Soft Time and Soft Space
 Soft Linear Logic and Polynomial-bound Complexity Classes

Simona Ronchi Della Rocca

Dipartimento di Informatica - Università di Torino

```
    ronchi@di.unito.it
```


Introduction

- ICC: Implicit Computational Complexity
- The problem: to design programming languages with bounded computational complexity
- The proposed solution: a ML-like approach
- λ-calculus as paradigmatic programming language
- Types as semantic properties of terms
- Type assignment for λ-calculus such that:
- types garantee the correctness of terms, in particular their complexity bound
- if the type inference is decidable, the desired properties can be checked statically at compilation time
- The tecnical tool: the Light Logics (derived from the Linear Logic of Girard) where the cut-elimination procedure is bounded in time by the size of the proof, exploiting the isomorphism:

FORMULAE as TYPES

Outline

- Soft Linear Logic (SLL)(Lafont, 1988)
- STA, a type assignment for λ-calculus derived from SLL
- Properties of STA:
- Subject reduction
- Correctness: a term typable in STA reduces to normal form in a number of steps polynomial in its size
- Completeness : all polynomial functions can be programmed in STA
- STA $_{B}$, an extension of STA typing an extended λ-calculus
- Subject reduction
- Correctness : a term typable in STA_{B} can be reduced to normal form using polynomial space in its size
- Completeness : all polynomial space functions can be programmed in STA $_{B}$
- Future development

Intuitionistic Linear Logic ($-,!, \forall$ fragment)

$$
\begin{gathered}
\frac{\Gamma \vdash A}{A \vdash}(I d) \quad \frac{\Gamma \vdash A \quad \Delta, A \vdash B}{\Gamma, \Delta \vdash B}(c u t) \\
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B}(\multimap R) \quad \frac{\Gamma \vdash A \quad B, \Delta \vdash C}{A \multimap B, \Gamma, \Delta \vdash C}(\multimap L) \\
\frac{!\Gamma \vdash A}{!\Gamma \vdash!A}(!R) \quad \frac{\Gamma, B \vdash A}{\Gamma,!B \vdash A}(!L) \\
\frac{\Gamma \vdash A}{\Gamma,!B \vdash A}(W) \quad \frac{\Gamma,!B,!B \vdash A}{\Gamma,!B \vdash A}(C) \\
\frac{\Gamma \vdash A \quad \alpha \notin F V(\Gamma)}{\Gamma \vdash \forall \alpha \cdot A}(\forall R) \quad \frac{\Gamma, B[C / \alpha] \vdash A}{\Gamma, \forall \alpha \cdot B \vdash A}(\forall L)
\end{gathered}
$$

An equivalent formulation of ILL

$$
\begin{gathered}
\frac{\overline{A \vdash A}(I d) \quad}{} \begin{array}{c}
\frac{\Gamma \vdash A \quad \Delta, A \vdash B}{\Gamma \vdash A \vdash B}(c u t) \\
\Gamma \mapsto B
\end{array}(\multimap R) \quad \frac{\Gamma \vdash A \quad B, \Delta \vdash C}{A \multimap B, \Gamma, \Delta \vdash C}(\multimap L) \\
\frac{\Gamma, \overbrace{A, \ldots, A}^{\Gamma,!A \vdash C}}{n \text { times }}(m p x) \quad \frac{\Gamma \vdash A}{\Gamma \vdash!A}(s p) \\
\frac{\Gamma,!!B \vdash A}{\Gamma,!B \vdash A}(\text { digging }) \\
\frac{\Gamma \vdash A \quad \alpha \notin F V(\Gamma)}{\Gamma \vdash \forall \alpha \cdot A}(\forall R) \quad \frac{\Gamma, B[C / \alpha] \vdash A}{\Gamma, \forall \alpha \cdot B \vdash A}(\forall L)
\end{gathered}
$$

NOTE. (W) is $(m p x)$, with $n=0 .(C)$ is $(m p x)+($ digging $)$.

From ILL to SLL

$$
\text { SLL }=\text { ILL }-(\text { digging })
$$

which means that

$$
!A \multimap!!A
$$

does not hold anymore.
So the modality ! can effectively be used for counting the number of duplications of formulae performed in a proof.

