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Introduction

Goal: In this work, we analyze how we can
express global graph properties (connectivity,
acyclicity and the Hamiltonian and Eulerian
properties) in a modal logic.
Why graphs? Graphs are among the most
frequently used structures in Computer Science.
In this discipline, usually many important
concepts admit a graph representation, and
sometimes a graph lies at the very kernel of the
model of computation used.
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Introduction (cont.)

Example: In the field of distributed systems, the
underlying model of computation is built on top of
a graph. In addition to this central role, in
distributed systems, graphs are also important as
tools for the description of resource sharing
problems, scheduling problems, deadlock issues,
and so on.
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Introduction (cont.)

Why modal logic? Trying to express graph
properties using modal logic is an interesting
idea for a number of reasons.

1. Modal logic achieves a good balance between
what can be expressed in the language and
how complex (computationally) it is to make
inferences in it. It is a logic that certainly has
more expressive power than propositional
logic, but it is still decidable, unlike first-order
logic. In fact, modal logic is a very
well-behaved fragment of first-order logic.
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Introduction (cont.)

2. Modal logic formulas are evaluated in
structures that are essentially graphs, which
makes it a very natural choice for our work.
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Basic Graph Language

The basic graph language is a modal language
consisting of a set Φ of countably many
proposition symbols (the elements of Φ are
denoted by p1, p2, . . .), the boolean connectives ¬
and ∧ and two modal operators: ♦ and ♦+. The
formulas are defined as follows:

A ::= p | ⊤ | ¬A | A1 ∧ A2 | ♦A | ♦+A

We freely use the standard boolean
abbreviations ∨, → and ↔ and also the following
abbreviations for the duals: �A := ¬♦¬A and
�+A = ¬♦+¬A.
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Frames and Models

A frame for the basic graph language is a pair
F = (V,R), where V is a set (finite or not) of
vertices and R is a binary relation over V, i.e.,
R ⊆ V × V .
As we see, a frame for the basic graph language is
essentially a graph. This confirms our statement that
modal languages are a very natural choice for this work.
A model for the basic graph language is a pair
M = (F ,V), where F is a frame and V is a
valuation function mapping proposition symbols
into subsets of V , i.e., V : Φ 7→ Pow(V ).
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Modal Definability

Theorem : Frame validities in the basic graph
language are preserved under disjoint unions
and bounded morphic images.
Corollary : Connectivity (both weak and strong),
acyclicity and the Hamiltonian and Eulerian
properties cannot be expressed in the basic
graph language.
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Connectivity

The disjoint union of connected graphs is not a
connected graph. Since connectivity is not
preserved under disjoint unions, it is not
definable in the basic graph language.

Modal Expressiveness of Graph Properties – p. 9



Acyclicity

There is a bounded morphism between the
(infinite) frame isomorphic to N and the graph
below. The first is acyclic, while the second is
not. Since acyclicity is not preserved under
bounded morphic images, it is not definable in
the basic graph language.
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Hamiltonian Property

There is a bounded morphism between the two
graphs below. The first is Hamiltonian, while the
second is not. Since the Hamiltonian property is
not preserved under bounded morphic images, it
is not definable in the basic graph language.
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Eulerian Property

There is a bounded morphism between the two
graphs below. The first is Eulerian, while the
second is not. Since the Eulerian property is not
preserved under bounded morphic images, it is
not definable in the basic graph language.
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Hybrid Language

In order to achieve our goal, we need a language
that is more expressive but, if possible, still
decidable. The hybrid language is an interesting
choice because of a combination of factors. It
improves the expressive power of the language
presented previously, since hybrid formulas are
no longer invariant under neither disjoint unions
nor bounded morphic images, while the
language is still decidable.
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Hybrid Graph Language

The hybrid graph language is a hybrid language
consisting of a set Φ of countably many
proposition symbols (the elements of Φ are
denoted by p1, p2, . . .), a set L of countably many
nominals (the elements of L are denoted by
i1, i2, . . .) such that Φ ∩ L = ∅ (the elements of
Φ ∪ L are called atoms), the boolean connectives
¬ and ∧ and the modal operators @i, for each
nominal i, ♦ and ♦+.
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Hybrid Graph Language (cont.)

