Soft Time and Soft Space Soft Linear Logic and Polynomial-bound Complexity Classes

Simona Ronchi Della Rocca

Dipartimento di Informatica - Università di Torino

ronchi@di.unito.it

Introduction

- ICC: Implicit Computational Complexity
- The problem: to design programming languages with bounded computational complexity
 - The proposed solution: a ML-like approach
 - λ -calculus as paradigmatic programming language
 - Types as semantic properties of terms
 - **•** Type assignment for λ -calculus such that:
 - types garantee the correctness of terms, in particular their complexity bound
 - if the type inference is decidable, the desired properties can be checked statically at compilation time
 - The tecnical tool: the Light Logics (derived from the Linear Logic of Girard) where the cut-elimination procedure is bounded in time by the size of the proof, exploiting the isomorphism:

FORMULAE as TYPES

Outline

- Soft Linear Logic (SLL)(Lafont, 1988)
- STA, a type assignment for λ -calculus derived from SLL
- Properties of STA:
 - Subject reduction
 - Correctness: a term typable in STA reduces to normal form in a number of steps polynomial in its size
 - Completeness : all polynomial functions can be programmed in STA
- STA_B, an extension of STA typing an extended λ -calculus
 - Subject reduction
 - Correctness : a term typable in STA_B can be reduced to normal form using polynomial space in its size
 - Completeness : all polynomial space functions can be programmed in STA_B
- Future development

Intuitionistic Linear Logic (---o, !, \foreign fragment)

$$\begin{array}{ll} \overline{A \vdash A} & (Id) & \frac{\Gamma \vdash A}{\Gamma, \Delta \vdash B} & (cut) \\ \\ \overline{\Gamma, \Delta \vdash B} & (cut) & \frac{\Gamma \vdash A}{\Gamma \vdash A - \circ B} & (Cut) \\ \\ \frac{\Gamma \vdash A}{\Gamma \vdash A} & (-\circ R) & \frac{\Gamma \vdash A}{A - \circ B, \Gamma, \Delta \vdash C} & (-\circ L) \\ \\ \\ \frac{!\Gamma \vdash A}{!\Gamma \vdash !A} & (!R) & \frac{\Gamma, B \vdash A}{\Gamma, !B \vdash A} & (!L) \\ \\ \\ \frac{\Gamma \vdash A}{\Gamma, !B \vdash A} & (W) & \frac{\Gamma, !B, !B \vdash A}{\Gamma, !B \vdash A} & (C) \\ \\ \\ \\ \frac{\Gamma \vdash A \quad \alpha \notin FV(\Gamma)}{\Gamma \vdash \forall \alpha.A} & (\forall R) & \frac{\Gamma, B[C/\alpha] \vdash A}{\Gamma, \forall \alpha.B \vdash A} & (\forall L) \end{array}$$

LSFA Ouro Preto 28/8/2007 - p.4/2

An equivalent formulation of ILL

$$\frac{\overline{\Gamma}\vdash A}{\overline{\Gamma}\vdash A} (Id) \qquad \frac{\overline{\Gamma}\vdash A}{\overline{\Gamma},\Delta\vdash B} (cut)$$
$$\frac{\overline{\Gamma},A\vdash B}{\overline{\Gamma}\vdash A\multimap B} (\multimap R) \qquad \frac{\overline{\Gamma}\vdash A}{\overline{A}\multimap B,\overline{\Gamma},\Delta\vdash C} (\multimap L)$$

 $\frac{\Gamma, !!B \vdash A}{\Gamma, !B \vdash A} \ (digging)$

 $\frac{\Gamma \vdash A \quad \alpha \notin FV(\Gamma)}{\Gamma \vdash \forall \alpha. A} \quad (\forall R) \qquad \frac{\Gamma, B[C/\alpha] \vdash A}{\Gamma, \forall \alpha. B \vdash A} \quad (\forall L)$

NOTE. (W) is (mpx), with n = 0. (C) is (mpx)+(digging).

From ILL to SLL

SLL = ILL - (digging)

which means that

 $!A \multimap !!A$

does not hold anymore.

So the modality ! can effectively be used for counting the number of duplications of formulae

performed in a proof.