Soft Linear Logic (SLL) ($-,!, \forall$ fragment)

$$
\begin{gathered}
\frac{}{A \vdash A}(I d) \quad \frac{\Gamma \vdash A \quad \Delta, A \vdash B}{\Gamma, \Delta \vdash B}(c u t) \\
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B}(\multimap R) \quad \frac{\Gamma \vdash A \quad B, \Delta \vdash C}{A \multimap B, \Gamma, \Delta \vdash C}(\multimap L) \\
\frac{\Gamma, \overbrace{A, \ldots, A}}{\Gamma,!A \vdash C}(m p x) \quad \frac{\Gamma \vdash A}{!\Gamma \vdash!A}(s p) \\
\frac{\Gamma \vdash A \quad \alpha \notin F V(\Gamma)}{\Gamma \vdash \forall \alpha \cdot A}(\forall R) \quad \frac{\Gamma, B[C / \alpha] \vdash A}{\Gamma, \forall \alpha \cdot B \vdash A}(\forall L)
\end{gathered}
$$

n is the rank of the rule ($m p x$).

Properties of SLL

The cut elimination procedure applied on a proof Π of size n takes a number of steps $\leq|\Pi| \times n^{d}$, where:

- $|\Pi|$ is the size of Π
- n is the maximum rank of a multiplexor in Π
- d is the maximum number of nested applications of rule ($s p$) in Π (depth of the proof).

So, considering:

```
    PROOFS as PROGRAM
CUT - ELIMINATION as COMPUTATION
```

SLL is correct for polynomial time computations. Moreover, every polynomial time Turing

Machine can be encoded by a SLL proof. Since data can be encoded by proofs with depth 0 , SLL is also complete for polynomial time computations.

A standard decoration of SLL by λ-terms

$$
\begin{aligned}
& \overline{x: A \vdash x: A}(I d) \quad \frac{\Gamma \vdash M: A \Delta, x: A \vdash N: B \Gamma \# \Delta}{\Gamma, \Delta \vdash N[M / x]: B}(c u t) \\
& \frac{\Gamma \vdash M: A \quad x: B, \Delta \vdash N: C \quad \Gamma \# \Delta \quad y \text { fresh }}{\Gamma, y: A \multimap B, \Delta \vdash N[y M / x]: C}(\multimap L) \\
& \frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x \cdot M: A \multimap B}(\multimap R) \\
& \frac{\Gamma \vdash M: A}{!\Gamma \vdash M:!A}(s p) \quad \frac{\Gamma, x_{0}: A, \ldots, x_{n}: A \vdash M: B}{\Gamma, x:!A \vdash M\left[x / x_{0}, \ldots, x / x_{n}\right]: B}(m p x) \\
& \frac{\Gamma \vdash M: A}{\Gamma \vdash M: \forall \alpha . A}(\forall R) \\
& \frac{\Gamma, x: A[B / \alpha] \vdash M: C}{\Gamma, x: \forall \alpha . A \vdash M: C}(\forall L)
\end{aligned}
$$

Problems

- The decorated system does not enjoy subject reduction.

$$
x: A \multimap!B, y: A \vdash x y:!B
$$

$$
\begin{aligned}
& \text { So } x: A \multimap!B, y: A \vdash(\lambda z w . w z z)(x y):!B \multimap(!B \multimap!B \multimap A) \multimap A \text {, but } \\
& x: A \multimap!B, y: A \nvdash \lambda w \cdot w(x y)(x y):!B \multimap(!B \multimap!B \multimap A) \multimap A
\end{aligned}
$$

- The decorated system does not inherit the complexity properties of SLL: some terms can be typed, which reduce in exponential time in their size:

$$
\left.z:!A, y_{1}:!A \multimap!A \multimap!A, \ldots, y_{n}!!A \multimap!A \multimap!A \vdash_{L}\left(\lambda x . y_{1} x x\right)\left(\ldots\left(\left(\lambda x . y_{n} x x\right) z\right)\right) \ldots\right):!A
$$

(Technical reason: a term with a modal type can be derived from a not modal context, so modality does not implies anymore that the term can be duplicated).
Moreover:

- The sequent calculus presentation is not suitable for a programming language. : it does not allow proofs by induction on terms.