The formulas are defined as follows:

A ::= p | i | ⊤ | ¬A | A1 ∧ A2 | ♦A | ♦+A | @iA

Again, we freely use the standard abbreviations
∨, →, ↔, �A and �+A.
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Frames and Models

The definition of a frame is the same as the one
for the basic graph language.
A model for a hybrid graph language is a pair
M = (F ,V), where F is a frame and V is a
valuation function mapping proposition symbols
into subsets of V , i.e., V : Φ 7→ Pow(V ) and
mapping nominals into singleton subsets of V ,
i.e, if i is a nominal then V(i) = {v} for some
v ∈ V . We call this unique vertex that belongs to
V(i) the denotation of i under V. We can also
say that i denotes the single vertex belonging to
V(i).
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Hybrid Definability - Connectivity

Theorem: A graph G, where G′ is its underlying
undirected graph, is strongly connected if and
only if F 
 φ and (weakly) connected if and only
if F ′ 
 φ, where F is the frame that represents G,
F ′ is the frame that represents G′ and φ is the
formula

φ = @i(¬j → ♦+j) ∨ @j(¬i→ ♦+i).
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Acyclicity

Theorem: A graph G with frame F is acyclic if and
only if F 
 φ, where φ is the formula

φ = @i¬♦+i.
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The Hamiltonian Property

Let Ln = {i1, . . . , in} be a set containing n
nominals. Before defining a formula for the
Hamiltonian property, we define a formula that is
true in a model under a valuation V if and only if
V(ik) 6= V(il), for all ik, il ∈ Ln such that k 6= l.
Lemma: A valuation satisfies V(ik) 6= V(il), for all
ik, il ∈ Ln such that k 6= l, if and only if
(F ,V) 
 ψn, where ψn is the formula

ψn =
∧

1≤k≤n



@ik

∧

1≤l≤n,l 6=k

¬il



 .
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The Hamiltonian Property (cont.)

We now define a set F of permutations of the
nominals in Ln. This set has n! elements. We
represent a permutation as a bijective function
σ : {1, . . . , n} 7→ Ln.
Theorem: A connected graph G (with n vertices)
with frame F is Hamiltonian if and only if F 
 φ,
where φ is the formula

φ = ψn → δn,
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The Hamiltonian Property (cont.)

with

δn =
∨

σ∈F

(σ(1) ∧ ♦(σ(2) ∧ ♦(σ(3) . . . (σ(n− 1)∧

∧♦(σ(n) ∧ ♦σ(1)) . . .).
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The Eulerian Property

The hybrid graph language does not have the
expressive power, at least not without falling
again in a factorial-length formula, to state
cardinality conditions on edges incident from and
to a vertex, as is needed to state the Euler
condition.
The other way to describe the Eulerian property
would be to find a formula that explicitly
describes an Eulerian path in the graph.
However, it is very hard to find such a formula,
since the hybrid graph logic and many other
modal logics are not good languages to talk
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The Eulerian Property (cont.)

about edges. One of the reasons for that is the
fact that the modal operator ♦ does not
differentiate between edges incident from a
vertex. We now, using nominals, have names for
vertices, but we still cannot keep track of which
edges we are using when we walk in a graph.
This suggests that a possible solution would be
to find a way to name the edges in some similar
way to the use of nominals to name vertices. We
will do this, describing a method to name edges
within the framework of a hybrid language and
using it to find a formula for the Eulerian property.
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The Temporal Logic Hybrid- CTL∗

In order to write a short (with polynomial size)
formula to describe the class of Hamiltonian
Graphs, we use the temporal branching-time
logic CTL∗ with nominals (hybrid-CTL∗).
The hybrid-CTL∗ language is a temporal language
consisting of a set Φ of countably many
proposition symbols (the elements of Φ are
denoted by p1, p2, . . .), a set L of countably many
nominals (the elements of L are denoted by
i1, i2, . . .) such that Φ ∩ L = ∅, the boolean
connectives ¬ and ∧ and the operators @i, for
each nominal i, and A, E, X, F, G and U.
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Hybrid- CTL∗ (cont.)

Formulas are divided into vertex formulas S and
path formulas P co-inductively defined as follows:

S ::= p | i | ⊤ | ¬S | S1 ∧ S2 | AP | EP | @iS

P ::= S | ¬P | P1 ∧ P2 | XP | FP | GP | P1UP2

The language of hybrid-CTL∗ is then the set of all
vertex formulas generated by the above rules.
The definition of a frame and of a model are the
same as the ones from the hybrid graph
language.
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The Hamiltonian Property

Let G be a graph with n vertices and let
Ln = {i1, . . . , in}. Let us add a loop to all the
vertices in G. We can then define the formula
that is valid if and only if G is Hamiltonian.
Theorem: A connected graph G (with n vertices)
with frame F is Hamiltonian if and only if F 
 φ,
where φ is the formula