Soft Linear Logic (SLL) (−∞, !, ∀ **fragment**)

$$\frac{\overline{\Gamma}\vdash A}{\overline{\Gamma}\vdash A} (Id) \qquad \frac{\overline{\Gamma}\vdash A}{\overline{\Gamma},\Delta\vdash B} (cut)$$
$$\frac{\overline{\Gamma},A\vdash B}{\overline{\Gamma}\vdash A\multimap B} (\multimap R) \qquad \frac{\overline{\Gamma}\vdash A}{\overline{A}\multimap B,\overline{\Gamma},\Delta\vdash C} (\multimap L)$$

$$\frac{\overbrace{\Gamma,A,\ldots,A}^{n \text{ times}} \vdash C}{\Gamma, !A \vdash C} \ (mpx) \qquad \frac{\Gamma \vdash A}{!\Gamma \vdash !A} \ (sp)$$

$$\frac{\Gamma \vdash A \quad \alpha \notin FV(\Gamma)}{\Gamma \vdash \forall \alpha. A} \quad (\forall R) \qquad \frac{\Gamma, B[C/\alpha] \vdash A}{\Gamma, \forall \alpha. B \vdash A} \quad (\forall L)$$

n is the rank of the rule (mpx).

$Properties \ of \ {\rm SLL}$

The cut elimination procedure applied on a proof Π of size *n* takes a number of steps $\leq |\Pi| \times n^d$, where:

- $|\Pi|$ is the size of Π
- n is the maximum rank of a multiplexor in Π

- d is the maximum number of nested applications of rule (sp) in Π (depth of the proof).

So, considering:

PROOFS as PROGRAM CUT – ELIMINATION as COMPUTATION

SLL is correct for polynomial time computations. Moreover, every polynomial time Turing

Machine can be encoded by a SLL proof. Since data can be encoded by proofs with depth 0,

SLL is also complete for polynomial time computations.

A standard decoration of SLL by $\lambda\text{-terms}$

$$\frac{1}{x:A \vdash x:A} (Id) \quad \frac{\Gamma \vdash M:A \ \Delta, x:A \vdash N:B \ \Gamma \# \Delta}{\Gamma, \Delta \vdash N[M/x]:B} (cut)$$

$$\frac{\Gamma \vdash M : A \quad x : B, \Delta \vdash N : C \quad \Gamma \# \Delta \quad y \text{ fresh}}{\Gamma, y : A \multimap B, \Delta \vdash N[yM/x] : C} \quad (\multimap L)$$

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . M : A \multimap B} (\multimap R)$$

$$\frac{\Gamma \vdash M : A}{!\Gamma \vdash M : !A} (sp) \qquad \frac{\Gamma, x_0 : A, \dots, x_n : A \vdash M : B}{\Gamma, x : !A \vdash M[x/x_0, \dots, x/x_n] : B} (mpx)$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash M : \forall \alpha. A} \ (\forall R) \qquad \qquad \frac{\Gamma, x : A[B/\alpha] \vdash M : C}{\Gamma, x : \forall \alpha. A \vdash M : C} \ (\forall L)$$

Problems

The decorated system does not enjoy subject reduction.

 $x: A \multimap !B, y: A \vdash xy: !B$

So $x : A \multimap !B, y : A \vdash (\lambda zw.wzz)(xy) : !B \multimap (!B \multimap !B \multimap A) \multimap A$, but $x : A \multimap !B, y : A \nvDash \lambda w.w(xy)(xy) : !B \multimap (!B \multimap !B \multimap A) \multimap A$

The decorated system does not inherit the complexity properties of SLL : some terms can be typed, which reduce in exponential time in their size:

(Technical reason: a term with a modal type can be derived from a not modal context, so modality does not implies anymore that the term can be duplicated). Moreover:

Solution

STA is a natural deduction style type assignment system inspired by SLL, but:

Terms are built in a linear way, and (mpx) rule is used for controlling variable duplication.

