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Abstract. A standard genetic algorithm for sorting unsigned genomes
by translocations is improved in two different manners: 1. a memetic al-
gorithm (GAMA ) is provided, which embeds a new stage of local search,
based on the concept of mutation applied in only one gene; 2. an opposition-
based learning (GAOBL ) mechanism is provided, which explores the con-
cept of internal opposition applied to a chromosome. The proposed ap-
proaches include a convergence control mechanism of the population us-
ing the Shannon entropy. Additionally, non-parametric statistical tests
were performed to compare the proposed algorithms with the standard
genetic algorithm. For the experiments, both biological and synthetic
genomes were used. The results from these experiments showed that the
GAMA outperforms the GAOBL and the genetic algorithm. The statistical
tests confirmed these results showing that the GAMA has a better perfor-
mance regarding the other algorithms.

Keywords: Sorting permutations, Sorting Unsigned Genomes, Genetic
Algorithms, Memetic Algorithms, Opposition-Based Learning Algorithms.

1 Introduction
In order to estimate the evolutionary relationships between species, molecular
biologists compare gene and genome sequences of different species to reveal the
degree of similarity between them. While algorithms for gene comparison are
based on local mutations such as insertions and deletions of biological data, al-
gorithms for genome comparison are based on global mutations such as reversals,
transpositions and translocations. In this paper we adopt the model of genetic
evolution in genomes by translocations. The translocation operation involves
the interchange of blocks of genes between the chromosomes of a genome. So the
genome comparison can be modelled as an optimisation problem which consists
in finding the minimum number of translocations necessary to transform one
genome into another one. This problem is known as the translocation distance
problem, which has two versions: one using signed genomes and the other using
unsigned genomes, where the difference remains respectively in considering or
not the orientation of the genes between the chromosomes.

The first polynomial algorithm (O(n3)) for the signed translocation distance
problem (STD) was proposed by Hannenhalli in [9]. Almost a decade later, Wang
et al in [19] proposed an O(n2) algorithm taking also advantage of the techniques
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originally proposed by Hannenhalli. More recently, Bergeron et al in [2] improved
the complexity to O(n).

While STD belongs to the complexity class P, the unsigned translocation dis-
tance problem (UTD) is a problem of high complexity. Indeed, Zhu and Wang
proved that this is an NP-hard problem in [20]. Thus, developments of ap-
proximate solutions for this problem are necessary. In [4] Cui et al presented
an 1.75-approximation algorithm for computing the translocation distance be-
tween unsigned genomes, and further improved the ratio to 1.5+ε in [5]. The
best known approximation algorithm in the literature has ratio 1.408+ε and was
proposed in [10]. More recently, we proposed a genetic algorithm (GA) approach
in [6], in which the fitness function is given as the translocation distance for
signed versions of the unsigned genomes, that is linearly computed as in [2]. To
verify the quality of the solutions computed by the GA, an implementation of
the 1.5+ε approximation algorithm was used as control mechanism. Results of
the experiments in [6] showed that on average the GA computes better results
than the 1.5+ε-approximation algorithm.

This paper proposes two hybrid evolutionary algorithms: a memetic algo-
rithm (GAMA ) and an opposition-based learning (OBL) genetic algorithm (GAOBL )
for the UTD problem. GAMA and GAOBL embed the local search and OBL in the
following stages of the GA: improvement of the initial population, restart of
the population, and after the breeding cycle. For controlling the converge of
the population the Shannon entropy was used. The quality of the results ob-
tained by the proposed algorithms were compared with the results computed
with the algorithms proposed in [6] and [5] for groups of hundred unsigned
genomes of different length, single unsigned genomes, and genomes based on bi-
ological data (built from [3]). Additionally, non-parametric statistical tests were
performed to compare the proposed algorithms and the standard GA (in [6]).
Results from these tests showed that the GAMA has better performance com-
pared with the other algorithms, and that there is no significant difference in
the performance of the GAOBL and the GA. Algorithms GAMA and GAOBL were
implemented in C and for the benefit of the reviewers, the code is available at
www.mat.unb.br/∼ayala/publications.html.