Solution

STA is a natural deduction style type assignment system inspired by SLL, but:

- Terms are built in a linear way, and ($m p x$) rule is used for controlling variable duplication.
Technically this is realized by using as types a subset of the SLL formulae such that:
- \forall is not allowed on modal formulae
- ! is not allowed on the right of \multimap
- weakening introduces not modal formulae

STA types are the following subset of SLL formulae:

$$
\begin{aligned}
A & ::=\alpha|\sigma \multimap A| \forall \alpha . A \quad \text { (linear types) } \\
\sigma & ::=A \mid!\sigma
\end{aligned}
$$

Rules of STA

$$
\begin{gathered}
\frac{x: A \vdash x: A}{}\left(A x \quad \frac{\Gamma \vdash M: \sigma}{\Gamma, x: A \vdash M: \sigma}(w)\right. \\
\frac{\Gamma, x: \sigma \vdash M: A}{\Gamma \vdash \lambda x \cdot M: \sigma \multimap A}(\multimap I) \quad \frac{\Gamma \vdash M: \sigma \multimap A \quad \Delta \vdash N: A \quad \Gamma \# \Delta}{\Gamma, \Delta \vdash M N: A}(\multimap E) \\
\frac{\Gamma, x_{1}: \sigma, \ldots, x_{n}: \sigma \vdash M: A}{\Gamma, x:!\sigma \vdash M\left[x / x_{1}, \ldots, x / x_{n}\right]: A}(m p x) \quad \frac{\Gamma \vdash \sigma}{!\Gamma \vdash!\sigma}(s p) \\
\frac{\Gamma \vdash A \quad \alpha \notin F V(\Gamma)}{\Gamma \vdash M: \forall \alpha . A}(\forall I) \quad \frac{\Gamma \vdash M: \forall \alpha \cdot A}{\Gamma \vdash M: A[B / \alpha]}(\forall E)
\end{gathered}
$$

NOTE. $\Gamma \# \Delta$ denotes that the two contexts have disjoint variables.

Linearity Properties of STA

- $\Gamma \vdash M: \sigma$ and $x: A \in \Gamma$ imply x occurs at most once in M;
- $\Pi:!\Gamma \vdash M:!\sigma$ implies Π can be tranformed into a derivation Π^{\prime} :

$$
\frac{\Gamma \vdash M: \sigma}{!\Gamma \vdash M:!\sigma}(s p)
$$

So the modality ! is truly a witness of the possibility of duplication!

Properties of STA

Theorem 1 (Subject Reduction) $\quad \Gamma \vdash M: \mu$ and $M \rightarrow_{\beta} M^{\prime}$ imply $\Gamma \vdash M^{\prime}: \mu$

Theorem 2 (Polynomial Time Soundness) Let M be typable in STA and let $\Pi: \Gamma \vdash M: \sigma$, for some Γ and σ, and let $d(\Pi)$ be the maximal nesting of (sp) rule applications in Π. Then reduces to a normal form in a number of steps:

$$
\leq|M|^{d(\Pi)+1}
$$

and this implies that it reduces in normal form on a Turing machine in time:

$$
\leq|M|^{3 \times(d(\Pi)+1)}
$$

This means that every typing for M gives an upper bound to its reduction time!

Toward the Polynomial Completeness

Definition 1 (λ-definability) Let f be an n-ary total function from $I_{1} \times \ldots \times I_{n}$ to O, and let elements in I_{i} and in O be encoded by λ-terms $(1 \leq i \leq n)$. Let \underline{d} be the term encoding the data d.
f is λ-definable if, for some $\underline{f} \in \Lambda: \underline{f} \underline{i_{1}} \ldots \underline{i_{n}}=\beta \underline{f\left(i_{1}, \ldots, i_{n}\right)}$.
So we can code:

- iterators by Church numerals

$$
\underline{n}=\lambda x y \cdot \underbrace{x(\ldots x(x}_{n} y))): \forall \alpha .!^{i}(\alpha \multimap \alpha) \multimap \alpha \multimap \alpha
$$