Technically this is realized by using as types a subset of the SLL formulae such that:

- \checkmark is not allowed on modal formulae
- \blacksquare ! is not allowed on the right of \multimap

weakening introduces not modal formulae

STA types are the following subset of SLL formulae:

$$A ::= \alpha | \sigma \multimap A | \forall \alpha.A \quad \text{(linear types)}$$

$$\sigma ::= A |!\sigma$$

Rules of STA

$$\frac{\Gamma \vdash M : \sigma}{\Gamma : A \vdash x : A} \left(Ax \quad \frac{\Gamma \vdash M : \sigma}{\Gamma, x : A \vdash M : \sigma} \right) (w)$$

$$\frac{\Gamma, x : \sigma \vdash M : A}{\Gamma \vdash \lambda x \cdot M : \sigma \multimap A} \left(\neg \circ I \right) \quad \frac{\Gamma \vdash M : \sigma \neg \circ A}{\Gamma, \Delta \vdash MN : A} \quad \Delta \vdash N : A \quad \Gamma \# \Delta \quad (\neg \circ E)$$

$$\frac{\Gamma, x_1 : \sigma, \dots, x_n : \sigma \vdash M : A}{\Gamma, x : !\sigma \vdash M[x/x_1, \dots, x/x_n] : A} (mpx) \qquad \frac{\Gamma \vdash \sigma}{!\Gamma \vdash !\sigma} (sp)$$

$$\frac{\Gamma \vdash A \quad \alpha \notin FV(\Gamma)}{\Gamma \vdash M : \forall \alpha.A} \quad (\forall I) \qquad \frac{\Gamma \vdash M : \forall \alpha.A}{\Gamma \vdash M : A[B/\alpha]} \quad (\forall E)$$

NOTE. $\Gamma # \Delta$ denotes that the two contexts have disjoint variables.

Linearity Properties of STA

 $\ \, {} \ \, {} \Gamma \vdash M : \sigma \text{ and } x : A \in \Gamma \text{ imply } x \text{ occurs at most once in } M;$

 $\square :!\Gamma \vdash M :!\sigma \text{ implies }\Pi \text{ can be tranformed into a derivation }\Pi':$

$$\frac{\Gamma \vdash M : \sigma}{!\Gamma \vdash M : !\sigma} \ (sp)$$

So the modality ! is truly a witness of the possibility of duplication!

Properties of STA

Theorem 1 (Subject Reduction) $\Gamma \vdash M : \mu$ and $M \rightarrow_{\beta} M'$ imply $\Gamma \vdash M' : \mu$

Theorem 2 (Polynomial Time Soundness) Let M be typable in STA and let $\Pi : \Gamma \vdash M : \sigma$, for some Γ and σ , and let $d(\Pi)$ be the maximal nesting of (sp) rule applications in Π . Then reduces to a normal form in a number of steps:

 $\leq |M|^{d(\Pi)+1}$

and this implies that it reduces in normal form on a Turing machine in time:

 $\leq \mid M \mid^{3 \times (d(\Pi) + 1)}$

This means that every typing for M gives an upper bound to its reduction time !

Toward the Polynomial Completeness

Definition 1 (λ **-definability)** Let f be an n-ary total function from $I_1 \times ... \times I_n$ to O, and let elements in I_i and in O be encoded by λ -terms ($1 \le i \le n$). Let \underline{d} be the term encoding the data d.

f is λ -definable if, for some $\underline{f} \in \Lambda$: $\underline{f}\underline{i_1}...\underline{i_n} =_{\beta} \underline{f}(i_1,...,i_n)$.

So we can code:

iterators by Church numerals

$$\underline{n} = \lambda xy.\underbrace{x(\dots x(x \ y)))}_{n} : \forall \alpha .!^{i}(\alpha \multimap \alpha) \multimap \alpha \multimap \alpha$$

natural numbers by strings of booleans

$$[b_0, b_1, \dots, b_n] \stackrel{\text{def}}{=} \lambda cz.cb_0(\cdots(cb_n z)\cdots) : \forall \alpha.!^i (\mathbf{B} \multimap \alpha \multimap \alpha) \multimap (\alpha \multimap \alpha)$$

where $\mathbf{B} \stackrel{\text{def}}{=} \forall \alpha. \alpha \multimap \alpha \multimap \alpha$