2 Background
Definitions and Terminology
In a simplified model, a signed chromosome can be represented by a non empty

sequence of integer numbers of the form X = (x1, . . . , xl), where xi ∈ {±1, . . .±
n} for all i ∈ {1, . . . , n}, each integer denotes a gene and |xi| 6= |xj |, whenever i 6=
j, i, j ∈ {1, . . . , n}. With the restriction that for all i ∈ {1, . . . , l}, xi ∈ {1, . . . , n},
the chromosome is called unsigned. Chromosomes do not have orientation, thus
if X = (x1, . . . , xl) is a signed chromosome then X and X ′ = (−xl, . . . ,−x1) are
equal, whereas if X is an unsigned chromosome, X and X ′′ = (xl, . . . , x1) are
equal. A genome G with N chromosomes and n genes is a list of chromosomes of
the form (x11, . . . , x1r1) . . . (xN1, . . . , xNrN ), where for all its genes |xij | 6= |xkm|
whenever i 6= k or j 6= m, and

∑N
i=1 ri = n. Unsigned and signed genomes

consist respectively of unsigned and signed chromosomes.
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Let X = (x1, . . . , xi, . . . xl) and Y = (y1, . . . , yj , . . . , ym) be two chromo-
somes of a signed genome. On the one hand, a translocation by prefix-prefix ,
denoted as ρ(X,Y, xi, yj), transforms X and Y into the chromosomes Xρ =
(x1, . . . , xi, yj+1, . . . , ym) and Y ρ = (y1, . . . , yj , xi+1, . . . , xl). On the other hand,
a translocation by prefix-suffix, θ(X,Y, xi, yj), produces the new chromosomes
Xθ = (x1, . . . , xi,−yj , . . . ,−y1) and Y θ = (−ym, . . . ,−yj+1, xi+1, . . . , xl). No-
tice that a translocation by prefix-suffix θ(X,Y, xi, yj) can be mimicked by a
translocation ρ(X,Y ′, xi,−yj+1) by prefix-prefix and vice-versa, where Y ′ =
(−ym, . . . ,−y1). For chromosomesX = (x1, . . . , xi, . . . xl) and Y = (y1, . . . yj , . . . , ym)
of an unsigned genome, a translocation by prefix-prefix ρ(X,Y, xi, yj) transforms
X and Y into Xρ = (x1, . . . , xi, yj+1, . . . , ym) and Y ρ = (y1, . . . , yj , xi+1, . . . , xl)
and, a translocation by prefix-suffix θ(X,Y, xi, yj) creates the chromosomes Xθ =
(x1, . . . , xi, yj , . . . , y1) and Y θ = (ym, . . . , yj+1, xi+1, . . . , xl).

The translocation distance problems are defined as follows.

Signed translocation distance problem (STD): consider two signed genomes A and
B, with the same number of genes and chromosomes, where the genes of B are
positive integers in increasing order. The STD consists in finding the minimum
number of translocations needed to transform A into B.

Unsigned translocation distance problem (UTD): the UTD is defined as the STD
but restricted to unsigned genomes.

Genomes as B above, are called identity genomes. Given a signed chromo-
some X = (x1, . . . , xl), the elements x1 and −xl are called tails of X. Two
signed genomes A and B are said to be co-tails if the sets TA and TB composed
by the tails of the chromosomes of A and B, respectively, are equal. For exam-
ple, A = (+1,+6,+7)(−4,−3,−2,−5) and B = (+1,+2,+3,+4)(+5,+6,+7)
are co-tails. When X = (x1, . . . , xl) is an unsigned chromosome, x1 and xl are
its tails and co-tails are correspondingly defined.

Notice that translocations by prefix-prefix or prefix-suffix do not modify the
tails of a genome. Thus, in order to be able to transform a genome A into B by
translocations, A and B must satisfy the property below.

Property 1 The genomes A and B have the same number of genes (and chro-
mosomes) and A and B are co-tails.

