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Termination

I In computer science, termination is the is the quintessential
example of a property that is undecidable.

I In 1939, Turing proved that it is impossible to construct an
algorithm that decides whether or not another algorithm
terminates on a given input [Tur37].

I Turing’s proof applies to algorithms written as Turing
machines, but the proof extends to other formalisms for
expressing computations: λ-calculus, rewriting systems,
computer programs.
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Termination in Rewriting Systems

I Termination is a fundamental property of rewriting systems,
e.g., confluence is decidable in terminating systems.

I Termination is undecidable even when a rewrite system
consists of only one rule.

I Several syntactic and semantic techniques are available to
prove termination of rewriting systems.

I This lecture focuses on termination of recursive functions
specified in proof assistants.
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Termination in Proof Assistants

I Termination is a meta-theoretical property in most interactive
theorem provers, e.g.,
I Termination is guaranteed for well-typed functions.
I Termination is guaranteed for functions satisfying some

constraints.
I Termination is guaranteed for functions satisfying some

semantic conditions.

I Once a definition of a function f is accepted by a proof
assistant, the statement “For every value a the computation
of f (a) terminates” is assumed to hold.

I Our proof assistant of choice: SRI’s Prototype Verification
System (PVS).2

2https://pvs.csl.sri.com.

https://pvs.csl.sri.com
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PVS

I PVS is an interactive theorem prover based on classical
higher-order logic.

I PVS provides a strongly-typed specification language that
supports predicate sub-typing, dependent types, inductive
data types, parametric theories, etc.

I PVS is extensively used at NASA in the verification of
safety-critical and mission-critical systems.3

I The NASA PVS Library consists of more than 20K lemmas
(including the formalization presented in this lecture).4

3https://shemesh.larc.nasa.gov/people/cam/FM.
4https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/.

https://shemesh.larc.nasa.gov/people/cam/FM
https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/
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Recursive Functions in PVS

factorial(n:nat): RECURSIVE nat =

IF n = 0 THEN 1

ELSE n*factorial(n-1)

ENDIF

MEASURE M BY R

where M is a measure, i.e., a function from the domain of factorial
into a type T , and R is a well-founded relation on T , e.g.,

I M = LAMBDA(n:nat):n,

I R = LAMBDA(n,m:nat):n < m.
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Recursive Functions in PVS

The well-founded relation R is usually “<” on natural numbers. In
this case, it can be written

factorial(n:nat): RECURSIVE nat =

IF n = 0 THEN 1

ELSE n*factorial(n-1)

ENDIF

MEASURE n

PVS produces the following Termination Correctness Condition:5

factorial_TCC2: OBLIGATION

FORALL (n: nat): n /= 0 IMPLIES n - 1 < n

5This TCC corresponds to the so called Turing Termination Criterion.
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Recursive Functions in PVS

gcd(m,n:nat) : RECURSIVE nat =

IF m = 0 OR n = 0 THEN m + n

ELSIF n >= m THEN gcd(m,n-m)

ELSE gcd(n,m)

ENDIF

MEASURE ?
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Recursive Functions in PVS

gcd(m,n:nat) : RECURSIVE nat =

IF m = 0 OR n = 0 THEN m + n

ELSIF n >= m THEN gcd(m,n-m)

ELSE gcd(n,m)

ENDIF

MEASURE lex2(m,n)

In this case,

I T , the range of lex2 is ordinal.

I R, the well-founded relation, is < on ordinals.
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Termination Correctness Conditions for gcd

gcd_TCC2: OBLIGATION

FORALL (m, n: nat):

n >= m AND NOT m = 0 AND NOT n = 0 IMPLIES

lex2(m, n - m) < lex2(m, n)

gcd_TCC3: OBLIGATION

FORALL (m, n: nat):

NOT n >= m AND NOT m = 0 AND NOT n = 0 IMPLIES

lex2(n, m) < lex2(m, n)

I factorial TCC2, gcd TCC2, and gcd TCC3 are automatically
discharged by PVS.

I In general, the user has to provide the measure, the
well-founded relation, and prove the TCCs.
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Research Objectives

I Formalize in PVS different termination criteria and prove their
equivalence, e.g., Turing termination [Tur89], size change
principle [LJB01, TG03, KST+11], calling context
graphs [MV06], matrix-weighted graphs [Ave15], and
dependency pairs [Art96, YSTK16, AG00].

I Use these criteria to specify terminating recursive functions in
PVS and automatically discharge Termination Correctness
Conditions.

I Study meta-theoretical properties related to termination and
computability of PVS recursive functions.
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PVS0: A Simple Computational Model

I PVS0 is a deep embedding of first-order PVS functions of
type T → T , where T is a parametric type.

I PVS0 functional expressions consists of
I Constant values of type T .
I A variable symbol of type T .
I Unary and binary “built-in” operators.
I If-then-else expressions.
I Recursive calls.

I PVS0 is simple, but not minimal. In particular, it enables the
use of arbitrary PVS functions of types T → T and
T × T → T as built-in atomic operators.
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PVS0 Expressions

I PVS0 expressions e have the following form:

cnst(v) | vr | op1(n, e) | op2(n, e, e) | rec(e) | ite(e, e, e),

where v is a value of type T and n ∈ N .

I In PVS, it is defined using the following abstract data type.

