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Introduction

ICC: Implicit Computational Complexity

The problem: to design programming languages with bounded computational

complexity

The proposed solution: a ML-like approach

λ-calculus as paradigmatic programming language

Types as semantic properties of terms

Type assignment for λ-calculus such that:

types garantee the correctness of terms, in particular their complexity bound

if the type inference is decidable, the desired properties can be checked

statically at compilation time

The tecnical tool: the Light Logics (derived from the Linear Logic of Girard) where

the cut-elimination procedure is bounded in time by the size of the proof,

exploiting the isomorphism:

FORMULAE as TY PES
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Outline

Soft Linear Logic (SLL)(Lafont, 1988)

STA, a type assignment for λ-calculus derived from SLL

Properties of STA:

Subject reduction

Correctness: a term typable in STA reduces to normal form in a number of steps

polynomial in its size

Completeness : all polynomial functions can be programmed in STA

STAB, an extension of STA typing an extended λ-calculus

Subject reduction

Correctness : a term typable in STAB can be reduced to normal form using

polynomial space in its size

Completeness : all polynomial space functions can be programmed in STAB

Future development
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Intuitionistic Linear Logic (⊸, !,∀ fragment)

A ⊢ A
(Id)

Γ ⊢ A ∆, A ⊢ B

Γ, ∆ ⊢ B
(cut)

Γ, A ⊢ B

Γ ⊢ A ⊸ B
(⊸ R)

Γ ⊢ A B, ∆ ⊢ C

A ⊸ B, Γ, ∆ ⊢ C
(⊸ L)

!Γ ⊢ A
!Γ ⊢!A

(!R)
Γ, B ⊢ A

Γ, !B ⊢ A
(!L)

Γ ⊢ A
Γ, !B ⊢ A

(W )
Γ, !B, !B ⊢ A

Γ, !B ⊢ A
(C)

Γ ⊢ A α 6∈ FV (Γ)

Γ ⊢ ∀α.A
(∀R)

Γ, B[C/α] ⊢ A

Γ,∀α.B ⊢ A
(∀L)
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An equivalent formulation of ILL

A ⊢ A
(Id)

Γ ⊢ A ∆, A ⊢ B

Γ, ∆ ⊢ B
(cut)

Γ, A ⊢ B

Γ ⊢ A ⊸ B
(⊸ R)

Γ ⊢ A B, ∆ ⊢ C

A ⊸ B, Γ, ∆ ⊢ C
(⊸ L)

Γ,

n times
z }| {

A, . . . , A ⊢ C

Γ, !A ⊢ C
(mpx)

Γ ⊢ A
!Γ ⊢!A

(sp)

Γ, !!B ⊢ A

Γ, !B ⊢ A
(digging)

Γ ⊢ A α 6∈ FV (Γ)

Γ ⊢ ∀α.A
(∀R)

Γ, B[C/α] ⊢ A

Γ,∀α.B ⊢ A
(∀L)

NOTE. (W ) is (mpx), with n = 0. (C) is (mpx)+(digging).

LSFA Ouro Preto 28/8/2007 – p.5/27



From ILL to SLL

SLL = ILL − (digging)

which means that

!A ⊸!!A

does not hold anymore.

So the modality ! can effectively be used for counting the number of duplications of formulae

performed in a proof.
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Soft Linear Logic (SLL) (⊸, !,∀ fragment)

A ⊢ A
(Id)

Γ ⊢ A ∆, A ⊢ B

Γ, ∆ ⊢ B
(cut)

Γ, A ⊢ B

Γ ⊢ A ⊸ B
(⊸ R)

Γ ⊢ A B, ∆ ⊢ C

A ⊸ B, Γ, ∆ ⊢ C
(⊸ L)

Γ,

n times
z }| {

A, . . . , A ⊢ C

Γ, !A ⊢ C
(mpx)

Γ ⊢ A
!Γ ⊢!A

(sp)

Γ ⊢ A α 6∈ FV (Γ)

Γ ⊢ ∀α.A
(∀R)

Γ, B[C/α] ⊢ A

Γ,∀α.B ⊢ A
(∀L)

n is the rank of the rule (mpx).
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Properties of SLL

The cut elimination procedure applied on a proof Π of size n takes a number of steps

≤ |Π| × nd, where:

- |Π| is the size of Π

- n is the maximum rank of a multiplexor in Π

- d is the maximum number of nested applications of rule (sp) in Π (depth of the proof).