Notice that when A and B are co-tails by renaming the genes, B can be
rewritten as an identity. Thus, without loss of generality, whenever A and B are
co-tails one can assume that B is an identity.

STD belongs to the complexity class P ([9]), while UTD is NP-hard ([20]).
The construction of polynomial algorithms for solving STD as well as the proof
that UTD is NP-hard explore the relation between these problems and the
problem of maximum cycle decomposition of the breakpoint graph of a genome.
This data structure is defined below and illustrated in Fig. 1.

Given a (signed or unsigned) chromosome X = (x1, . . . , xl) of a genome, the
elements xi and xi+1, 1 ≤ i ≤ l − 1 are said to be adjacent ; otherwise, the
elements are not adjacent. Elements in different chromosomes are not adjacent.

Consider two signed genomes A and B satisfying the Property 1. The break-
point graph Gs(A,B) is built as follows: for each chromosome X = (x1, . . . , xl) of
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A, we associate to each xi an ordered pair of vertices (l(xi), r(xi)) = (−xi,+xi);
there is a black edge between r(xi) and l(xi+1), i.e., between +xi and −xi+1,
for every 1 ≤ i ≤ l− 1; if +i and +(i+ 1) are adjacent in B, there is a gray edge
between +i and −(i+ 1).

Now, consider two unsigned genomes A and B satisfying the Property 1. The
breakpoint graph Gu(A,B) is built as follows: the vertices are given by the genes
of A; furthermore, for each chromosome X = (x1, . . . , xl) of A, there is a black
edge between xi and xi+1, 1 ≤ i ≤ l− 1, and there is a gray edge between i and
i+ 1 (since i and i+ 1 are adjacent in B).

Fig. 1. Breakpoint graphs for (a) A = (+1,−2,+7)(+5,−6,+3,+4) and B =
(+1,+2,+3,+4)(+5,+6,+7); and (b) A = (1, 2, 7)(5, 6, 3, 4) and B = (1, 2, 3, 4)(5, 6, 7)

The decomposition of the breakpoint graph of signed genomes into cycles
with edges of alternating colors (alternating cycles) is unique, because each ver-
tex has at most one black and one gray incident edge. However, the same is not
true for unsigned genomes: roughly, the latter observation is the key to under-
stand why STD is a polynomial problem, whereas UTD is NP-hard; indeed, the
translocation distance between two genomes is closely related with a maximum
decomposition into alternating cycles of their breakpoint graph (see [20] and [9]).

A Standard Genetic Algorithm for UTD
A genetic algorithm for UTD was proposed in [6] which works as follows for an
input genome A with n genes. Initially, a random population of n log n individ-
uals, that are signed genomes with n genes, is generated based on the unsigned
input genome, where each individual is obtained by randomly assigning either
a positive or negative sign to each gene of A. Solutions for one signed genome
are also consistent solutions for the input, so the GA searches for the minimum
solution of this population of signed genomes. In each generation: the fitness
function calculates the translocation distance for each individual in the popu-
lation. This is done using the linear algorithm proposed in [2] for solving the
STD. Then, the population is classified according to the fitness value of each
individual, maintaining the best individuals at the top. The individuals selected
for reproduction are part of the current better solutions for which crossover and
mutation are applied producing new individuals. Finally, these new individuals
are incorporated into the current population. The GA finishes after n genera-
tions have been completed. The pseudo-code of the GA proposed in [6] is shown
in Algorithm 1.

The GA was implemented in [6] proved to compute solutions that have better
quality than those computed with the approximate algorithm in [5].

3 Memetic and OBL Algorithms for UTD
GAMA : Memetic algorithms (MA) are a class of algorithms that combine population-
based search as in the genetic algorithms with one or more phases of local search,
and even heuristics or approximate methods [14], [11]. MAs maintain a popula-
tion of individuals which perform independent explorations (local optimisation),
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cooperating by means of reproduction operators, and continuously competing
by means of selection and substitution operators [13].

The proposed GAMA for UTD is based on the standard GA introduced in [6],
maintaining, for inputs of length n, a population of n log n signed genomes, that
are signed versions of the input and the fitness is the same as the one used in
the standard GA.