PVS0Expr[T:TYPE+] : DATATYPE

BEGIN

cnst(get val:T) : cnst?

vr : vr?

op1(get op:nat,get arg:PVS0Expr) : op1?

op2(get op:nat,get arg1,get arg2:PVS0Expr) : op2?

rec(get arg:PVS0Expr) : rec?

ite(get cond,get if,get else:PVS0Expr) : ite?

END PVS0Expr
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PVS0 Programs

Given a concrete type Val , which instantiates T , a PVS0 program
with values in Val is a 4-tuple of the form (O1,O2,⊥, e), where

I O1 is a list of PVS functions of type Val → Val , where O1(i),
i.e., the i-th element of the list O1, interprets the unary
operator indexed by i in the constructor op1,

I O2 is a list of PVS functions of type Val × Val → Val , where
O2(i), i.e., the i-th element of the list O2, interprets the
binary operator indexed by i in the constructor op2,

I ⊥ is a constant of type Val representing the Boolean value
false in the conditional construction ite, and

I e is a PVS0Expr[Val ], which is the syntactic representation of
the program itself.
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Example 1: Factorial

factorial(n:nat): RECURSIVE nat =

IF n /= 0 THEN n*factorial(n-1)

ELSE 1

ENDIF

Let f ∈ PVS0[Val ] = (O1,O2,⊥, ef ), where

I Val = nat

I ⊥ = 0

I op1(0, n) = max(0, n − 1)

I op2(0, n,m) = n ∗m
I ef = ite(vr,op2(0,vr,rec(op1(0,vr))),cnst(1))
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Example 2: GCD

gcd(m,n:nat) : RECURSIVE nat =

IF m = 0 OR n = 0 THEN m + n

ELSIF n >= m THEN gcd(m,n-m)

ELSE gcd(n,m)

ENDIF

Let g ∈ PVS0[Val ] = (O1, null,⊥, eg ), where

I Val = [nat, nat]

I ⊥ = (0, 0).

> = (1, 0)

I op1(0, (m, n)) = IF m = 0 OR n = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n >= m THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (m + n, 0)

I op1(3, (m, n)) = (m,max(0, n −m))

I op1(4, (m, n)) = (n,m)
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ENDIF

I eg =

ite(op1(0,vr),

op1(2,vr),

ite(op1(1,vr),

rec(op1(3,vr)),

rec(op1(4,vr))))
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Example 3: Ackermann

ackermann(m,n:nat) : RECURSIVE nat =

IF m = 0 THEN n+1

ELSIF n = 0 THEN ackermann(m-1,1)

ELSE ackermann(m-1,ackermann(m,n-1))

ENDIF

Let a ∈ PVS0[Val ] = (O1,O2,⊥, ea), where

I Val = [nat, nat]

I ⊥ = (0, 0).

> = (1, 0)

I op1(0, (m, n)) = IF m = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n = 0 THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (n + 1, 0)

I op1(3, (m, n)) = (max(0,m − 1), 1)

I op1(4, (m, n)) = (m,max(0, n − 1))

I op2(0, (m, n), (i , j)) = (max(0,m − 1), i)
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I op2(0, (m, n), (i , j)) = (max(0,m − 1), i)
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Example 3: Ackermann

ackermann(m,n:nat) : RECURSIVE nat =

IF m = 0 THEN n+1

ELSIF n = 0 THEN ackermann(m-1,1)

ELSE ackermann(m-1,ackermann(m,n-1))

ENDIF

I ea =

ite(op1(0,vr),

op1(2,vr),

ite(op1(1,vr),

rec(op1(3,vr)),

rec(op2(0,vr,rec(op1(4,vr))))))
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Semantic Evaluation Relation ε

Given a PVS0 program pvso = (O1,O2,⊥, epvso) of type
PVS0[Val ], the predicate ε holds when the semantic evaluation of
an expression e of type PVS0Expr[Val ] on the input value vi results
in the value vo .

ε(pvso)(e, vi , vo) := CASES e OF
cnst(v) : vo = v ;

vr : vo = vi ;
op1(j , e1) : j < |O1| ∧ ∃ v ′ ∈ Val :

ε(pvso)(e1, vi , v
′) ∧ vo = O1(j)(v ′);

op2(j , e1, e2) : j < |O2| ∧ ∃ v ′, v ′′ ∈ Val :
ε(pvso)(e1, vi , v

′) ∧
ε(pvso)(e2, vi , v

′′) ∧
vo = O2(j)(v ′, v ′′);

rec(e1) : ∃ v ′ ∈ Val : ε(pvso)(e1, vi , v
′) ∧

ε(pvso)(epvso , v
′, vo)

ite(e1, e2, e3) : ∃ v ′ : ε(pvso)(e1, vi , v
′) ∧

IF v ′ 6= ⊥ THEN ε(pvso)(e2, vi , vo)
ELSE ε(pvso)(e3, vi , vo) ENDIF .
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The Relation ε is Deterministic

Lemma 1.
Let pvso be a PVS0 program of type PVS0[Val ]. For any
expression e of type PVS0Expr[Val ] and all values vi , v

′
o , v
′′
o ∈ Val,

ε(pvso)(e, vi , v
′
o) and ε(pvso)(e, vi , v

′′
o ) implies v ′o = v ′′o .