Polynomial Completeness

Theorem 3 (PTIME Completeness) If a decision problem \mathfrak{P} is decided in polynomial time P, where deg(P) = m, and in polynomial space Q, where deg(Q) = l, by a Turing Machine \mathcal{M} then it is representable by a term \underline{M} typable in STA with a derivation Π with conclusion

$$s:!^{max(l,m,1)+1} \forall \alpha. (\mathbf{B} \multimap \alpha \multimap \alpha) \multimap (\alpha \multimap \alpha) \vdash \underline{M}: \mathbf{B}$$

Theorem 4 (FPTIME Completeness) If a function \mathcal{F} is computed in polynomial time P, where deg(P) = m, and in polynomial space Q, where deg(Q) = l, by a Turing Machine \mathcal{M} , then it is representable by a term \underline{M} such that:

 $s:!^{max(l,m,1)+1} \forall \alpha. (\mathbf{B} \multimap \alpha \multimap \alpha) \multimap (\alpha \multimap \alpha) \vdash \underline{M}: \forall \alpha. !^{2m+1} (\mathbf{B} \multimap \alpha \multimap \alpha) \multimap (\alpha \multimap \alpha)$

From Polynomial Time to Polynomial Space

Polynomial Space Computations coincide with polynomial time alternating Turing Machine Computations (APTIME). In particular:

PSPACE = NPSPACE = APTIME

So we can start from STA, characterizing polynomial time computations, adding to it some features (both to types and to the λ -calculus) in order to catch PSPACE.

We need to represent a computation that repeatedly fork into subcomputations and whose result is obtained by a backward computation from all the subcomputations results.

Technically we need:

- **_** a
 - an if constructor on the language
 - a special type **B** for booleans

Terms and Types of ${\rm STA}_{{\rm B}}$

Terms of $\mathrm{STA}_\mathbf{B}$:

 $M ::= x \mid 0 \mid 1 \mid \lambda x.M \mid MM \mid \text{ if } M \text{ then } M \text{ else } M$

Reduction rules:

$$(\lambda x.M)N \rightarrow_{\beta} M[N/x]$$

 $\texttt{if } 0 \texttt{ then } M \texttt{ else } N \ \longrightarrow_{\delta} M \qquad \texttt{if } 1 \texttt{ then } M \texttt{ else } N \ \longrightarrow_{\delta} N$

 $\rightarrow^*_{\beta\delta}$ denotes the reflexive and transitive closure of $\rightarrow_{\beta\delta}$.

Types of STA_B :

$$A ::= \mathbf{B} \mid \alpha \mid \sigma \multimap A \mid \forall \alpha.A \quad \text{(Linear Types)}$$

$$\sigma ::= A \mid !\sigma$$

Rules of STA_B

$$\frac{\overline{\Gamma} + M : \sigma}{\overline{\Gamma} + x : A} (Ax) \qquad \overline{\vdash 0 : \mathbf{B}} (\mathbf{B}_0 I) \qquad \overline{\vdash 1 : \mathbf{B}} (\mathbf{B}_1 I) \qquad \frac{\overline{\Gamma} \vdash M : \sigma}{\overline{\Gamma}, x : A \vdash M : \sigma} (w)$$

$$\frac{\overline{\Gamma}, x : \sigma \vdash M : A}{\overline{\Gamma} \vdash \lambda x \cdot M : \sigma \multimap A} (\multimap I) \qquad \frac{\overline{\Gamma} \vdash M : \sigma \multimap A \quad \Delta \vdash N : \sigma \quad \Gamma \# \Delta}{\overline{\Gamma}, \Delta \vdash M N : A} (\multimap E)$$

$$\frac{\overline{\Gamma}, x_1 : \sigma, \dots, x_n : \sigma \vdash M : \mu}{\overline{\Gamma}, x : ! \sigma \vdash M [x/x_1, \cdots, x/x_n] : \mu} (m) \qquad \frac{\overline{\Gamma} \vdash M : \sigma}{! \Gamma \vdash M : ! \sigma} (sp)$$

$$\frac{\Gamma \vdash M : A \quad \alpha \notin \operatorname{FTV}(\Gamma)}{\Gamma \vdash M : \forall \alpha. A} \quad (\forall I) \qquad \frac{\Gamma \vdash M : \forall \alpha. B}{\Gamma \vdash M : B[A/\alpha]} \quad (\forall E)$$