Algorithm 1: Genetic algorithm for computing UTD — standard GA

Input: Unsigned genomes A and B, where B is an identity satisfying Prop. 1
Output: Number of translocations to sort genome A

1 Generate the initial population of signed genomes;
2 Compute fitness of the initial population;
3 for i = 1 to numberGenerations do
4 Perform the selection and save the best solution found;
5 Apply the crossover operator;
6 Apply the mutation operator;
7 Compute the fitness of the current population;
8 Perform replacement of the worst individuals;

The GAMA includes phases of local search into the stage of generation of the
initial population and the stage of restarting population, and also, it applies local
search at the end of the breeding cycle. The stage of restarting the population
is executed whenever the population converges to a degenerate state, which
is measured using the Shannon entropy [16] and is defined as follows: H(S) =
−
∑
i pi log2 pi, where S is the set of different elements of the current population,

and pi is the probability of occurrence of the element i in the current population.
When the entropy has a high value it is said that the population has a good
diversity, but when the entropy tends to lower values it is said that the population
is converging to a degenerate state.

The pseudo-code for the GAMA for UTD is shown in Algorithm 2 excluding
lines 3, 10 and 12.

Algorithm 2: Memetic and OBL Algorithms for UTD — GAMA and GAOBL

Input: Unsigned genomes A and B, where B is an identity satisfying Prop. 1
Output: Number of translocations to sort genome A

1 Generate the initial population of signed genomes;
2 Compute fitness of the initial population;
3 Improve initial population by applying Local Search; /* For GAMA */

3 Improve initial population by applying OBL Heuristic; /* For GAOBL */

4 for i = 1 to numberGenerations do
5 Perform the selection and save the best solution found;
6 Apply the crossover operator;
7 Apply the mutation operator;
8 Compute the fitness of the current population;
9 Perform replacement of the worst individuals;

10 Apply Local Search to the current population; /* For GAMA */

10 Apply OBL Heuristic to the current population; /* For GAOBL */

11 if entropyThreshold is reached then
12 Restart population improved by Local Search; /* For GAMA */

12 Restart population improved by OBL Heuristic; /* For GAOBL */

The local search consists in a very simple step of modifying the sign of an
element of one signed genome at a random position, and verify whether this
change improves the fitness. In the case that the fitness is improved it is updated,
otherwise the last state of the signed genome is recovered. For each genome, the



6 L.A. da Silveira, L. Soncco-Álvarez, T.A. de Lima and M. Ayala-Rincón

number of possible modifications was restricted to two. The pseudo-code of the
local search for one signed genome is shown in Algorithm 3.

Algorithm 3: Local Search

Input: A signed genome A
Output: An improved signed

genome A
1 bestFitness = Compute fitness of A;
2 for i to numberIterations do
3 generate a random position k

for A;
4 swap the sign of the element at

position k;
5 fitness = calculate fitness of A;
6 if fitness < bestFitness then
7 update new fitness for A;
8 break;

9 else
10 recover last state of A;

Algorithm 4: OBL Heuristic

Input: A signed genome A
Output: An improved signed

genome A
1 bestFitness = Compute fitness

of A;

2 Ã = generate a type-I
opposite for genome A;

3 fitness = calculate fitness of

Ã;
4 if fitness < bestFitness then

5 keep the genome Ã;
6 discard genome A;

7 else

8 discard genome Ã;

GAOBL : OBL is a searching technique proposed by Tizhoosh [17]. The main
idea about OBL is that when one is searching for a solution in one direction, it
would be a good idea to search in an opposite way. This increases the chance of
improving the solution specially when one is in a worst case scenario. In [18], [1]
the type-I and type-II opposite points were defined as below.

Definition 1 (Opposite Number and Points [18, 12]).
Opposite Number. Let x be a real number in the interval [a, b], the opposite
number x̃ is defined in the following way: x̃ = a+ b− x.

