| N

Soft Time and Soft Space

Soft Linear Logic and Polynomial-bound Complexity
Classes

Simona Ronchi Della Rocca

Dipartimento di Informatica - Universita di Torino
ronchi @li .unito.it

L |

LSFA Ouro Preto 28/8/2007 — p.1/2

L

| ntroduction

-

ICC: Implicit Computational Complexity

The problem: to design programming languages with bounded computational
complexity

The proposed solution: a ML-like approach

®)-calculus as paradigmatic programming language

® Types as semantic properties of terms

® Type assignment for A-calculus such that:
& types garantee the correctness of terms, in particular their complexity bound
& if the type inference is decidable, the desired properties can be checked
statically at compilation time
® The tecnical tool: the Light Logics (derived from the Linear Logic of Girard) where
the cut-elimination procedure is bounded in time by the size of the proof,
exploiting the isomorphism:

FORMULAFE asTY PES

|

LSFA Ouro Preto 28/8/2007 — p.2/2

oo b

Outline

-

Soft Linear Logic (SLL)(Lafont, 1988)
STA, a type assignment for A-calculus derived from SLL

Properties of STA.:
» Subject reduction

® Correctness: aterm typable in STA reduces to normal form in a number of steps
polynomial in its size

® Completeness : all polynomial functions can be programmed in STA
STAg, an extension of STA typing an extended \-calculus
» Subject reduction

® Correctness : aterm typable in STAg can be reduced to normal form using
polynomial space in its size

® Completeness : all polynomial space functions can be programmed in STAg

Future development

|

LSFA Ouro Preto 28/8/2007 — p.3/2

|ntuitionistic Linear Logic (—, !,V fragment)

| N

TFA AAFB

I
ara) T AF B (cut)
A+ B (o R) Tk A _&AFC(Ly
—o0 —o0
I'HA —oB A—o BT, AFC
T A I''BFEA
' ! 'L
roa B mpra 0
re A T IB,'BF A
Tigra W) tigra)

LEA agFVT) o T,B[C/a]F A
T+ VoA (VE) [,Va.BF A

L |

LSFA Ouro Preto 28/8/2007 — p.4/2

VL)

An eguivalent formulation of ILL

TFA AAFB

(Id) T AT B (cut)

AFA

I A B o LEA BArC
rFaop A BT.ArCc (0

n times

——
A, ..., Ar-C ' A
T1AFC %) jFha 6P
TNUBHA
- 4 \di9g9ing)
'FA agFV(D) v I'yB[C/a] - A I
I'Va.A (VE) I''Va.BF A (VL)

_NOTE. (W) is (mpx), withn = 0. (C) is (mpx)+(digging). J

LSFA Ouro Preto 28/8/2007 — p.5/2

From ILL to SLL

- N

SLL = ILL — (digging)

which means that
A —o!l A

does not hold anymore.
So the modality ! can effectively be used for counting the number of duplications of formulae

performed in a proof.

. |

LSFA Ouro Preto 28/8/2007 — p.6/2

Soft Linear Logic (SLL) (—, !,V fragment)

| N

T'FA AAFB
I,AF B

(Id) (cut)

AFA

I'AF B ' A B,AFC
(— R) (
I'HA —oB A—o BT, AFC

—oL)

n times

——
rA,... AFC e A
Tiarc P8 g (P

LEA agFVD) o T,BC/a]F A
T+ VoA (VE) [,Va.BF A)

n is the rank of the rule (mpx).

L |

LSFA Ouro Preto 28/8/2007 — p.7/2

Properties of SLL

fThe cut elimination procedure applied on a proof II of size n takes a number of steps —‘
< || x n?, where:
- |TI] is the size of II
- n 1S the maximum rank of a multiplexor in I1
- d 1s the maximum number of nested applications of rule (sp) in II (depth of the proof).
So, considering:

PROOF'S as PROGRAM
CUT — ELIMINATION as COMPUTATION

SLL is correct for polynomial time computations. Moreover, every polynomial time Turing
Machine can be encoded by a SLL proof. Since data can be encoded by proofs with depth 0,

SLL is also complete for polynomial time computations.