- natural numbers by strings of booleans

$$
\left[b_{0}, b_{1}, \ldots, b_{n}\right] \stackrel{\text { def }}{=} \lambda c z \cdot c b_{0}\left(\cdots\left(c b_{n} z\right) \cdots\right): \forall \alpha \cdot!^{i}(\mathbf{B} \multimap \alpha \multimap \alpha) \multimap(\alpha \multimap \alpha)
$$

where $\mathrm{B} \stackrel{\text { def }}{=} \forall \alpha . \alpha \multimap \alpha \multimap \alpha$

Polynomial Completeness

Theorem 3 (PTIME Completeness) If a decision problem \mathfrak{P} is decided in polynomial time P, where $\operatorname{deg}(P)=m$, and in polynomial space Q, where $\operatorname{deg}(Q)=l$, by a Turing Machine \mathcal{M} then it is representable by a term \underline{M} typable in STA with a derivation Π with conclusion

$$
s:!^{\max (l, m, 1)+1} \forall \alpha .(\mathbf{B} \multimap \alpha \multimap \alpha) \multimap(\alpha \multimap \alpha) \vdash \underline{M}: \mathbf{B}
$$

Theorem 4 (FPTIME Completeness) If a function \mathcal{F} is computed in polynomial time P, where $\operatorname{deg}(P)=m$, and in polynomial space Q, where $\operatorname{deg}(Q)=l$, by a Turing Machine \mathcal{M}, then it is representable by a term \underline{M} such that:
$s:!^{\max (l, m, 1)+1} \forall \alpha \cdot(\mathbf{B} \multimap \alpha \multimap \alpha) \multimap(\alpha \multimap \alpha) \vdash \underline{M}: \forall \alpha \cdot!^{2 m+1}(\mathbf{B} \multimap \alpha \multimap \alpha) \multimap(\alpha \multimap \alpha)$

From Polynomial Time to Polynomial Space

Polynomial Space Computations coincide with polynomial time alternating Turing Machine Computations (APTIME). In particular:
PSPACE = NPSPACE = APTIME

So we can start from STA, characterizing polynomial time computations, adding to it some features (both to types and to the λ-calculus) in order to catch PSPACE.

We need to represent a computation that repeatedly fork into subcomputations and whose result is obtained by a backward computation from all the subcomputations results.

Technically we need:

- an if constructor on the language
- a special type B for booleans

Terms and Types of $S T A B_{B}$

Terms of STA $_{\mathbf{B}}$:

$$
M::=x|0| 1|\lambda x . M| M M \mid \text { if } M \text { then } M \text { else } M
$$

Reduction rules:

$$
\begin{aligned}
& \quad(\lambda x . M) N \rightarrow_{\beta} M[N / x] \\
& \text { if } 0 \text { then } M \text { else } N \rightarrow_{\delta} M \quad \text { if } 1 \text { then } M \text { else } N \rightarrow_{\delta} N
\end{aligned}
$$

$\rightarrow_{\beta \delta}^{*}$ denotes the reflexive and transitive closure of $\rightarrow_{\beta \delta}$.
Types of STA $_{B}$:

$$
\begin{aligned}
& A::=\mathrm{B}|\alpha| \sigma \multimap A \mid \forall \alpha . A \quad \text { (Linear Types) } \\
& \sigma::=A \mid!\sigma
\end{aligned}
$$

Rules of $S T A B_{B}$

$$
\begin{gathered}
\overline{x: A \vdash x: A}(A x) \quad \overline{\vdash 0: \mathbf{B}}\left(\mathbf{B}_{0} I\right) \quad \overline{\vdash 1: \mathbf{B}}\left(\mathbf{B}_{1} I\right) \quad \frac{\Gamma \vdash M: \sigma}{\Gamma, x: A \vdash M: \sigma}(w) \\
\frac{\Gamma, x: \sigma \vdash M: A}{\Gamma \vdash \lambda x . M: \sigma \multimap A}(\multimap I) \quad \frac{\Gamma \vdash M: \sigma \multimap A \quad \Delta \vdash N: \sigma \quad \Gamma \# \Delta}{\Gamma, \Delta \vdash M N: A}(\multimap E) \\
\frac{\Gamma, x_{1}: \sigma, \ldots, x_{n}: \sigma \vdash M: \mu}{\Gamma, x:!\sigma \vdash M\left[x / x_{1}, \cdots, x / x_{n}\right]: \mu}(m) \quad \frac{\Gamma \vdash M: \sigma}{!\Gamma \vdash M:!\sigma}(s p) \\
\frac{\Gamma \vdash M: A \quad \alpha \notin \mathrm{FTV}(\Gamma)}{\Gamma \vdash M: \forall \alpha . A}(\forall I) \quad \frac{\Gamma \vdash M: \forall \alpha \cdot B}{\Gamma \vdash M: B[A / \alpha]}(\forall E) \\
\frac{\Gamma \vdash M: \mathrm{B} \quad \Gamma \vdash N_{0}: \sigma \quad \Gamma \vdash N_{1}: \sigma}{\Gamma \vdash \text { if } M \text { then } N_{0} \text { else } N_{1}: \sigma}(\mathbf{B} E)
\end{gathered}
$$