Type-I Opposite Point. Let P = (x1, . . . , xn) be an n-dimensional point with
xi being a real number in the interval [ai, bi]. The type-I opposite point is defined
by P̃ = (x̃1, . . . , x̃n), where each coordinate is defined in the following way:
x̃i = ai + bi − xi i = 1, 2, . . . , n.

Type-II Opposite Point. Let f be an arbitrary Rn → R function with image
in the interval [ymin, ymax]. For every n-dimensional point P = (x1, . . . , xn), the
type-II opposite point is defined by f̃(x1, . . . , xn) = ymin + ymax− f(x1, . . . , xn).

In simple words, the type-I opposition refers to calculating the opposite of a
P point, that is P̃ . Given a function f , the type-II opposition refers to calculating
its opposite, that is a function f̃ with opposite images to the ones of f . In this
work, for sake of simplicity just the type-I opposition is used.

The proposed opposition-based genetic algorithm (GAOBL ) for UTD is also
based on the GA in [6], and applies OBL exactly in the stages where GAMA applies
local search: generation of the initial population, restarting of the population and
after the breeding cycle. Also, convergence of the population is controlled using
the Shannon Entropy [16]. The fitness function used in the GAOBL is the same as
the used by GA and GAMA . The pseudo-code of the GAOBL is shown also in the
Algorithm 2 excluding lines 3, 10 and 12.

The OBL heuristic consists in applying the type-I opposition for one signed
genome. This new opposite genome is kept in the population whenever its fitness
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value is better than the original. Otherwise, it is discarded. The pseudo-code of
the OBLheuristic is shown in Algorithm 4.

The number of generations for GAMA and GAOBL as for the standard GA is
fixed as n. The stages completed by GAMA and GAOBL in the lines 1, 2, 6, 7, 8 and
9 have time complexity O(n2 log n) and in line 5 O(n log n) as for the standard
GA (see [6]). Also, restarting the population (lines 12 and 12) has complexity
O(n2 log n). Applications of Algorithms 3 and 4 (lines 3, 3, 10 and 10) over (resp.
60% and 70%) of the current population have complexity O(n2 log n). For calcu-
lating the entropy value (line 11), a hash table was implemented indexing each
different fitness value found in the current population obtaining time complexity
O(n2). Thus, GAMA and GAOBL have both time complexity in O(n3 log n).

4 Experiments Tab. 1. Avg. translocations for synthetic genomes
with 2, 3, 4 and 5 chromosomes

2 chrom. 3 chrom.

n 1.5App GA GAOBL GAMA 1.5App GA GAOBL GAMA
20 11.240 10.107 10.106 10.090 10.210 9.186 9.185 9.180

30 19.130 16.886 16.861 16.792 17.710 15.602 15.586 15.552

40 26.910 23.538 23.536 23.367 25.530 22.327 22.289 22.200

50 35.540 30.620 30.602 30.358 34.080 29.650 29.627 29.424

60 44.150 37.931 37.908 37.577 42.100 36.422 36.371 36.093

70 52.220 45.250 45.180 44.745 50.040 43.410 43.312 42.944

80 59.580 51.602 51.548 51.065 58.400 50.659 50.592 50.117

90 68.250 59.098 59.072 58.493 66.220 57.331 57.341 56.769

100 76.650 66.601 66.520 65.852 74.740 64.935 64.905 64.303

110 85.860 74.905 74.846 74.165 83.230 72.372 72.337 71.648

120 93.880 81.859 81.749 81.039 91.720 79.921 79.842 79.105

130 102.010 89.192 89.065 88.292 99.240 86.971 86.880 86.102

140 109.930 96.153 96.175 95.324 108.100 94.625 94.571 93.740

150 118.560 103.940 103.801 103.092 116.420 101.792 101.769 100.943

4 chrom. 5 chrom.