The proof of this lemma uses the induction schema generated for
the inductive relation ε.
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Semantic Evaluation Function χ

I Given a PVS0 program pvso = (O1,O2,⊥, epvso) of type
PVS0[Val ] and a natural number n, representing a maximum
number of recursive calls, the function χ evaluates an
expression e of type PVS0Expr[Val ] on the input value vi .
The function returns either the undefined value ♦ or a value
of type Val .

I The function χ is recursively defined on the structure of e.



25/88

The Function χ

χ(pvso)(e, vi , n) := IF n = 0 THEN ♦ ELSE CASES e OF

cnst(v) : v ;
vr : vi ;

op1(j , e1) : IF j < |O1| THEN
LET v ′ = χ(pvso)(e1, vi , n) IN
IF v ′ = ♦ THEN ♦ ELSE O1(j)(v ′) ENDIF

ELSE ⊥ ENDIF ;
op2(j , e1, e2) : IF j < |O2| THEN

LET v ′ = χ(pvso)(e1, vi , n),
v ′′ = χ(pvso)(e2, vi , n) IN

IF v ′ = ♦ ∨ v ′′ = ♦ THEN ♦ ELSE O2(j)(v ′, v ′′) ENDIF
ELSE ⊥ ENDIF ;

rec(e1) : LET v ′ = χ(pvso)(e1, vi , n) IN
IF v ′ = ♦ THEN ♦ ELSE χ(pvso)(epvso , v

′, n − 1) ENDIF ;
ite(e1, e2, e3) : LET v ′ = χ(pvso)(e1, vi , n) IN

IF v ′ = ♦ THEN ♦
ELSIF v ′ 6= ⊥ THEN χ(pvso)(e2, vi , n)
ELSE χ(pvso)(e3, vi , n) ENDIF ;

ENDIF
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Equivalence of ε and χ Evaluation

Theorem 2.
Let pvso be a PVS0 program of type PVS0[Val ]. For any vi ∈ Val
and e of type PVS0Expr[Val ],

ε(pvso)(e, vi , vo) if and only if vo = χ(pvso)(e, vi , n),

for some n, where vo 6= ♦.
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Factorial, GCD, and Ackermann Lemmas

I The PVS0 program f computes the PVS function factorial,
i.e., for any n, k ∈ nat,

factorial(n) = k if and only if ε(f )(ef , n, k).

I The PVS0 program g computes the PVS function gcd, i.e.,
for any n,m, k ∈ nat,

gcd(m, n) = k if and only if ε(g)(eg , (m, n), (k , i)),

for some i .

I The PVS0 program a computes the PVS function ackermann,
i.e., for any n,m, k ∈ nat,

ackermann(m, n) = k if and only if ε(a)(ea, (m, n), (k , i)),

for some i .
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ε-Termination

I The PVS0 program pvso ∈ PVS0[Val ] ε-terminates for an
input vi ∈ Val if the following predicate holds

Tε(pvso, vi ) ≡ ∃ vo ∈ Val : ε(pvso)(epvso , vi , vo).

I The PVS0 program pvso is ε-terminating if for all vi ∈ Val ,
Tε(pvso, vi ) holds.
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χ-Termination

I The PVS0 program pvso ∈ PVS0[Val ] χ-terminates for an
input vi ∈ Val if the following predicate holds

Tχ(pvso, vi ) ≡ ∃ n ∈ nat : χ(pvso)(epvso , vi , n) 6= ♦.

I The PVS0 program pvso is χ-terminating if for all vi ∈ Val ,
Tχ(pvso, vi ) holds.
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Equivalence of Tε and Tχ

Theorem 3.
Let pvso be a PVS0 program of type PVS0[Val ]. The following
conditions hold:

1. For any vi ∈ Val, Tε(pvso, vi ) if and only if Tχ(pvso, vi ).

2. pvso is ε-terminating if and only if pvso is χ-terminating.

A PVS0 program pvso that is ε-terminating (or equivalently,
χ-terminating) is said to be terminating, denoted
terminating(pvso).
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Existence of Non-terminating PVS0 Programs

Lemma 4.
Let ∆ = (O1,O2,⊥, rec(vr)). For any v ∈ Val, ¬Tχ(∆, v).

Proof.

1. Define µ(pvso, v), for any pvso and v such that Tχ(pvso, v),
as the minimum n that satisfies

χ(pvso)(epvso , v , n) 6= ♦.

2. By contradiction, assume that χ(∆)(e∆, v , n) 6= ♦ for some
n.

3. Therefore, χ(∆)(e∆, v , µ(∆, v)) 6= ♦, by definition of µ.

4. By definition of ∆ and χ, it is also the case that
χ(∆)(e∆, v , µ(∆, v)− 1).

5. This is a contradiction because µ(∆, v)− 1 < µ(∆, v).
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Evaluation of Terminating PVS0 Programs

Let pvso = (O1,O2,⊥, epvso) be a terminating PVS0 program in
PVS0[Val ], i.e., terminating(pvso). The evaluation of pvso on v
can be defined as
pvs0 eval(pvso)(v) ≡ pvs0 eval expr(pvso)(epvso , v), where

pvs0 eval expr(pvso)(e, vi ) := CASES e OF

cnst(v) : v ;
vr : vi ;

op1(j , e1) : IF j < |O1| THEN
O1(j)(pvs0 eval expr(pvso)(e1, vi ))

