
Langua ge-oriented Software Development
and Rewriting Logic

Christiano Braga
cbraga@ic.uff.br

http://www.ic.uff.br/˜cbrag a

Universidade Federal Fluminense (UFF)

Language-oriented Software Development and Rewriting Logic – p.1/39

http://www.ic.uff.br/~cbraga

Ackno wledgments

� Prof. Narciso Martí-Oliet and the UCMaude Group.
� The Advanced Systems Research Group of the

Computer Science Institute at UFF.
� The Brazilian Research Council, CNPq.

Language-oriented Software Development and Rewriting Logic – p.2/39

C.S. Graduate Program at UFF

� UFF: located in Niterói, RJ, Brazil; aprox. 22.000
undergraduate students, 3.000 graduate students,
and aprox. 2.200 professors.

� PGC: 134 graduate students and 20 professors, in
the following research areas:

� Parallel and distributed processing.
� Computer graphics and human-computer

interaction.
� Combinatorial optimization and arti�cial

intelligence.
� Mathematical modeling and power systems.

Language-oriented Software Development and Rewriting Logic – p.3/39

Advanced Systems Research Group

� Recently formed, with 4 staff and 10 graduate
students.

� Our group has the following interests:
� Formal methods
� Mobile computing
� Real-time systems
� Software architecture
� Software adaptability
� Power management in computer systems

� (Under construction) web page:
http://asr.ic.uff.br

Language-oriented Software Development and Rewriting Logic – p.4/39

http://asr.ic.uff.br

Objective of this talk : : :

: : : is to present our research initiatives,

and in particular, our results while

looking at rewriting logic as a semantic

framework.

Language-oriented Software Development and Rewriting Logic – p.5/39

Talk Plan

1. First a software engineering approach that we call
language-oriented software development (LoSD)
is informally introduced. The LoSD approach
concisely represents our line of research.

2. Next, LoSD is related with rewriting logic and the
way formal tools are developed in the Maude
system.

Language-oriented Software Development and Rewriting Logic – p.6/39

Talk Plan

3. Finally we motivate, exemplify and informally
discuss how tool support has been given to the
speci�cation and analysis of modular operational
semantics speci�cations and software architecture
descriptions.

Language-oriented Software Development and Rewriting Logic – p.7/39

Langua ge-oriented software

development (LoSD)

� Is a software engineering approach that relies on
formal software tools built using the syntax and
semantics of the language from the problem
domain.

� Examples of such formal tools are language
transformers (such as W3 XSLT and Cordy's TXL),
model checkers (such as CMU's SMV or
Birmingham's PRISM), and theorem provers (such
as SRI's PVS and (Cambridge and TU Munich)'s
Isabelle).

Language-oriented Software Development and Rewriting Logic – p.8/39

Some projects using LoSD

� A language-independent software documentation
generation tool, combining Draco transformation
tool and a CASE (Computer Aided Software
Engineering) tool. (My own M.Sc dissertation at
PUC-Rio, directed by Arndt von Staa.)

� Analysis of game strategies combining TXL and
SMV. (M.Sc dissertation of Davi Romero at PUC-Rio,
directed by Hermann Haeusler.)

� Analysis of communication protocols using TXL
and SMV. (Ph.D. thesis of Carlos Bazilio at PUC-Rio,
being directed by Hermann Haeusler.)

Language-oriented Software Development and Rewriting Logic – p.9/39

Langua ge-oriented software

development (LoSD)

Language-oriented Software Development and Rewriting Logic – p.10/39

Formal tools in rewriting logic and

Maude

In a “nut shell”:

� Rewriting logic (RWL) is a re�ectiv e logic: one can
reason about RWL within RWL.

� RWL is a logic and a semantic framework: many
logics, speci�cation languages and models of
computation can be represented in RWL.

� Maude is a fast implementation of RWL that allows
meta-programming as a realization of RWL
re�ectiv e features.

Language-oriented Software Development and Rewriting Logic – p.11/39

LoSD with Maude

Language-oriented Software Development and Rewriting Logic – p.12/39

Current projects

We instantiate 'L', with two different languages:

� Case 'L = MSOS' : Maude MSOS Tool, which
gives tool support for the speci�cation and
analysis Mosses' modular structural operational
semantics (MSOS) speci�cations .

� Case 'L = CBabel' : CBabel Tool, which gives tool
support for the speci�cation and analysis of
software architecture descriptions.

Language-oriented Software Development and Rewriting Logic – p.13/39

Maude MSOS Tool (MMT)

What is MMT?

� MMT gives tool support to modular structural
operational semantics (MSOS).

� MSOS is a variation of Plotkin's structural
operational semantics (SOS) with support to
modular speci�cations , that is, speci�cations in
MSOS may be de�ned as conservative extensions
of existing MSOS speci�cations .

Language-oriented Software Development and Rewriting Logic – p.14/39

Maude MSOS Tool (MMT)

Why MSOS?