. |

LSFA Ouro Preto 28/8/2007 — p.8/2

A standard decoration of SLL by A-terms

| N

Id FI—M:AA,QJ:AI—N:BF#A()
) T,AF N[M/z]: B .

aj:Al—aj:A(

I'-M:A x:B,AFN:C T'#A yfresh
I'y:A— B,AF NyM/z|:C

(— L)

I'e:A+-M:B
' e.M:A—oB

(— R)

TEM:A oot Aoy, t AEM 2 B
T M 1A (5p) Uyoe A Mlx/xo,...,x /x| : B

(mpz)

[o: AB/alt- M :C
I'o:Va.AF M :C

' M:Va.A

VR) (VL)

|

LSFA Ouro Preto 28/8/2007 — p.9/2

Problems

The decorated system does not enjoy subject reduction.

x:A—-oB,y: Al xy:B
Sozx:A—lB,y: A (Azw.wzz)(xy) !B — (1B —o!B —0 A) —o A, but
x:A—lB,y: A ww(zy)(zy) !B — (1B —!B —0 A) — A

® The decorated system does not inherit the complexity properties of SLL :
some terms can be typed, which reduce in exponential time in their size:

z Ay A —olA —olA| ... yn A —lA A (Az.yr1z2)(...((A\T.Yynzx)2))...) 1A

(Technical reason: a term with a modal type can be derived from a not modal context, so
modality does not implies anymore that the term can be duplicated) .
Moreover:

» The sequent calculus presentation is not suitable for a programming language. :

‘ it does not allow proofs by induction on terms. \

LSFA Ouro Preto 28/8/2007 — p.10/2

Solution

‘ STA is a natural deduction style type assignment system inspired by SLL, but: \

9

Terms are built in a linear way, and (mpx) rule is used for controlling variable
duplication.
Technically this is realized by using as types a subset of the SLL formulae such that:

® YVYis not allowed on modal formulae
® ! is not allowed on the right of —o

weakening introduces not modal formulae

STA types are the following subset of SLL formulae:

A = a|oc—oA|Va.A (linear types)

o = Allo

|

LSFA Ouro Preto 28/8/2007 — p.11/2

Rules of STA

I'-M:o (w)
e: AFM : 0o

(Ax

r:AFx: A

Fe:ocFM:A I I'EM:0—oA AFN:A T#HA
TFowdl o oA 0 T,AFMN:A

(— E)

ey :0,...,0n:0FM: A e o
(mpx)
DxlobE Mlz/z1,...,x/xn] : A T Ho

(sp)

FFA ad FV(T) (vi) ~LEM:vaA
I'FM:Va.A ' M : A[B/a]

(VE)

NOTE. I'# A denotes that the two contexts have disjoint variables.

. |

LSFA Ouro Preto 28/8/2007 — p.12/2

Linearity Properties of STA

-~

® THM:o0andz: A c I imply z occurs at most once in M;

® 11:T+ M :loimplies IT can be tranformed into a derivation I1’:

I'-M: o
T+ M :lo

(sp)

So the modality ! is truly a witness of the possibility of duplication!

|

LSFA Ouro Preto 28/8/2007 — p.13/2

Properties of STA

Theorem 1 (Subject Reduction) I' M : pand M —g M imply ' = M’ : i

Theorem 2 (Polynomial Time Soundness) Let M be typable in STA and let
I[I:T'F M : o, forsome I" and o, and let d(I1) be the maximal nesting of (sp) rule
applications in II. Then reduces to a normal form in a number of steps:

<| M |d(H)+1

and this implies that it reduces in normal form on a Turing machine in time:

§| M |3><(d(1'[)—|—1)

This means that every typing for M gives an upper bound to its reduction time !

. |

LSFA Ouro Preto 28/8/2007 — p.14/2

Toward the Polynomial Completeness

‘ Definition 1 (\-definability) Let f be an n-ary total function from I; x ... x I, to O, and let \
elements in I; and in O be encoded by A-terms (1 < ¢ < n). Let d be the term encoding the

data d.
f is A-definable if, for some f € A: fii...ip =5 (i1, .., in).