ELSE ⊥ ENDIF ;
op2(j , e1, e2) : IF j < |O2| THEN

O1(j)(pvs0 eval expr(pvso)(e1, vi ),
pvs0 eval expr(pvso)(e2, vi ))

ELSE ⊥ ENDIF ;
rec(e1) : pvs0 eval expr(pvso)(epvso)(pvs0 eval expr(pvso)(e1, vi ))

ite(e1, e2, e3) : LET v ′ = pvs0 eval expr(pvso)(e1, vi ) IN
IF v ′ 6= ⊥ THEN pvs0 eval expr(pvso)(e2, vi )
ELSE pvs0 eval expr(pvso)(e3, vi ) ENDIF .
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Correctness of pvs0 eval

Theorem 5.
For all terminating programs pvso ∈ PVS0[Val ] and vi , vo ∈ Val,
ε(pvso)(epvso , vi , vo) if and only if vo = pvs0 eval(pvso)(vi ).
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A Syntactic Termination Criterion

I Tε and Tχ are impractical as termination criteria since they
require case by case analysis on the input to the function.

I Turing Termination Criterion: If there is a measure on a
well-founded relation that strictly decreases at every recursive
call, the function is terminating.

I This criterion, which implements a simple static analysis,
requires the formalization of several syntactic elements:
I Recursive calls.
I Conditions.
I Paths.
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PVS0 Calling Context

A PVS0 Calling Context is triple (r ,P,C ), where

I r is a PVS0Expr of the form rec(e), where e is a PVS0Expr.

I P is a path, i.e., a list of natural numbers.

I C is a list of Boolean expressions, i.e., a PVS0Expr or a
negation of a PVS0Expr.

A (r ,P,C ) is a valid calling context of e ∈ PVS0Expr if

I r is a subexpression of e.

I P is the path of r in e,

I C is the set of accumulated conditions for the path P.

The set of valid calling contexts of e are denoted
pvs0 tcc valid cc(e).
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Valid Calling Contexts of Ackermann

IF m = 0 THEN n+1

ELSIF n = 0 THEN ackermann(m-1,1)

ELSE ackermann(m-1,ackermann(m,n-1))

ENDIF

ite〈0〉(op1〈00〉(0,vr〈000〉),op1〈10〉(2,vr〈010〉),
ite〈20〉(op1〈020〉(1,vr〈0020〉),rec〈120〉(op1〈0120〉(3,vr〈00120〉)),

rec〈220〉(op2〈0220〉(0,vr〈00220〉,
rec〈10220〉(op1〈0...〉(4,vr〈00...〉))))))

I cc1 =
(rec(op1(3,vr)), 〈120〉, {op1(1,vr), !(op1(0,vr))}).

I cc2 =
(rec(op2(0,vr,...)), 〈220〉, {!(op1(1,vr)), !(op1(0,vr))}).

I cc3 =
(rec(op1(0,vr)), 〈10220〉, {!(op1(4,vr)), !(op1(0,vr))}).
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Evaluation of Conditions

eval conds(pvso)(C , vi ) := CASES C OF

null : TRUE;
cons(e,C ′) : (∃ vo ∈ Val : ε(pvso)(e, vi , vo) ∧ vo 6= ⊥) ∧

eval conds(pvso)(C ′, vi );
cons(!(e),C ′) : (∃ vo ∈ Val : ε(pvso)(e, vi , vo) ∧ vo = ⊥) ∧

eval conds(pvso)(C ′, vi ).
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Termination Correctness Condition

I A PVS0 program pvso ∈ PVS0[Val ] satisfies the predicate
pvs0 tcc termination(pvso) for a type M if and only

I There exists a function m from Val into M and a well-founded
relation < on M such that for all vi , vo : Val and
(rec(e),P,C ) ∈ pvs0 tcc valid cc(epvso),
I ε(pvso)(e, vi , vo) and
I eval conds(pvso)(C , vi )

implies m(vo) < m(vi ).
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TCC Correctness

Theorem 6.
Let pvso be a PVS0 program of type PVS0[Val ]. The predicate
pvs0 tcc termination(pvso) holds for a type M if and only if
terminating(pvso), i.e., for all v : Val, Tε(pvso, v) (or,
equivalently, Tχ(pvso, v)) .

I The direction “←” uses M = nat and the well-founded order
< on natural numbers.

I The proof of this statement uses the definition of

Ωm(v) := min({n : N+ | ∀ v ′ ∈ V : ¬(m(v) >n m(v ′))}).

I Intuitively, Ωm(v) is the length of the longest path downwards
starting from m(v).
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Ω and µ

The following lemma states a relation between µ and Ω.

Lemma 7.
Let pvso be a PVS0 program that satisfies
pvs0 tcc termination(pvso) for a well-founded relation < over
M and a measure function m. For any value v ∈ Val,
µ(pvso, v) ≤ Ωm(v).
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The PVS0 Ackermann Program is Terminating

Theorem 8.
The PVS0 Ackerman program a satisfies terminating(a).

I By Theorem 6, it suffices to check
pvs0 tcc termination(a).

I pvs0 tcc termination(a) can be checked for all the PVS0
calling contexts of a, i.e., {cc1, cc2, cc3} using M = [nat, nat]
and (a, b) < (c, d) ≡ a < c OR (a = c AND b < d).