So, considering:

PROOFS as PROGRAM

CUT − ELIMINATION as COMPUTATION

SLL is correct for polynomial time computations. Moreover, every polynomial time Turing

Machine can be encoded by a SLL proof. Since data can be encoded by proofs with depth 0,

SLL is also complete for polynomial time computations.
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A standard decoration of SLL by λ-terms

x : A ⊢ x : A
(Id)

Γ ⊢ M : A ∆, x : A ⊢ N : B Γ#∆

Γ, ∆ ⊢ N [M/x] : B
(cut)

Γ ⊢ M : A x : B, ∆ ⊢ N : C Γ#∆ y fresh

Γ, y : A ⊸ B, ∆ ⊢ N [yM/x] : C
(⊸ L)

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A ⊸ B
(⊸ R)

Γ ⊢ M : A
!Γ ⊢ M :!A

(sp)
Γ, x0 : A, ..., xn : A ⊢ M : B

Γ, x :!A ⊢ M [x/x0, ..., x/xn] : B
(mpx)

Γ ⊢ M : A
Γ ⊢ M : ∀α.A

(∀R)
Γ, x : A[B/α] ⊢ M : C

Γ, x : ∀α.A ⊢ M : C
(∀L)

LSFA Ouro Preto 28/8/2007 – p.9/27



Problems

The decorated system does not enjoy subject reduction.

x : A ⊸!B, y : A ⊢ xy :!B

So x : A ⊸!B, y : A ⊢ (λzw.wzz)(xy) :!B ⊸ (!B ⊸!B ⊸ A) ⊸ A, but

x : A ⊸!B, y : A 6⊢ λw.w(xy)(xy) :!B ⊸ (!B ⊸!B ⊸ A) ⊸ A

The decorated system does not inherit the complexity properties of SLL :

some terms can be typed, which reduce in exponential time in their size:

z :!A, y1 :!A ⊸!A ⊸!A, ..., yn :!A ⊸!A ⊸!A ⊢L (λx.y1xx)(...((λx.ynxx)z))...) :!A

(Technical reason: a term with a modal type can be derived from a not modal context, so

modality does not implies anymore that the term can be duplicated) .

Moreover:

The sequent calculus presentation is not suitable for a programming language. :

it does not allow proofs by induction on terms.
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Solution

STA is a natural deduction style type assignment system inspired by SLL, but:

Terms are built in a linear way, and (mpx) rule is used for controlling variable

duplication.

Technically this is realized by using as types a subset of the SLL formulae such that:

∀ is not allowed on modal formulae

! is not allowed on the right of ⊸

weakening introduces not modal formulae

STA types are the following subset of SLL formulae:

A ::= α | σ ⊸ A | ∀α.A (linear types)

σ ::= A |!σ
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Rules of STA

x : A ⊢ x : A
(Ax

Γ ⊢ M : σ
Γ, x : A ⊢ M : σ

(w)

Γ, x : σ ⊢ M : A

Γ ⊢ λx.M : σ ⊸ A
(⊸ I)

Γ ⊢ M : σ ⊸ A ∆ ⊢ N : A Γ#∆

Γ, ∆ ⊢ MN : A
(⊸ E)

Γ, x1 : σ, . . . , xn : σ ⊢ M : A

Γ, x :!σ ⊢ M [x/x1, ..., x/xn] : A
(mpx) Γ ⊢ σ

!Γ ⊢!σ
(sp)

Γ ⊢ A α 6∈ FV (Γ)

Γ ⊢ M : ∀α.A
(∀I)

Γ ⊢ M : ∀α.A

Γ ⊢ M : A[B/α]
(∀E)

NOTE. Γ#∆ denotes that the two contexts have disjoint variables.
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Linearity Properties of STA

Γ ⊢ M : σ and x : A ∈ Γ imply x occurs at most once in M ;

Π :!Γ ⊢ M :!σ implies Π can be tranformed into a derivation Π′:

Γ ⊢ M : σ
!Γ ⊢ M :!σ

(sp)

So the modality ! is truly a witness of the possibility of duplication!
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Properties of STA