 $\frac{\Gamma \vdash M : \mathbf{B} \quad \Gamma \vdash N_0 : \sigma \quad \Gamma \vdash N_1 : \sigma}{\Gamma \vdash \text{ if } M \text{ then } N_0 \text{ else } N_1 : \sigma} \ (\mathbf{B}E)$

Properties of ${\rm STA}_{\bf B}$

Theorem 5 (Subject Reduction) Let $\Gamma \vdash M : \sigma$ and $M \rightarrow_{\beta\delta} N$. Then $\Gamma \vdash N : \sigma$.

Remark 1 The new rule (BE) has an additive behaviour of contexts. As consequence, STA_B is no more correct for polynomial time computations. In fact, let:

 $M_n = (\lambda y z. y^n z)(\lambda x. \text{ if } x \text{ then } x \text{ else } x) 0$

for all n:

$$-M_n : !(\mathbf{B} \multimap \mathbf{B}) \multimap \mathbf{B} \multimap \mathbf{B}$$

but

$$M_n \to^*_{\beta\delta} 0$$

in a number of steps exponential in n!

Toward PSPACE characterization

Let $M_0 \rightarrow_{\beta\delta} M_1 \rightarrow_{\beta\delta} \dots \rightarrow_{\beta\delta} M_n$, where M_n is a normal form. The space used by this reduction is the maximum size of M_i ($0 \le i \le n$). While for STA the complexity time properties hold for every reduction strategy (i.e., a term M typable in STA reduces to normal form in a polynomial number of steps, for every reduction strategy), the space characterization will hold only for the leftmost-outermost reduction strategy. In fact, let:

$$M = (\lambda yz.z)M_n = (\lambda yz.z)((\lambda yz.y^n z)(\lambda x. \text{ if } x \text{ then } x \text{ else } x)0) \rightarrow^*_{\beta\delta} \lambda z.z$$

Clearly the size of M is linear in n. Using the leftmost outermost reduction strategy, it takes space linear in M:

$$(\lambda yz.z)M_n \rightarrow_{\beta\delta} \lambda z.z$$

while, using the innermost strategy, it takes space exponential in n, since (posing $P = \lambda x$. if x then x else x)0)

$$M \to^*_{\beta\delta} (\lambda yz.z)(P^n 0) \to^*_{\beta\delta} 0$$

A leftmost outermost reduction machine

The machine is a set of rules of the shape:

$$\mathcal{C}, \mathcal{A} \models N \Downarrow b$$

where:

 \mathcal{A} is the store, and it allows to perform substitutions one occurrence at a time:

$$\mathcal{A} ::= \emptyset \mid \mathcal{A} @ \{ x := M \}$$

C is a context remembering the computation path, and it allows to avoid backtracking:

 $\mathcal{C}[\circ] ::= \circ \mid (\text{ if } \mathcal{C}[\circ] \text{ then } L \text{ else } R) V_1 \cdots V_n$

N is program (a closed term of type **B**)

The rules of the machine

$$\overline{\mathcal{C}, \mathcal{A} \models \mathfrak{b} \Downarrow \mathfrak{b}} \stackrel{(\mathcal{A}x)}{\underbrace{\mathcal{C}, \mathcal{A} \models \mathfrak{b} \Downarrow \mathfrak{b}}} \frac{(\mathcal{A}x)}{\mathcal{C}, \mathcal{A} \models (\mathcal{A}x, M) N V_1 \cdots V_m \Downarrow \mathfrak{b}^*} (\beta)$$

$$\frac{\{x := N\} \in \mathcal{A} \quad \mathcal{C}, \mathcal{A} \models N V_1 \cdots V_m \Downarrow \mathfrak{b}}{\mathcal{C}, \mathcal{A} \models x V_1 \cdots V_m \Downarrow \mathfrak{b}} (h)$$