� To illustrate the modularity problem of SOS, let us
consider the following speci�cation for the
semantics of the binary operation � with an
environment (�).

� ` e0 ! e0
0

� ` e0 � e1 ! e0
0 � e1

Language-oriented Software Development and Rewriting Logic – p.15/39

Maude MSOS Tool (MMT)

Why MSOS?

� Now if one wants to extend the semantics of � with
an environment (�) to add a store (� ; � 0), the
previous rule would have to be modi�ed.

� ` he0; � i ! he0
0; � 0i

� ` he0 � e1; � i ! he0
0 � e1; � 0i

Language-oriented Software Development and Rewriting Logic – p.16/39

Maude MSOS Tool (MMT)

Why MSOS?

� Mosses' MSOS solves the modularity problem in
structural operational semantics.

� Transition labels carry the semantic information
associated with computations and con�gur ations
are only value-added abstract syntax trees.

e0 � X ! e0
0

e0 � e1 � X ! e0
0 � e1

Language-oriented Software Development and Rewriting Logic – p.17/39

Maude MSOS Tool (MMT)

Why MSOS?

� Components and are accessed through indices

e � f � = � 1[� 0]; : : :g! e0

let � 0 in e end � f � = � 1; : : :g! let � 0 in e0 end

Language-oriented Software Development and Rewriting Logic – p.18/39

Maude MSOS Tool (MMT)

Why MSOS?

� Indexed components in labels are of three different
types. (More can be de�ned, if necessary.)

� read only (e.g. environments of bindings),
� read write (e.g. stores),
� write only (e.g. output).

Language-oriented Software Development and Rewriting Logic – p.19/39

Maude MSOS Tool (MMT)

How is MMT implemented?

� MMT implements a formally de�ned and proven
correct mapping from MSOS to RWL.

� MMT is implemented as an extension to Full
Maude, a tool that endows Maude with an
extensible module algebra.

� MMT supports a speci�cation language called
MSDF, also developed by Mosses. MSDF has
interesting characteristics to allow concise
language semantics speci�cations .

Language-oriented Software Development and Rewriting Logic – p.20/39

Maude MSOS Tool (MMT)

How is MMT implemented?

� MSDF features:
� BNF style for grammar speci�cation.
� Concise syntax for label declaration.
� Concise syntax for transition rule declaration.
� Implicit variable declaration.
� Implicit (and explicit) module inclusion.
� Implicit data type declaration for sequences and

non-empty sequences.
� Built-in parameterized types: Map, Set and List.
� Typed abstract syntax trees.

Language-oriented Software Development and Rewriting Logic – p.21/39

Maude MSOS Tool (MMT)

Example: CCS in MSDF

� Grammar declaration: BNF + Maude operator
attributes.

(msos PROCESSis

Process .

Process ::= 0 .

Process ::= Action ; Process [prec 20] .

Process ::= Process + Process

[assoc comm prec 30] .

Process ::= Process || Process

[assoc comm prec 25] .

...
Language-oriented Software Development and Rewriting Logic – p.22/39

Maude MSOS Tool (MMT)

Example: CCS in MSDF

� Label declaration with implicit sequence sort.

Label = {trace' : Action*, ...} .

Language-oriented Software Development and Rewriting Logic – p.23/39

Maude MSOS Tool (MMT)

Example: CCS in MSDF

� Rule declaration with implicit variables.

[pre] (Action ; Process) : Process -{trace' = Action,-}-> Process .

Process1 -{...}-> Process1'
[sum] -- ----------------- -- --- -- --- -- --- -- --- -- -- --- -- --- -- -

(Process1 + Process2) : Process -{...}-> Process1' .

Process1 -{trace' = Action,-}-> Process1' ,
Process2 -{trace' = ˜ Action,-}-> Process2'

[par2] -- ---------------- -- --- -- --- -- --- -- --- -- -- --- -- --- -- --- -- -- --
(Process1 || Process2) : Process -{trace' = tau,-}->

Process1' || Process2' .

...
sosm) Language-oriented Software Development and Rewriting Logic – p.24/39

Maude MSOS Tool (MMT)

What can one do with MMT?

� MSDF speci�cations may be run and veri�ed using
Maude and the tools developed for the analysis of
Maude speci�cations .

� Some experiments:
� Speci�ed and model-checked several

distributed algorithms described in Lynch's
'Distributed Algorithms' book.

� Speci�ed and model-checked simple algorithms
written in CML, a concurrent functional
language.

Language-oriented Software Development and Rewriting Logic – p.25/39

Maude MSOS Tool (MMT)

What can one do with MMT?

� Some experiments:
� Speci�ed and executed 'Incremental MSOS'

(IMSOS), which is an MSOS semantics for a set
of abstract constructs for the speci�cation of
programming language semantics. With IMSOS
the semantics of a programming language is
given in terms of a mapping from its concrete
syntax to the IMSOS abstract constructs.

Language-oriented Software Development and Rewriting Logic – p.26/39

Maude MSOS Tool (MMT)

What can one do with MMT?