Theorem 1 ( Subject Reduction ) Γ ⊢ M : µ and M →β M ′ imply Γ ⊢ M ′ : µ

Theorem 2 ( Polynomial Time Soundness ) Let M be typable in STA and let

Π : Γ ⊢ M : σ, for some Γ and σ, and let d(Π) be the maximal nesting of (sp) rule

applications in Π. Then reduces to a normal form in a number of steps:

≤| M |d(Π)+1

and this implies that it reduces in normal form on a Turing machine in time:

≤| M |3×(d(Π)+1)

This means that every typing for M gives an upper bound to its reduction time !
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Toward the Polynomial Completeness

Definition 1 ( λ-definability ) Let f be an n-ary total function from I1 × ... × In to O, and let

elements in Ii and in O be encoded by λ-terms (1 ≤ i ≤ n). Let d be the term encoding the

data d.

f is λ-definable if, for some f ∈ Λ: fi1...in =β f(i1, ..., in).

So we can code:

iterators by Church numerals

n = λxy. x(...x(x
| {z }

n

y))) : ∀α.!i(α ⊸ α) ⊸ α ⊸ α

natural numbers by strings of booleans

[b0, b1, . . . , bn]
def
= λcz.cb0(· · · (cbnz) · · · ) : ∀α.!i(B ⊸ α ⊸ α) ⊸ (α ⊸ α)

where B
def
= ∀α.α ⊸ α ⊸ α
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Polynomial Completeness

Theorem 3 ( PTIME Completeness ) If a decision problem P is decided in polynomial time

P , where deg(P ) = m, and in polynomial space Q, where deg(Q) = l, by a Turing Machine

M then it is representable by a term M typable in STA with a derivation Π with conclusion

s :!max(l,m,1)+1∀α.(B ⊸ α ⊸ α) ⊸ (α ⊸ α) ⊢ M : B

Theorem 4 ( FPTIME Completeness ) If a function F is computed in polynomial time P ,

where deg(P ) = m, and in polynomial space Q, where deg(Q) = l, by a Turing Machine M,

then it is representable by a term M such that:

s :!max(l,m,1)+1∀α.(B ⊸ α ⊸ α) ⊸ (α ⊸ α) ⊢ M : ∀α.!2m+1(B ⊸ α ⊸ α) ⊸ (α ⊸ α)
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From Polynomial Time to Polynomial Space

Polynomial Space Computations coincide with polynomial time alternating Turing Machine

Computations (APTIME). In particular:

PSPACE = NPSPACE = APTIME

So we can start from STA, characterizing polynomial time computations, adding to it some

features (both to types and to the λ-calculus) in order to catch PSPACE.

We need to represent a computation that repeatedly fork into subcomputations and whose

result is obtained by a backward computation from all the subcomputations results.

Technically we need:

an if constructor on the language

a special type B for booleans
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Terms and Types of STAB

Terms of STAB:

M ::= x | 0 | 1 | λx.M | MM | if M then M else M

Reduction rules:

(λx.M)N →β M [N/x]

if 0 then M else N →δ M if 1 then M else N →δ N

→∗

βδ
denotes the reflexive and transitive closure of →βδ .

Types of STAB:

A ::= B | α | σ ⊸ A | ∀α.A (Linear Types)

σ ::= A |!σ
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Rules of STAB

x : A ⊢ x : A
(Ax)

⊢ 0 : B
(B0I)

⊢ 1 : B
(B1I)

Γ ⊢ M : σ
Γ, x : A ⊢ M : σ

(w)

Γ, x : σ ⊢ M : A

Γ ⊢ λx.M : σ ⊸ A
(⊸ I)

Γ ⊢ M : σ ⊸ A ∆ ⊢ N : σ Γ#∆

Γ, ∆ ⊢ MN : A
(⊸ E)

Γ, x1 : σ, . . . , xn : σ ⊢ M : µ

Γ, x :!σ ⊢ M [x/x1, · · · , x/xn] : µ
(m) Γ ⊢ M : σ

!Γ ⊢ M :!σ
(sp)

Γ ⊢ M : A α 6∈ FTV(Γ)

Γ ⊢ M : ∀α.A
(∀I)

Γ ⊢ M : ∀α.B

Γ ⊢ M : B[A/α]
(∀E)

Γ ⊢ M : B Γ ⊢ N0 : σ Γ ⊢ N1 : σ

Γ ⊢ if M then N0 else N1 : σ
(BE)
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Properties of STAB

Theorem 5 ( Subject Reduction ) Let Γ ⊢ M : σ and M →βδ N . Then Γ ⊢ N : σ.