n 1.5App GA GAOBL GAMA 1.5App GA GAOBL GAMA
20 9.240 8.461 8.460 8.460 7.830 7.320 7.320 7.320

30 16.330 14.619 14.619 14.612 15.730 14.070 14.064 14.061

40 23.870 20.925 20.896 20.862 22.240 19.792 19.784 19.753

50 31.680 27.554 27.527 27.396 29.710 26.298 26.275 26.197

60 39.370 34.156 34.131 33.913 36.930 32.275 32.249 32.112

70 47.940 41.361 41.320 41.036 44.870 39.321 39.300 39.069

80 55.350 48.024 48.011 47.614 51.600 44.912 44.900 44.619

90 62.240 54.404 54.391 53.930 59.670 52.036 52.036 51.659

100 71.110 62.033 61.956 61.407 66.790 58.399 58.343 57.911

110 78.660 68.544 68.477 67.846 74.940 65.646 65.639 65.084

120 87.330 76.177 76.101 75.420 81.820 71.828 71.747 71.143

130 95.010 83.198 83.195 82.432 90.190 79.062 79.086 78.380

140 101.970 89.313 89.328 88.515 97.280 85.325 85.273 84.515

150 111.210 97.480 97.511 96.651 104.150 91.729 91.646 90.858

Setting the Parameters

In order to obtain a con-
figuration of parameters for
GAMA and GAOBL which pro-
vides the best results (num-
ber of translocations), com-
binations of parameters were
tested. Parameters were split
in 3 groups. G.1: probability
of crossover and mutation;
G.2: percentage of selection
and replacement over pop-
ulation; G.3: percentage of
population for which local
search or OBL heuristic is
applied, percentage of cur-
rent population that will
be preserved after restarting
the population, and the threshold entropy.

Let x be a parameter of one group, a discrete interval was generated for this
parameter (f. ex., for mutation probability 0.01, 0.02, . . . , 0.09) and the other pa-
rameters were fixed with an estimated value. Then, several tests were performed
for the possible values of x. At the end of the tests the best discrete value found
was taken. This process is performed for each parameter in each group. The pa-
rameters for GAMA are the following: crossover with single point and probability
90%, mutation probability 2%, selection percentage 80%, replacement percent-
age 70%, percentage of local search 60%, percentage of preservation 60% and
threshold entropy 0.3. For GAOBL , parameters in G.1 and G.2 resulted in the
same values than GAMA , and for G.3 the parameters are the following: percent-
age of OBL 70%, percentage of preservation 50%, and threshold entropy 0.1.

Experiments with Hundred Synthetic Genomes
Experiments with GAOBL , GAMA , GA ([6]) and the 1.5+ε-approximation algo-
rithm ([5] as implemeted in [6]) were conducted as follows: Initially, hundred
unsigned genomes with n genes, for n ∈ {20, 30, . . . , 150}, and with N chro-
mosomes, for N ∈ {2, 3, 4, 5} were ramdomly generated. The three GAs were
executed ten times and the 1.5+ε-approximation algorith only once for each
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genome. For the three GAs, the average of the result (number of translocations)
for each genome was calculated. Finally, for each family of hundred genomes of
size (n,N) the average of the results was computed. See Tab. 1.

Experiments with Single Genomes
Nine benchmark unsigned genomes proposed in [6] were used. The genomes have
the following nomenclature GenomeLxCy, where L stands for length, C stands for
number of chromosomes. For each genome, GA, GAMA and GAOBL were executed
fifty times, and then the following measures calculated: mean, median, minimum
and maximum. See Tab. 2, where the best values are highligted.

Tab. 2. Results for GA, GAMA , and GAOBL using benchmak genomes from [6]

Mean Median Minimum Maximum

GA GAMA GAOBL GA GAMA GAOBL GA GAMA GAOBL GA GAMA GAOBL
GL150C2 102.52 101.58 102.48 102.50 102.00 102.00 101.00 100.00 100.00 106.00 104.00 106.00