φ = ψn → δn,
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The Hamiltonian Property (cont.)

with

δn = @i1E[XFi1 ∧ Fi2 ∧ . . . ∧ Fin∧

∧XG(i1 → Gi1) ∧ G(i2 → XG¬i2) ∧ . . .∧

∧G(in → XG¬in)].
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Edge-Related Properties

Definition: Let 〈v, w〉 be an edge in a graph G. An
edge subdivision consists of adding a new vertex
u to G, deleting the edge 〈v, w〉 and adding the
edges 〈v, u〉 and 〈u,w〉 to G. A graph subdivision
of a graph G is a graph G′ obtained from G by a
(finite) number of edge subdivisions.
Definition: Let G be a graph. We define G′ = E(G)
to be the graph obtained from G by subdividing
every edge of G exactly once. We call G′ an
E-graph.
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Edge-Related Properties (cont.)

Thus, if G has n vertices and m edges, G′ will
have m+ n vertices. In fact, if we call V the set of
vertices of G and V ′ the set of vertices of G′, we
have that V ′ = V ∪ V ∗ (V ∩ V ∗ = ∅), where V ∗ is
the set of new vertices added during the
subdivision. We also have that every edge of G′

has an extremity in V and the other in V ∗ and
that there is a bijective map between elements of
V ∗ and edges of G.
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Edge-Related Properties (cont.)

This bijective map between the set V ∗ and the
edges of G is the key point in this construction. In
the original graph G, we cannot identify particular
edges using just an hybrid language. So, if we
want to define a property in G, described using
its edges, we build G′ = E(G) and describe it in
G′, using the elements in V ∗. These elements
can be identified by standard nominals. This is
what we do to express the Eulerian property.
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Edge-Related Properties (cont.)

For this method to work, we just have to pay
attention to an important detail. In E-graphs, it is
fundamental to be able to distinguish whether a
given vertex is in V or in V ∗. Thus, instead of
working with one set of nominals L, we will be
working with two such sets, L1 and L2

(L1 ∩ L2 = ∅). Instead of writing G′ = (V ′, R′), we
write G′ = (V, V ∗, R′), to make clear the
difference between the two sets of vertices, and
define valuations V as V(p) ∈ Pow(V ∪ V ∗), if p
is a proposition symbol,
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Edge-Related Properties (cont.)

V(i) = {v}, such that v ∈ V , if i ∈ L1 and
V(j) = {w}, such that w ∈ V ∗, if j ∈ L2. We will
denote the nominals in L1 by i1, i2, . . . and the
nominals in L2 by j1, j2, . . ..
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The Eulerian Property

Let G′ = E(G) be a E-graph with n vertices in V
and m vertices in V ∗ and let Lm = {j1, . . . , jm}.
Let us add a loop to all its vertices in V . We can
then define the formula that is valid if and only if
G is Eulerian.
Theorem: A connected graph G (with m edges) is
Eulerian if and only if F 
 φ, where F is the
frame that represents G′ = E(G) and φ is the
formula

φ = ψm → δm,
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The Eulerian Property (cont.)

with

δm = @i1E[Fj1 ∧ Fj2 ∧ . . . ∧ Fjm∧

∧G(j1 → XG¬j1) ∧ G(j2 → XG¬j2) ∧ . . .∧

∧G(jm → XG¬jm) ∧ XG(i1 → Gi1)].
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Concluding Remarks

• In the present work, we presented various
formalisms, from a very basic modal logic to a
very powerful temporal logic and used them
to define four graph properties: connectivity,
acyclicity and the Hamiltonian and Eulerian
properties. It would also be interesting to
continue this line of work and try to express
some other graph properties such as planarity
and k-colorability of vertices and edges.
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Concluding Remarks (cont.)

• This work is an interesting way of exposing an
important issue. Sometimes, standard modal
languages, even the ones that are incredibly
expressive, are not capable of expressing
some important properties. This happens
because of some strong invariance conditions
that these languages satisfy. In these cases,
the use of a hybrid language is a very simple
way to bypass this problem. Hybrid
languages have much weaker invariance
conditions, which increase the number of
definable properties.
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Concluding Remarks (cont.)

• We described a way to name edges in the
hybrid language using graph subdivisions,
which does not require any major change in
the language. It would be interesting to study
what other properties could be expressed in
the hybrid language using this construction
that allows us to name not only vertices but
also edges.
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