Remark 1 The new rule (BE) has an additive behaviour of contexts. As consequence,

STAB is no more correct for polynomial time computations.

In fact, let:

Mn = (λyz.ynz)(λx. if x then x else x )0

for all n:

⊢ Mn :!(B ⊸ B) ⊸ B ⊸ B

but

Mn →∗

βδ 0

in a number of steps exponential in n!
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Toward PSPACE characterization

Let M0 →βδ M1 →βδ ... →βδ Mn, where Mn is a normal form. The space used by this

reduction is the maximum size of Mi (0 ≤ i ≤ n).

While for STA the complexity time properties hold for every reduction strategy (i.e., a term

M typable in STA reduces to normal form in a polynomial number of steps, for every

reduction strategy), the space characterization will hold only for the leftmost-outermost

reduction strategy. In fact, let:

M = (λyz.z)Mn = (λyz.z)((λyz.ynz)(λx. if x then x else x )0) →∗

βδ λz.z

Clearly the size of M is linear in n. Using the leftmost outermost reduction strategy, it takes

space linear in M :

(λyz.z)Mn →βδ λz.z

while, using the innermost strategy, it takes space exponential in n, since (posing

P = λx. if x then x else x )0)

M →∗

βδ (λyz.z)(P n0) →∗

βδ 0
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A leftmost outermost reduction machine

The machine is a set of rules of the shape:

C,A |= N ⇓ b

where:

A is the store, and it allows to perform substitutions one occurrence at a time:

A ::= ∅ | A@{x := M}

C is a context remembering the computation path, and it allows to avoid backtracking:

C[◦] ::= ◦ | ( if C[◦] then L else R )V1 · · ·Vn

N is program (a closed term of type B)
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The rules of the machine

C,A |= b ⇓ b
(Ax)

C,A@{x′ := N} |= M [x′/x]V1 · · ·Vm ⇓ b
∗

C,A |= (λx.M)NV1 · · ·Vm ⇓ b
(β)

{x := N} ∈ A C,A |= NV1 · · ·Vm ⇓ b

C,A |= xV1 · · ·Vm ⇓ b
(h)

C[( if [◦] then N0 else N1 )V1 · · ·Vm],A |= M ⇓ 0 C,A |= N0V1 · · ·Vm ⇓ b

C,A |= ( if M then N0 else N1 )V1 · · ·Vm ⇓ b
( if 0)

C[( if [◦] then N0 else N1 )V1 · · ·Vm],A |= M ⇓ 1 C,A |= N1V1 · · ·Vm ⇓ b

C,A |= ( if M then N0 else N1 )V1 · · ·Vm ⇓ b
( if 1)

(*) x′ is a fresh variable.
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Properties of STAB

Let the abstract machine compute: C,A |= M ⇓ b . Then the space used by the machine

during this computation is:

the maximal size of the store used during the computation

+

the maximal size of the context used during the computation

Theorem 6 ( Polynomial Space Soundness ) Let M be a program (a closed term of type

B), and let Π be a derivation of ⊢ M : B, and let d(Π) be the depth of Π (the maximal

nesting of applications of (sp) rule in Π). Then M reduces to normal form using a space

≤ 3× | M |3×d(Π)+4

This means that every typing for M gives an upper bound to its reduction space !
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Properties of STAB

Lemma 1 A decision problem D : {0, 1}∗ → {0, 1} decidable by an Alternating Turing

Machine M in polynomial time and space is programmable in STAB.

The proof is given by a coding of Alternating Turing Machine, similar to the coding used for

STA.

Theorem 7 ( Polynomial Space Completeness ) Every decision problem D ∈ PSPACE is

programmable in STAB.
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Future developments

The STA type assignment system is undecidable. We are exploring decidable

restrictions of STA, which preserve the complexity bounds.

(with Marco Gaboardi and Luca Roversi)

We would like to give a characterization by a type assignment system also for

(F)NPTIME , the computations that can be curried out in polynomial time by a non

deterministic Turing Machine. The idea is to extend the λ-calculus by a non determistic

operator, and STA by a logical sum.

(with Marco Gaboardi)
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