Properties of STA_{B}

- Theorem 5 (Subject Reduction) Let $\Gamma \vdash M: \sigma$ and $M \rightarrow_{\beta \delta} N$. Then $\Gamma \vdash N: \sigma$.

Remark 1 The new rule ($\mathbf{B E}$) has an additive behaviour of contexts. As consequence, $\mathrm{STA}_{\mathrm{B}}$ is no more correct for polynomial time computations.
In fact, let:

$$
M_{n}=\left(\lambda y z \cdot y^{n} z\right)(\lambda x . \text { if } x \text { then } x \text { else } x) 0
$$

for all n:

$$
\vdash M_{n}:!(\mathbf{B} \multimap \mathbf{B}) \multimap \mathbf{B} \multimap \mathbf{B}
$$

but

$$
M_{n} \rightarrow_{\beta \delta}^{*} 0
$$

in a number of steps exponential in n!

Toward PSPACE characterization

Let $M_{0} \rightarrow_{\beta \delta} M_{1} \rightarrow_{\beta \delta}{ }^{\ldots} \rightarrow_{\beta \delta} M_{n}$, where M_{n} is a normal form. The space used by this reduction is the maximum size of $M_{i}(0 \leq i \leq n)$.
While for STA the complexity time properties hold for every reduction strategy (i.e., a term M typable in STA reduces to normal form in a polynomial number of steps, for every reduction strategy), the space characterization will hold only for the leftmost-outermost reduction strategy. In fact, let:

$$
M=(\lambda y z . z) M_{n}=(\lambda y z . z)\left(\left(\lambda y z . y^{n} z\right)(\lambda x . \text { if } x \text { then } x \text { else } x) 0\right) \rightarrow_{\beta \delta}^{*} \lambda z . z
$$

Clearly the size of M is linear in n. Using the leftmost outermost reduction strategy, it takes space linear in M :

$$
(\lambda y z . z) M_{n} \rightarrow_{\beta \delta} \lambda z . z
$$

while, using the innermost strategy, it takes space exponential in n, since (posing $P=\lambda x$. if x then x else $x) 0$)

$$
M \rightarrow_{\beta \delta}^{*}(\lambda y z . z)\left(P^{n} 0\right) \rightarrow_{\beta \delta}^{*} 0
$$

A leftmost outermost reduction machine

The machine is a set of rules of the shape:

$$
\mathcal{C}, \mathcal{A} \models N \Downarrow b
$$

where:

- \mathcal{A} is the store, and it allows to perform substitutions one occurrence at a time:

$$
\mathcal{A}::=\emptyset \mid \mathcal{A} @\{x:=M\}
$$

- \mathcal{C} is a context remembering the computation path, and it allows to avoid backtracking:

$$
\mathcal{C}[\circ]::=\circ \mid(\text { if } \mathcal{C}[\circ] \text { then } L \text { else } R) V_{1} \cdots V_{n}
$$

- N is program (a closed term of type B)