$$\frac{\mathcal{C}[(\text{ if } [\mathfrak{o}] \text{ then } N_0 \text{ else } N_1) V_1 \cdots V_m], \mathcal{A} \models M \Downarrow \mathfrak{0} \quad \mathcal{C}, \mathcal{A} \models N_0 V_1 \cdots V_m \Downarrow \mathfrak{b}}{\mathcal{C}, \mathcal{A} \models (\text{ if } M \text{ then } N_0 \text{ else } N_1) V_1 \cdots V_m \Downarrow \mathfrak{b}} (\text{ if } \mathfrak{0})$$

$$\frac{\mathcal{C}[(\text{ if } [\mathfrak{o}] \text{ then } N_0 \text{ else } N_1) V_1 \cdots V_m], \mathcal{A} \models M \Downarrow \mathfrak{1} \quad \mathcal{C}, \mathcal{A} \models N_1 V_1 \cdots V_m \Downarrow \mathfrak{b}}{\mathcal{C}, \mathcal{A} \models (\text{ if } M \text{ then } N_0 \text{ else } N_1) V_1 \cdots V_m \Downarrow \mathfrak{b}} (\text{ if } \mathfrak{1})$$

$$\frac{\mathcal{C}[(\text{ if } [\mathfrak{0}] \text{ then } N_0 \text{ else } N_1) V_1 \cdots V_m], \mathcal{A} \models M \Downarrow \mathfrak{1} \quad \mathcal{C}, \mathcal{A} \models N_1 V_1 \cdots V_m \Downarrow \mathfrak{b}}{\mathcal{C}, \mathcal{A} \models (\text{ if } M \text{ then } N_0 \text{ else } N_1) V_1 \cdots V_m \Downarrow \mathfrak{b}} (\text{ if } \mathfrak{1})$$

$$(*) x' \text{ is a fresh variable.}$$

Properties of ${\rm STA}_{\bf B}$

Let the abstract machine compute: $C, A \models M \Downarrow b$. Then the space used by the machine during this computation is:

the maximal size of the store used during the computation

the maximal size of the context used during the computation

+

Theorem 6 (Polynomial Space Soundness) Let M be a program (a closed term of type **B**), and let Π be a derivation of $\vdash M : \mathbf{B}$, and let $d(\Pi)$ be the depth of Π (the maximal nesting of applications of (sp) rule in Π). Then M reduces to normal form using a space

 $\leq 3 \times \mid M \mid^{3 \times d(\Pi) + 4}$

This means that every typing for M gives an upper bound to its reduction space !

Properties of ${\rm STA}_{\bf B}$

Lemma 1 A decision problem $\mathcal{D}: \{0,1\}^* \to \{0,1\}$ decidable by an Alternating Turing Machine \mathcal{M} in polynomial time and space is programmable in STA_B .

The proof is given by a coding of Alternating Turing Machine, similar to the coding used for ${\rm STA}.$

Theorem 7 (Polynomial Space Completeness) Every decision problem $\mathcal{D} \in \mathsf{PSPACE}$ is programmable in $\mathrm{STA}_{\mathbf{B}}$.

Bibliography

STA and STA_B have been presented respectively in:

Gaboardi M., Ronchi Della Rocca S., "A Soft type assignment system for λ -calculus", CSL '07. Gaboardi M., Marion J. Y., Ronchi Della Rocca S., "A logical account of PSPACE", submitted.

Solution Other characterization of polynomial computations though λ -calculus and type assignment system based on LAL (Light Affine Logic):

Baillot P., Terui K., "Light Types for polynomial time computation in λ -calculus", LICS 04.

A characterization of elementary computations though λ -calculus and type assignment system based on EAL (Elementary Affine Logic):

Coppola P., Dal Lago U., Ronchi Della Rocca S., "Elementary Affine Logic and and the call-by-value λ -calculus", TLCA 05.

There are not other logical charactizations of PSPACE, beyond STA_B .

Future developments

The STA type assignment system is undecidable. We are exploring decidable restrictions of STA, which preserve the complexity bounds. (with Marco Gaboardi and Luca Roversi)

We would like to give a characterization by a type assignment system also for (F)NPTIME, the computations that can be curried out in polynomial time by a non deterministic Turing Machine. The idea is to extend the λ-calculus by a non determistic operator, and STA by a logical sum. (with Marco Gaboardi)