So we can code:

® iterators by Church numerals

n=Azy.z(..z(zy))) : Va.!"(a —o a) —o o —o «
N——

n

® natural numbers by strings of booleans

[b0,b1,...,bn] def Aez.cbo (- (cbpz)---) 1 Val'(B — a —o a) —o (av —o a)

def
where B = Va.a —o o —o o

L |

LSFA Ouro Preto 28/8/2007 — p.15/2

Polynomial Completeness

‘ Theorem 3 (PTIME Completeness) If a decision problem B is decided in polynomial time \
P, where deg(P) = m, and in polynomial space @, where deg((Q)) = [, by a Turing Machine
M then it is representable by a term M typable in STA with a derivation II with conclusion

s (Amazlm D41y (B —oq —oa) —o (o —a) - M : B

Theorem 4 (FPTIME Completeness) If a function F is computed in polynomial time P,
where deg(P) = m, and in polynomial space @, where deg(()) = [, by a Turing Machine M,
then it is representable by a term M such that:

s amermDHlyg (B —oa —oa) —o (o —a) - M : Va!?" T (B —oa — a) —o (a — a)

L |

LSFA Ouro Preto 28/8/2007 — p.16/2

From Polynomial Timeto Polynomial Space

Polynomial Space Computations coincide with polynomial time alternating Turing Machine
Computations (APTIME). In particular:

PSPACE = NPSPACE = APTIME

So we can start from STA, characterizing polynomial time computations, adding to it some
features (both to types and to the A-calculus) in order to catch PSPACE.

We need to represent a computation that repeatedly fork into subcomputations and whose
result is obtained by a backward computation from all the subcomputations results.

Technically we need:
® an if constructor on the language

® aspecial type B for booleans

. |

LSFA Ouro Preto 28/8/2007 — p.17/2

Termsand Typesof STAg

‘ Terms of STAR: \

M:=z|0|1| .M | MM | if M then M else M

Reduction rules:
(Ax. M)N —g M[N/xz]

if O then M else N —s M if 1 then M else N —s N

— s denotes the reflexive and transitive closure of — ;.

Types of STAR:
A:=B|a|oc—oA|Va.A (Linear Types)

ou:=A |lo

| |

LSFA Ouro Preto 28/8/2007 — p.18/2

Rulesof STAp
B o

I'-M:o
(Bol) F1:B (B1l) e: AFM :0o (w)

(Ax)

z: A x: A FO:B

I'FM:0—oA AFN:0 T'#A
(— L)

Fx:oFM:A
I'AFMN: A

: (—o I)
I'FXeM:0—o0A

I'ey:o,...,2n 0 M : p '-M:o
. — (m) — (sp)
Dyx:ilob- Mlz/z1,--- ,x/xn] i p T'- M :lo

THM:A FTV(T .
a & (I') V1) M :Va.B (VE)
I'M:Va.A '+ M : B[A/q]

I'EM:B I'FNog:o I'ENj:o (BE)
I' if M then Ng else N1 : o

|

LSFA Ouro Preto 28/8/2007 — p.19/2

Propertiesof STAg

. N

® Theorem 5 (Subject Reduction) LetI' - M :cand M —gs N. ThenT'+ N : 0.

Remark 1 The new rule (BE) has an additive behaviour of contexts. As consequence,
STAg is no more correct for polynomial time computations.

In fact, let:
M, = (A\yz.y"z)(Ax. if x then x else =)0
for all n:
- M, :!(B—o-B)—oB -—oB
but

In a number of steps exponential in n!

. |

LSFA Ouro Preto 28/8/2007 — p.20/2

Toward PSPACE characterization

|7Let Mo —gs My —gs ... —ps My, where M, is a normal form. The space used by this —‘
reduction is the maximum size of M; (0 <1 < n).
While for STA the complexity time properties hold for every reduction strategy (i.e., a term
M typable in STA reduces to normal form in a polynomial number of steps, for every
reduction strategy), the space characterization will hold only for the leftmost-outermost
reduction strategy. In fact, let:

M = (A\yz.z2)Mp = (Ayz.2)((A\yz.y"2)(Az. if = then z else z)0) — 35 Az.2

Clearly the size of M is linear in n. Using the leftmost outermost reduction strategy, it takes
space linear in M:
(Ayz.z)Mp —gs A\z.2

while, using the innermost strategy, it takes space exponential in n, since (posing
P = A\x. if x then = else x)0)

M —5s5 (Ayz.2)(P"0) —55 0

| |

LSFA Ouro Preto 28/8/2007 — p.21/2

A leftmost outer most reduction machine

‘ The machine is a set of rules of the shape: \

CLAEN b

where:

® Aisthe store, and it allows to perform substitutions one occurrence at a time:

Aux=0| AQ{x = M}

® (s a context remembering the computation path, and it allows to avoid backtracking:

Clo] := o | (if Clo]| then L else R)V7 ---V},

® N is program (a closed term of type B)

| |

LSFA Ouro Preto 28/8/2007 — p.22/2

Therules of the machine

C,AED|UD (Az)

C,AQ{x' .= N} = M[x'/x]V1--- Vi, § D*
C. A= Ox M)NVi - Vi U b

(8)

{x =N}e A CCAENVI--- Vi, Db
CCAEzVLI-- Vi Ib

(h)

C[(if [o] then Np else N1)Vi--- V|, A=EM 0 C,L A= NoViI--- Vi b
C,AE= (if M then Ng else Ny)Vi-- -V, | Db

(if 0)

C[(if [o] then N else N1)Vi--- V|, A=EM 1 CLAENVI--- Vi b
C,A = (if M then Ny else Ny)Vi---V, b

(*) «’ is a fresh variable.

LSFA Ouro Preto 28/8/2007 — p.23/2

(if 1)

Propertiesof STAg

‘ Let the abstract machine compute: C, A = M |} b. Then the space used by the machine \
during this computation is:

the maximal size of the store used during the computation
+

the maximal size of the context used during the computation

Theorem 6 (Polynomial Space Soundness) Let M be a program (a closed term of type
B), and let IT be a derivation of - M : B, and let d(IT) be the depth of II (the maximal
nesting of applications of (sp) rule in IT). Then M reduces to normal form using a space

< 3x ‘ M |3><d(H)—|—4

This means that every typing for M gives an upper bound to its reduction space !

| |

LSFA Ouro Preto 28/8/2007 — p.24/2

Propertiesof STAg

Lemma 1 A decision problem D : {0,1}* — {0, 1} decidable by an Alternating Turing
Machine M in polynomial time and space is programmable in STAg.

The proof is given by a coding of Alternating Turing Machine, similar to the coding used for
STA.

Theorem 7 (Polynomial Space Completeness) Every decision problem D € PSPACE is
programmable in STAg.

. |

LSFA Ouro Preto 28/8/2007 — p.25/2

Bibliography

-

STA and STAg have been presented respectively in:
Gaboardi M., Ronchi Della Rocca S., “ A Soft type assignment system for A-calculus”, CSL '07.
Gaboardi M., Marion J. Y., Ronchi Della Rocca S.,* A logical account of PSP AC E”, submitted.

Other characterization of polynomial computations though A-calculus and type
assignment system based on LAL (Light Affine Logic):
Baillot P, Terui K., “Light Types for polynomial time computation in A-calculus”, LICS 04.

A characterization of elementary computations though A-calculus and type assignment
system based on EAL (Elementary Affine Logic):

Coppola P, Dal Lago U., Ronchi Della Rocca S.,“Elementary Affine Logic and and the call-by-value
A-calculus”, TLCA 05.

There are not other logical charactizations of PSPACE, beyond STAg.

|

LSFA Ouro Preto 28/8/2007 — p.26/2

Future developments

- N

® The STA type assignment system is undecidable. We are exploring decidable
restrictions of STA, which preserve the complexity bounds.
(with Marco Gaboardi and Luca Roversi)

® We would like to give a characterization by a type assignment system also for
(F)NPTIME , the computations that can be curried out in polynomial time by a non
deterministic Turing Machine. The idea is to extend the A-calculus by a non determistic
operator, and STA by a logical sum.
(with Marco Gaboardi)

. |

LSFA Ouro Preto 28/8/2007 — p.27/2

	Introduction
	Outline
	Intuitionistic Linear Logic ($lin , !, �orall $ fragment)
	An equivalent formulation of $ILL $
	From $ILL $ to $SLL $
	Soft Linear Logic ($SLL $)
($lin , ! ,�orall $ fragment)
	Properties of $SLL $
	A standard decoration of $SLL $ by $lambda $-terms
	Problems
	Solution
	Rules of $STA $
	Linearity Properties of $STA $
	Properties of $STA $
	Toward the Polynomial Completeness
	Polynomial Completeness
	From Polynomial Time to Polynomial Space
	Terms and Types of $BSTA $
	Rules of $BSTA $
	Properties of $BSTA $
	Toward PSPACE characterization
	A leftmost outermost reduction machine
	The rules of the machine
	Properties of $BSTA $
	Properties of $BSTA $
	Bibliography
	Future developments