The rules of the machine

$$
\begin{gathered}
\overline{\mathcal{C}, \mathcal{A} \models \mathrm{b} \Downarrow \mathrm{~b}}(A x) \\
\frac{\mathcal{C}, \mathcal{A} @\left\{x^{\prime}:=N\right\} \models M\left[x^{\prime} / x\right] V_{1} \cdots V_{m} \Downarrow \mathrm{~b}^{*}}{\mathcal{C}, \mathcal{A} \models(\lambda x . M) N V_{1} \cdots V_{m} \Downarrow \mathrm{~b}}(\beta) \\
\frac{\{x:=N\} \in \mathcal{A} \quad \mathcal{C}, \mathcal{A} \models N V_{1} \cdots V_{m} \Downarrow \mathrm{~b}}{\mathcal{C}, \mathcal{A} \models x V_{1} \cdots V_{m} \Downarrow \mathrm{~b}}(h) \\
\frac{\mathcal{C}\left[\left(\text { if }[\mathrm{o}] \text { then } N_{0} \text { else } N_{1}\right) V_{1} \cdots V_{m}\right], \mathcal{A} \models M \Downarrow \mathrm{o} \quad \mathcal{C}, \mathcal{A} \models N_{0} V_{1} \cdots V_{m} \Downarrow \mathrm{~b}}{\mathcal{C}, \mathcal{A} \models\left(\text { if } M \text { then } N_{0} \text { else } N_{1}\right) V_{1} \cdots V_{m} \Downarrow \mathrm{~b}} \text { (if 0) } \\
\frac{\mathcal{C}\left[\left(\text { if }[\mathrm{o}] \text { then } N_{0} \text { else } N_{1}\right) V_{1} \cdots V_{m}\right], \mathcal{A} \models M \Downarrow 1 \quad \mathcal{C}, \mathcal{A} \models N_{1} V_{1} \cdots V_{m} \Downarrow \mathrm{~b}}{\mathcal{C}, \mathcal{A} \models\left(\text { if } M \text { then } N_{0} \text { else } N_{1}\right) V_{1} \cdots V_{m} \Downarrow \mathrm{~b}} \text { (if 1) } \\
\text { (*) } x^{\prime} \text { is a fresh variable. }
\end{gathered}
$$

Properties of STA $_{B}$

Let the abstract machine compute: $\mathcal{C}, \mathcal{A} \models M \Downarrow \mathrm{~b}$. Then the space used by the machine during this computation is:
the maximal size of the store used during the computation
the maximal size of the context used during the computation
Theorem 6 (Polynomial Space Soundness) Let M be a program (a closed term of type B), and let Π be a derivation of $\vdash M: \mathbf{B}$, and let $d(\Pi)$ be the depth of Π (the maximal nesting of applications of ($s p$) rule in Π). Then M reduces to normal form using a space

$$
\leq 3 \times|M|^{3 \times d(\Pi)+4}
$$

This means that every typing for M gives an upper bound to its reduction space !

Properties of STA $_{B}$

Lemma 1 A decision problem $\mathcal{D}:\{0,1\}^{*} \rightarrow\{0,1\}$ decidable by an Alternating Turing Machine \mathcal{M} in polynomial time and space is programmable in STA $_{\mathbf{B}}$.

The proof is given by a coding of Alternating Turing Machine, similar to the coding used for STA.

Theorem 7 (Polynomial Space Completeness) Every decision problem $\mathcal{D} \in$ PSPACE is programmable in $\mathrm{STA}_{\mathrm{B}}$.

Bibliography

- STA and $S T A_{B}$ have been presented respectively in:

Gaboardi M., Ronchi Della Rocca S., "A Soft type assignment system for λ-calculus", CSL '07. Gaboardi M., Marion J. Y., Ronchi Della Rocca S., " A logical account of PSPACE", submitted.

- Other characterization of polynomial computations though λ-calculus and type assignment system based on LAL (Light Affine Logic):

Baillot P., Terui K., "Light Types for polynomial time computation in λ-calculus", LICS 04.

- A characterization of elementary computations though λ-calculus and type assignment system based on EAL (Elementary Affine Logic):

Coppola P., Dal Lago U., Ronchi Della Rocca S., "Elementary Affine Logic and and the call-by-value λ-calculus", TLCA 05.

- There are not other logical charactizations of PSPACE, beyond STA $_{B}$.

Future developments

- The STA type assignment system is undecidable. We are exploring decidable restrictions of STA, which preserve the complexity bounds. (with Marco Gaboardi and Luca Roversi)
- We would like to give a characterization by a type assignment system also for (F)NPTIME , the computations that can be curried out in polynomial time by a non deterministic Turing Machine. The idea is to extend the λ-calculus by a non determistic operator, and STA by a logical sum.
(with Marco Gaboardi)