I The proofs of these conditions correspond to the proofs of the
actual termination correctness conditions generated by the
PVS Type Checker for the PVS function ackermann.
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The Size-Change Principle (SCP)

SCP Termination Criterion
A program terminates on all inputs if every infinite call sequence
(following program control flow) would cause an infinite descent
(over a well-founded relation) in some data values. [LJB01].
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Infinite Sequence of Computations

Let pvso ∈ PVS0[Val ], cc = (rec(e0),P0,C0), . . . be an infinite
sequence of calling contexts of pvso, and V = v0, . . . be an infinite
sequence of values in Val such that the following predicate holds.

infinite seq ccs(cc,V) ≡
∀(i : nat) : (eval conds(pvso)(Ci , vi ) AND

ε(pvso)(ei , vi , vi+1)).

Let < be a well-founded relation over Val , SCP<(pvso) holds if for
all infinite sequence cc of calling contexts of pvso and infinite
sequence V of values in Val that satisfy
infinite seq ccs(cc,V), vi+1 < vi for all i .
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SCP Termination Criterion

scp termination(pvso) holds if there are no infinite sequence cc
of calling contexts of pvso and infinite sequence V of values in Val
that satisfy infinite seq ccs(cc,V).

Theorem 9.
For all pvso ∈ PVS0[Val ], terminating(pvso) if and only if
scp termination(pvso).

Theorem 10.
For all pvso ∈ PVS0[Val ], scp termination(pvso) if and only if
SCP<(pvso) for a well-founded relation < over Val.
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Implementing SCP: Size Change Graph (SG)

To every call c associated to a function call
f (x1, ..., xn)

c→ f (x ′1, ..., x
′
m), the graph Gc is defined such that

there is an edge xi
B−→ x ′j if xi B x ′j , where B ∈ {>,≥}:

Formals of f



x1

x2

...

xi
...

xn

B //
B //
B

))
B

55

B

&&
B

55

x ′1
x ′2

...

x ′j
...

x ′n


Recursive call of f

︸ ︷︷ ︸
Edges
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SCGs for Ackermann

ack(m, n) = ite(m = 0, n + 1,
ite(n = 0, ack︸︷︷︸

1

(m − 1, 1),

ack︸︷︷︸
2

(m − 1, 3 : ack︸︷︷︸
3

(m, n − 1)))

G1 : G2 : G3 :

m
> //

≥

##

m − 1

n 1

m
> // m − 1

n ack(m, n − 1)

m
≥ // m

n
> // n − 1
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Multipaths and Threads

I A multipath is a sequence, potentially infinite, Gc1 ,Gc2 , . . . of
SCGs. A multipath can be seen as a concatenated graph.

I E.g., the Ackermann sequence of calls c1c3c1c2 yields the
multipath G1,G3,G1,G2:

m

≥

!!

> // m − 1
≥ // m − 1

> //

≥

&&

(m − 1)− 1
> // ((m − 1)− 1)− 1

n 1
> // 1− 1 1 ack(m, 1− 1)
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Threads

I A thread in a multipath is a connected path of arcs

r1
B1 // r2

B2 // . . . .

I A thread is descending if at least one Bi is >. The thread is
infinitely descending if it contains infinitely many occurrences
of >.

I Size Change Principle: A program terminates if every infinite
call sequence yields an infinitely descending thread (over a
well-founded order <).
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Calling Context Graphs (CCG)

I CCG a termination analysis technique based on the
size-change principle [MV06].

I SCG Multipaths are represented by:
I A directed graph of calling contexts,
I where edges are labelled using a family of measures.



54/88

Calling Contexts (Reminder)

Calling contexts are a representation of recursive calls and their
governing conditions.

ack(m, n) = ite(m = 0, n + 1,
ite(n = 0, ack(m − 1, 1),

ack(m − 1, ack(m, n − 1)))

I cc1 = (ack(m − 1, 1),m 6= 0 ∧ n = 0)

I cc2 = (ack(m − 1, ack(m, n − 1)),m 6= 0 ∧ n 6= 0)

I cc3 = (ack(m, n − 1),m 6= 0 ∧ n 6= 0)
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Calling Context Graph

Given a PVS0 program pvso ∈ PVS0[Val ], a directed graph G of is
built, where

I the nodes of G are the calling contexts in
pvs0 tcc valid cc(epvso),

I there is an edge between calling contexts (rec(ea),Pa,Ca)
and (rec(eb),Pb,Cb) if

∃(va, vb : Val) :eval conds(pvso)(Ca, va) AND

ε(pvso)(ea, va, vb) AND

eval conds(pvso)(Cb, vb).

I Remark: The above is not an “if-and-only-if” condition.
Hence, a fully connected graph of calling contexts satisfies
this condition.
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A CCG for Ackermann

I cc1 = (ack(m − 1, 1),m 6= 0 ∧ n = 0)

I cc2 = (ack(m − 1, ack(m, n − 1)),m 6= 0 ∧ n 6= 0)

I cc3 = (ack(m, n − 1),m 6= 0 ∧ n 6= 0)

cc1

�� ��
cc2

EE

66
,, cc3

YY

ll hh

I There is no edge between cc1 and itself because

6 ∃(m, n : nat) : (m 6= 0 ∧ n = 0) ∧ (m − 1 6= 0 ∧ 1 = 0)

I There is an edge between cc2 and cc1 even although

6 ∃(m, n : nat) : (m 6= 0 ∧ n 6= 0) ∧ (m−1 6= 0 ∧ ack(m, n−1) = 0)



57/88

Walks, Circuits, and Cycles

Let Gpvso be a CCG of a PVS0 program pvso in PVS0[Val ].