GL150C3 109.54 108.82 109.40 109.00 109.00 109.50 108.00 107.00 107.00 111.00 111.00 112.00

GL150C4 100.94 100.04 101.08 101.00 100.00 101.00 99.00 98.00 99.00 104.00 102.00 104.00

GL150C5 96.92 96.32 96.82 97.00 96.00 97.00 95.00 95.00 95.00 99.00 98.00 99.00

GL150C6 84.8 84.06 84.58 85.00 84.00 84.00 84.00 84.00 84.00 87.00 85.00 86.00

GL150C7 91.08 90.38 91.14 91.00 90.00 91.00 90.00 90.00 90.00 93.00 92.00 94.00

GL150C8 77.52 76.88 77.46 77.50 77.00 78.00 76.00 76.00 76.00 79.00 78.00 78.00

GL150C9 78.80 78.22 78.74 79.00 78.00 79.00 78.00 78.00 78.00 81.00 79.00 81.00

GL150C10 77.52 77.10 77.48 77.00 77.00 77.00 77.00 77.00 77.00 81.00 78.00 79.00

Experiments with Genomes based on Biological Data
Three different mammals species were chosen: cat, mouse, and human. Their
genomes were taken from [3], considering only the genetic material in common.
Modifications in these genomes were done to fulfill the Property 1: genes 82,
83 and 88 were removed in the original mapping proposed in [3], then each
genome remains with 18 chromosomes; also, auxiliary genes were added at the ex-
tremes of each chromosome in each genome, in order to obtain genomes co-tails.

Tab. 3. Results using biological data
Genome 1.5-App GA GAMA GAOBL

Human-Cat 43 43 43 43

Human-Mouse 53 51 51 51

Cat-Mouse 53 50 50 50

Initially, the human genome was fixed
as an identity, and the corresponding
mapping of genes over the cat and mouse
genomes were performed to generate the human-cat and human-mouse data.
Then, the cat genome was fixed as the identity and the corresponding mapping
of genes was applied over the mouse genome to generate the cat-mouse data.
The GA, GAMA and GAOBL were executed ten times for these biological data (the
1.5ε-algorithm only once), and then the average was calculated. See Tab. 3.

5 Discussion

From the experiments using families of hundred randomly generated genomes
(Tab. 1), one can observe that GAMA outperforms the results of the other algo-
rithms. GAOBL presents just a small improvement regarding GA.

From experiments using biological data (Tab. 3), it can be observed that
GAMA , GAOBL and GA give the same results. This is explained because these
genomes are instances that are very easy to solve since cat, human and mouse,
have very similar sequences of genes, when compared to randomly generated
inputs. Additionally, the 1.5 + ε-approximation algorithm computes the worst
results from the four algorithms.

From experiments using specific genomes (Tab. 2), GAMA computes the best
results compared with those computed by GA and GAOBL . For the same measures
GAOBL computes slightly better results than GA, and for certain instances the
results are the same.

Regarding running time, observing the time necessary to compute the most
difficult instances (Tab. 2), the experiments showed that GAMA and GAOBL take
approximatelly 323% and 160% of the running time of GA, respectively. Despite
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this, both GAMA and GAOBL are of practical interest since the first algorithm takes
just 1 minute to sort genomes with 150 genes and 10 chromosomes in a modest
OSX Intel Core I5 processor platform.

Statistical Analysis
The samples used for the statistical analysis are the results of 50 runs of GA,
GAMA and GAOBL for benchmark unsigned genomes, which were used in the Sec-
tion 4. The statistical analysis was performed using the following methodology
as discussed in [7, 8, 15]. First, the Kolgomorov-Smirnov test was applied in or-
der to determine whether the samples have or not a normal distribution. Then,
after determining that the samples have a non-normal distribution the Wilcoxon
Rank Sum test was applied to compare the medians of two algorithms. These
statistical tests were performed in Matlab.

The Wilcoxon Rank Sum test tests the null hypothesis (H0) that two samples
have distributions with equal medians, this result is represented with the symbol
“s−”. Otherwise, the null hypothesis is rejected and one assumes the alternative
hypothesis (HA) that the samples have distributions with different medians,
which is represented with the symbol “s+”. For this test a significance level of
5% (p-value <= 0.05) or a confidence level of 95% were used.

The results of the Wilcoxon Rank Sum test to compare GAMA and GAOBL with
the other algorithms are shown respectively in Tabs. 4 and 5. In these tables two
columns were included, one with the median result and the other with the result
of the statistical test(“s−”or “s+”).

