and type inference for intersection types
using expansion variables. Theoret. comput. sci., 311(1–3):1–70, 2004.

[Kri93] J-L. Krivine. Lambda-calculus, types and models. Ellis Horwood, 1993.

[LLDDvB04] S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van
Bakel. Intersection types for explicit substitutions. Inform. and comput.,
189(1):1742, 2004.

[Mil78] R. Milner. A theory of type polymorphism in programming. J. comput. and system
sci., 17(3):348–375, 1978.

[NGdV94] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected papers on Automath.
North-Holland, 1994.

[Pot80] G. Pottinger. A type assignment for the strongly normalizable λ-terms. In J.P.
Seldin and J. R. Hindley (eds), To H. B. Curry: Essays on combinatory logic,
lambda calculus and formalism, pp. 561–578. Academic Press, 1980.

[RV84] S. Ronchi Della Rocca and B. Venneri. Principal Type Scheme for an Extended
Type Theory. Theoret. comput. sci., 28:151–169, 1984.

[Roc88] S. Ronchi Della Rocca. Principal Type Scheme and Unification for Intersection
Type Discipline. Theoret. comput. sci., 59:181–209, 1988.

18

[SM96a] E. Sayag and M. Mauny. Characterization of principal type of normal forms in
intersection type system. In Proc. of FSTTCS’96, LNCS, 1180:335–346. Springer,
1996.

[SM96b] E. Sayag and M. Mauny. A new presentation of the intersection type discipline
through principal typings of normal forms. Tech. rep. RR-2998, INRIA, 1996.

[SM97] E. Sayag and M. Mauny. Structural properties of intersection types. In Proc. of
LIRA’97, pp. 167-175. Novi Sad, Yugoslavia, 1997.

[VAK08] D. Ventura and M. Ayala-Rincón and F. Kamareddine. Intersection Type System
with de Bruijn Indices. http://www.mat.unb.br/~ayala/ITdeBruijn.pdf - revised
version to appear in The many sides of logic. Studies in logic, College publications.
London, 2009.

[We02] J.B. Wells. The essence of principal typings. In Proc. of ICALP 2002, LNCS,
2380:913–925. Springer, 2002.

19