I A walk of Gpvso is a sequence cci1 , . . . , ccin of calling contexts
such that for all 1 ≤ j < n there is an edge between ccij and
ccij+1

.

I A circuit is a walk cci1 , . . . , ccin , with n > 1, where cci1 = ccin .

I A cycle is an elementary circuit, i.e., a circuit cci1 , . . . , ccin
where the only repeating nodes are cci1 and ccin .
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Measure Combination

Let M be a family of N measures µk : Val → M, with 1 ≤ k ≤ N,
and < be a well-founded relation over M.

I A measure combination of a walk cci1 , . . . , ccin is a sequence
of natural numbers k1, . . . , kn, with 1 ≤ kj ≤ N representing
measure µkj , such that for all 1 ≤ j < n, v , v ′ ∈ Val ,

eval conds(pvso)(Cj , v) AND ε(pvso)(ej , v , v
′)

IMPLIES µkj (v) Bj µkj+1
(v ′),

where ccij = (Cj ,Pj , rec(ej)) and Bj ∈ {>,≥}.
I A measure combination is descending if at least one Bj is >.
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CCG Termination Criterion

I Let Gpvso be a CCG of a PVS0 program pvso in PVS0[Val ]
and M be a family of N measures for a well-founded relation
< over a type M.

I ccg terminationM(Gpvso) holds if for all circuits
cci1 , . . . , ccin in Gpvso there is a descending measure
combination k1, . . . , kn, with k1 = kn.
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Finding Descending Measure Combinations

µ1(m, n) = m
µ2(m, n) = n

cc1

�� ��
cc2

EE

66
,, cc3

YY

ll hh

µ1µ1

µ1µ2

µ2µ1

µ2µ2

ack(m, n) ≡ . . .

cc1 = (ack(m − 1, 1),m 6= 0 ∧ n = 0)
cc2 = (ack(m − 1, ack(m, n − 1)),m 6= 0 ∧ n 6= 0)
cc3 = (ack(m, n − 1),m 6= 0 ∧ n 6= 0)
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Finding Descending Measure Combinations
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Finding Descending Measure Combinations

µ1µ1 µ1µ2

µ2µ1 µ2µ2

cc1
>,≥,×,×

��
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��
cc2>,×,×,× 66

>,×,×,× ,,
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cc3 ≥,×,×,>hh≥,×,×,>ll
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YY

I Consider the circuit cc1, cc3, cc2, cc2, cc1, the measure
combination 1, 1, 1, 1, 1, i.e., >,≥, >,>, is descending.

I Consider the circuit cc3, cc3, the measure combination 2, 2,
i.e., >, is descending.

I The measure µ1 is not enough to prove termination because
2, 2 is the only measure combination that is descending for
cc3, cc3.
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CCG Termination Correctness

Theorem 11.
For all pvso ∈ PVS0[Val ], scp termination(pvso) if and only if
ccg terminationM(Gpvso) for some CCG Gpvso of pvso and
family M of measures.

I The number of cycles in a graph is finite. However, the
number of circuits is potentially infinite.

I It’s not enough to check for decreasing measure combinations
in cycles (see [Ave15]).
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Matrix Weighted Graphs

I Matrix Weighted Graphs is an effective technique to check for
descending measure combinations in a CCG using an algebra
over matrices [Ave15].

I Every edge in a CCG is labeled with a N×N-matrix of values
in {−1, 0, 1}, where N is the number of measures in M.
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Matrix Weighted Graph (MWG)

I Let Gpvso be a CCG of a PVS0 program pvso in PVS0[Val ]
and M be a family of N measures.

I A matrix weighted graph (MWG) Wpvso of a PVS0 program
pvso in PVS0[Val ] consists of a CCG Gpvso whose edges are
correctly labeled by N×N-matrices of values {−1, 0, 1}.
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Correct Labels

Mab is a correct label of an edge cca, ccb in Gpvso if and only if for
all 1 ≤ i , j ≤ N one of the following cases holds:

I Mab(i , j) = 1 only if for all va, vb ∈ Val ,

eval conds(pvso)(Ca, va) AND ε(pvso)(ea, va, vb)

IMPLIES µi (va) > µj(vb).

I Mab(i , j) = 0 only if for all va, vb ∈ Val ,

eval conds(pvso)(Ca, va) AND ε(pvso)(ea, va, vb)

IMPLIES µi (va) ≥ µj(vb).

I Mab(i , j) = −1.
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A MWG for Ackermann

I cc1 = (ack(m − 1, 1),m 6= 0 ∧ n = 0)

I cc2 = (ack(m − 1, ack(m, n − 1)),m 6= 0 ∧ n 6= 0)

I cc3 = (ack(m, n − 1),m 6= 0 ∧ n 6= 0)

I µ1(m, n) = m

I µ2(m, n) = n

cc1

M1

��
M1

��
cc2M2 66

M2 ,,
M2

EE

cc3

M3

YY

M3
ll M3hh

M1 =

[
1 0
−1 −1

]
M2 =

[
1 −1
−1 −1

]

M3 =

[
0 −1
−1 1

]
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Basic Operations

I Let x , y be in {−1, 0, 1}.

x × y =


−1 if x = −1 ∨ y = −1

1 if x = 1 ∨ y = 1

0 otherwise.

x + y = max(x , y).