Tab. 4. Statistical Comparison between
GAMA and the other Algorithms using the
Wilcoxon Rank Sum Test

GAMA GA GAOBL
GL150C2 102.00 102.50 s+ 102.00 s+

GL150C3 109.00 109.00 s+ 109.50 s+

GL150C4 100.00 101.00 s+ 101.00 s+

GL150C5 96.00 97.00 s+ 97.00 s+

GL150C6 84.00 85.00 s+ 84.00 s+

GL150C7 90.00 91.00 s+ 91.00 s+

GL150C8 77.00 77.50 s+ 78.00 s+

GL150C9 78.00 79.00 s+ 79.00 s+

GL150C10 77.00 77.00 s+ 77.00 s+

Tab. 5. Statistical Comparison between
GAOBL and the other Algorithms using the
Wilcoxon Rank Sum Test

GAOBL GA GAMA
GL150C2 102.00 102.50 s− 102.00 s+

GL150C3 109.50 109.00 s− 109.00 s+

GL150C4 101.00 101.00 s− 100.00 s+

GL150C5 97.00 97.00 s− 96.00 s+

GL150C6 84.00 85.00 s− 84.00 s+

GL150C7 91.00 91.00 s− 90.00 s+

GL150C8 78.00 77.50 s− 77.00 s+

GL150C9 79.00 79.00 s− 78.00 s+

GL150C10 77.00 77.00 s− 77.00 s+

It can be observed in Tab. 4 that the memetic approach GAMA has different
performance regarding GA and GAOBL . In most cases, GAMA has better perfor-
mance, that is when its medians have the lowest values. From Tab. 5, it can be
observed that the OBL approach GAOBL has different performance regarding just
GAMA . In most cases, GAOBL has worse performance, that is when its medians
have not the lowest value.

6 Conclusion

Two hybrid evolutionary algorithms were proposed, GAMA and GAOBL , for UTD.
These new algorithms are based on the standard GA approach proposed in [6], in
which the search space consists of signed versions of the initial unsigned genome
to be sorted, exploring the property that a sorting translocation sequence for
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any of these signed genomes is also a feasible solution for the initial unsigned
genome. Thus, as fitness function the translocation distance of signed genomes
is applied. The main feature of GAMA and GAOBL is the application of local search
and the OBL heuristic, respectively. These heuristics are embedded for the im-
provement of the initial population, for restarting the population whenever the
entropy limit is reached, and as a new stage after the breeding cycle. In both
algorithms the converge of the population is controlled using the Shannon en-
tropy. Experiments were performed to verify the quality of results computed by
both algorithms regarding the standard GA and an 1.5+ε-approximation algo-
rithm ([5]). First, families of hundred unsigned genomes of different lengths were
randomly generated, and also nine benchmark genomes of length 150 were con-
sidered. Experiments using this data showed that GAMA outperforms the other
algorithms, while GAOBL showed just a small improvement regarding the stan-
dard GA. Additionally, three genomes based on biological data (cat, mouse, and
human) were processed and experiments using this data showed that GAMA ,
GAOBL and GA compute the same results. A statistical analysis was performed
using the Wilcoxon Rank Sum test for the nine single unsigned genomes, con-
cluding that GAMA has better performance regarding both GA and GAOBL and
that GAOBL did not show different performance regarding the standard GA.

As future work, is it of great interest adding new biological data to the
experiments, generated from sequences taken from the GeneBank database. Also,
it is of interest implementing a sharing population parallel version of GAMA in
order to improve the quality of the solutions reducing the running time. Despite
its practical limitations, since the 1.408+ε approximation algorithm, proposed in
[10], has a better approximation ratio than the 1.5+ε one, it is of great interest
implementing this algorithm and comparing its results with the ones obtained
by the GAMA .
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7. J Demšar. Statistical comparisons of classifiers over multiple data sets. The J. of
Machine Learning Research, 7:1–30, 2006.



Memetic and OBL GAs for Sorting Unsigned Genomes by Translocations 11
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