� Some experiments:
� An integration between MMT and the strategy

language interpreter prototype developed by
Martí-Oliet, Meseguer and Verdejo. (The MSDF
speci�cation of CCS presented in this talk was
written together with Verdejo during this work.)

Language-oriented Software Development and Rewriting Logic – p.27/39

Maude MSOS Tool (MMT)

MMT exists due to the collaboration of several people:

� Fabricio Chalub, E. Hermann Hæusler, José
Meseguer, and Peter Mosses.

Language-oriented Software Development and Rewriting Logic – p.28/39

CBabel Tool (CBT)

What is CBT?

� CBT gives tool support to the speci�cation and
analysis of software architecture descriptions
written in the CBabel software architecture
description language (ADL).

� CBabel was designed by Alexandre Sztajnberg
and is a simple ADL that concisely captures
relevant aspects of software architectures by
means of contracts, such as sequential interaction,
mutual exclusion, guarded interaction and
quality-of-service (QoS).

Language-oriented Software Development and Rewriting Logic – p.29/39

CBabel Tool (CBT)

Why CBabel?

� The purpose of architecture description
Languages (ADLs) is to keep separated the
description of how distributed components are
connected from the descriptions of the internal
behavior of each component.

Language-oriented Software Development and Rewriting Logic – p.30/39

CBabel Tool (CBT)

Why CBabel?

� By using the concept of contracts, CBabel allows
the treatment of coordination aspects in a more
�e xible manner when compared to other ADLs.
CBabel also provides QoS contracts that cater for
other non-functional aspects. (QoS contracts are
not yet handled by the tool.)

Language-oriented Software Development and Rewriting Logic – p.31/39

CBabel Tool (CBT)

Why CBT?

� A formal semantics for a architecture description
language L provides:

� An unambiguous de�nition of what L means.
� The ability to formally reason about L and prove

properties about architectures, such as
coordination related properties.

� Moreover, if the speci�cation is executable, the
formal reasoning can be computer aided.

Language-oriented Software Development and Rewriting Logic – p.32/39

CBabel Tool (CBT)

How is CBT implemented?

� CBT implements a formally de�ned transformation
from CBabel to RWL. (Before our formalization,
CBabel had no formal speci�cation of its
semantics. To prove our transformation correct, an
abstract semantics would need to be speci�ed.)

� CBT is implemented, like MMT and other Maude
tools, as an extension to Full Maude.

Language-oriented Software Development and Rewriting Logic – p.33/39

CBabel Tool (CBT)

Example: Producers, consumers, a buffer and a mutex
connector.

� The following architecture can be drawn using our
(under development) Eclipse environment, called
FormArch...

Language-oriented Software Development and Rewriting Logic – p.34/39

CBabel Tool (CBT)

Example: Producers, consumers, a buffer and a mutex
connector.

� Generating the following textual description: (The
modules PRODUCER, CONSUMERand BUFFERare not
shown.)

connector MUTEX{ application PC-MUTEX {
in port mutex@in1 ; instantiate BUFFER as buff ;
in port mutex@in2 ; instantiate PRODUCERas prod ;
out port mutex@out1 ; instantiate CONSUMERas cons ;
out port mutex@out2 ; instantiate MUTEXas mutx ;
exclusive{ link prod.producer@pu t to mutx.mutex@in1 ;

mutex@in1 > mutex@out1 ; link mutx.mutex@out1 to buff.buffer@put ;
mutex@in2 > mutex@out2 ; link cons.consumer@ge t to mutx.mutex@in2 ;

} link mutx.mutex@out2 to buff.buffer@get ;
} } Language-oriented Software Development and Rewriting Logic – p.35/39

CBabel Tool (CBT)

What can one do with CBT?

� CBabel descriptions may be run and veri�ed using
Maude and the tools developed for the analysis of
Maude speci�cations . Several toy examples have
been described and model checked.

� Unfortunately, the state space produced by our
mapping from CBabel to RWL has a huge number
of states, even for simple applications as the 5
philosophers. This has prevented us from
developing more signi�cant examples.

Language-oriented Software Development and Rewriting Logic – p.36/39

CBabel Tool (CBT)

What can one do with CBT?

� We are currently exploring ways to make the
mapping more ef�cient, perhaps paying the price
of modularity and the “natural” representation of
architectural concepts as objects and messages.
Another research direction is the application of
abstraction techniques.

Language-oriented Software Development and Rewriting Logic – p.37/39

CBabel Tool (CBT)

CBT exists due to the collaboration of :

� Alexandre Rademaker and Alexandre Sztajnberg.

Language-oriented Software Development and Rewriting Logic – p.38/39

Langua ge-oriented software

development and rewriting logic

Thank you!

Language-oriented Software Development and Rewriting Logic – p.39/39

	Acknowledgments
	C.S. Graduate Program at UFF
	Advanced Systems Research Group
	Objective of this talk $ldots $
	Talk Plan
	Talk Plan
	Language-oriented software development (LoSD)
	Some projects using LoSD