I Matrix multiplication of values in {−1, 0, 1} is defined as
usual where addition and multiplication of values is defined as
above.
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Weight of Walk

I The weight of a walk cci1 , . . . , ccin of a matrix weighted graph
Wpvso is defined as Πn−1

j=1 Mij ij+1
.

I A weight M is positive is there exists 1 ≤ j ≤ N such that
M(i , i) > 0.
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MWG Termination Criterion

I Let Wpvso be a MWG of a PVS0 program pvso in PVS0[Val ]
and M be a family of N measures for a well-founded relation
< over a type M.

I mwg terminationM(Wpvso holds if all circuits in Wpvso have
a positive weight.

I Dutle’s Procedure:
I A sound and complete effective procedure to decide positive

weight of all circuits in a CCG.
I Formally verified in PVS.

Theorem 12.
For all pvso ∈ PVS0[Val ], ccg terminationM(Gpvso) for some
CCG Gpvso if and only if mwg terminationM(Wpvso) for some
MWG Wpvso .
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Termination Analysis by CCG

I How to build a CCG?

I Which well-founded relation?

I Which family of measures?

I How to build the matrices?

I How to check for positive weight of all circuits in a CCG?

I How is CCG integrated into PVS?
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How to Build a CCG

I The set of calling contexts is finite and can be extracted from
the program by syntactic analysis.

I A fully connected CCG is sound (of course, the more edges
the more inefficient the method).

I The theorem prover can be used to soundly remove edges
from the graph, i.e., an edge cca, ccb can be removed if

` ∀(va, vb : Val) :eval conds(pvso)(Ca, va) AND

ε(pvso)(ea, va, vb) IMPLIES

NOT eval conds(pvso)(Cb, vb).

can be discharged.
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Which well-founded relation? Which family of measures?

I The order relation < over natural numbers is a good starting
point.

I Since CCG allows for a family of measures, it is sound to add
as many measures as possible (of course the more measures
the more inefficient the method).

I Predefined functions can be used, e.g., parameter projections
(in the case of natural numbers), natural size of parameters
(in the case of data types), maximum/minimum of
parameters, etc. More complex recursions may need heuristics
based on static analysis.

I Manolios and Vroon report that “[CCG] was able to
automatically prove termination for over 98% of the more than
10,000 functions in the regression suite [of ACL2s]” [MV06].
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How to Build the Matrices

I All edges starting in a given a calling context cca are labelled
with the same matrix Ma.

I To build a matrix Ma for the edges starting in cca, it is sound
to set all its entries to -1.

I The theorem prover can be used to soundly reset the entries
in Ma(i , j) to either 0 or 1 as follows,
I If

` ∀(va, vb : Val) : eval conds(pvso)(Ca, va) AND

ε(pvso)(ea, va, vb) IMPLIES µi (va) > µj(vb),

can be discharged then set Ma(i , j) to 1.
I If

` ∀va, vb : Val) : eval conds(pvso)(Ca, va) AND

ε(pvso)(ea, va, vb) IMPLIES µi (va) ≥ µj(vb),

can be discharged, then set Ma(i , j) to 0.
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How to check for positive weight of all circuits in a CCG

Use Dutle’s procedure!
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PVS Development

I The development presented in this lecture is fully formalized
in PVS (including Dutle’s procedure).

I For reference, see CCG and PVS0 in NASA PVS Library
(https://github.com/nasa/pvslib).

I In particular, it’s formally verified that the following
termination criteria are all equivalent: ε-termination,
χ-termination, pvs0 tcc termination, SCP<,
scp termination, ccg terminationM,
mwg terminationM, and Dutle’s procedure.

https://github.com/nasa/pvslib
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Howe is CCG Being Integrated into PVS

ack(m,n:nat) : RECURSIVE nat =

IF m = 0 THEN n+1

ELSIF n = 0 THEN ack(m-1,1)

ELSE ack(m-1, ack(m,n-1))

ENDIF

MEASURE AUTO BY CCG

//

pvs0 ack : PVS0 = (false val,

ack op1,ack op2,

ite(op1(0,vr), op1(2,vr),

ite(op1(1,vr),rec(op1(3,vr)),

rec(op2(0,vr,rec(op1(4,vr)))))))

rz
��

mu1(m,n:nat):m

mu2(m,n:nat):n

�� ��
M1: M2: M3:
1 0 1 -1 0 -1
-1 -1 -1 -1 -1 1

+3

��
Dutle’s Procedure.
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PVS ⊆ PVS0

By design, the PVS0 language can directly encode any PVS
function f of type T → T , where T is an arbitrary PVS type.

Lemma 13.
Let f be a PVS function of type T → T . The program
mk pvs0(f ) = (O1,O2,⊥, ef ) of type PVS0, where ef = op1(0, vr)
and O1(0)(t) = f (t), satisfies the following properties:

I terminating(mk pvs0(f )), i.e., for any t ∈ T ,
Tε(mk pvs0(f ), t).

I f = pvs0 eval(mk pvs0(f )), i.e., for any t ∈ T ,
f (t) = pvs0 eval(mk pvs0(f ))(t).
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PVS0 6⊆ PVS

Some PVS0 programs cannot be embedded as PVS functions.

Lemma 14.
Let T be non-empty type. There is no PVS function f of type
T → T such that for any t ∈ T , ε(∆)(e∆, t, f (t)), where ∆ is the
PVS0 program defined in Lemma 4.
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PVS0 ⊆ PVS ∪{♦}

However, any PVS0 program, even non-terminating ones, can be
encoded as a PVS function of type T → T ∪ {♦}.

Lemma 15.
Let pvso be a, possibly non-terminating, program of type PVS0 and
epvso the PVS0 expression of pvso. The PVS function

f (t) := IF Tχ(pvso, t) THEN χ(pvso)(epvso , t, µ(pvso, t))

ELSE ♦ ENDIF ,

satisfies the following property for any ti , to ∈ T :

ε(pvso)(epvso , ti , to) if and only if f (ti ) = to .
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An Oracle for PVS0 Programs

It is possible to define an oracle of type PVS0[PVS0[Val ]] that
decides if a program of type PVS0[Val ] is terminating or not.

Theorem 16.
The program Oracle = (O1,O2,⊥, e) of type PVS0[PVS0[Val ]],
where

e = mk pvs0(LAMBDA(pvso : PVS0[Val ]) :

IF terminating(pvso) THEN > ELSE ⊥ENDIF ),

with ⊥ 6= >, has the following properties.

I Oracle is a terminating PVS0[PVS0[Val ]] program, i.e., forall
pvso of type PVS0[Val ], Tε(Oracle, pvso).

I Oracle decides termination of any PVS0[Val ] program, i.e., for
all pvso of type PVS0[Val ],

χ(Oracle)(e, pvso, µ(Oracle, pvso)) = > if and only if Tε(pvso).
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An Oracle for PVS0 Programs

I This counterintuitive result is possible because PVS, in
contrast to proof assistants based on constructive logic, allows
for the definition of total functions that are non-computable,
e.g.,

LAMBDA(pvso : PVS0[Val ]) :

IF terminating(pvso) THEN > ELSE ⊥ENDIF .

I These non-computable functions can be used in the
construction of terminating PVS0 programs through the
built-in operators.
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Partial Recursive PVS0 Programs

Formalizing the notion of partial recursive functions in PVS0
requires to restrict the way in which programs are built.

1. The parametric type T is set to N, i.e., Val = N, where the
number 0 represents the value false, i.e., ⊥ = 0. Any value
different from 0 represents a true value, in particular > = 1.

2. The built-in operators used in the construction of programs
are restricted by a hierarchy of levels:
I Operators in the first level can only be defined using

I projections (Π1(x , y : N) := x and Π2(x , y : N) := y),
I successor (succ(x : N) : x + 1), and
I greater or equal than functions.

I Operators in higher levels can only be constructed using
programs from the previous level.



86/88

Partial Recursive PVS0 Programs

A hierarchy of PVS0[nat] program levels is formalized by the
following predicate.

pvs0 level(n)(O1,O2,⊥, e) :=
IF n = 0 THEN O1 = 〈succ〉 ∧ O2 = 〈Π1,Π2, ge〉
ELSE ( ∃p′ ∈ PVS0[N] : pvs0 level(n − 1)(p′) ∧

LET (O1
′,O2

′,⊥′, e ′) = p′, l ′1 = |O1
′| IN

|O1| = l ′1 + 1 ∧
( ∀i ∈ N : i < l ′1 ⇒ O1(i) = O1

′(i) ) ∧
( ∀v ∈ N : ε(p′)(e ′, v ,O1(l ′1)(v)) ) ) ∧

( ∃p′ ∈ PVS0[N] : pvs0 level(n − 1)(p′) ∧
LET (O1

′,O2
′,⊥′, e ′) = p′, l ′2 = |O2

′| IN
|O2| = l ′2 + 1 ∧
( ∀i ∈ N : i < l ′2 ⇒ O2(i) = O2

′(i) ) ∧
( ∀v1, v2 ∈ N : ε(p′)(e ′, κ2 (v1, v2),O2(l ′2)(v1, v2)) ) ),

where the function κ2 is an encoding of pairs of natural numbers
onto natural numbers.



87/88

Undecidability of the Halting Problem

I The type PartialRecursive is defined to be a subtype of
PVS0[N] containing all the programs pvso such that there is a
natural n for which pvs0 level(n)(pvso) holds.

I Computable is a subtype of PartialRecursive containing
those elements that are also terminating.

I PartialRecursive, and thus Computable, are enumerable.

Theorem 17.
There exists a PVS function of type N→ PartialRecursive

that is surjective.
I The inverse of this surjective function, denoted as κP , is an

injective function of type PartialRecursive→ N.
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Undecidability of the Halting Problem

Theorem 18.
There is no program oracle = (O1,O2,⊥, eo) of type Computable

such that for all pvso = (O1
′,O2

′,⊥, e) of type
PartialRecursive and for all n ∈ N,

Tε(pvso, n) if and only if ¬ε(oracle)(eo , κ2 (κP(pvso), n),⊥).

Proof.
See [RMAR+18].
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