
1/88

Formalization of Termination of Recursive
Functions

César A. Muñoz1

NASA Langley Research Center

International School of Rewriting
July 30 - August 3, 2018

Pontificia Universidad Javeriana de Cali, Colombia

1The formalization presented in this lecture was done in collaboration with
Ariane A. Almeida (U. of Brasilia), Mauricio Ayala-Rincón (U. of Brasilia),
Andrea B. Avelar (U. of Brasilia), Aaron Dutle (NASA), Thiago M. Ferreira (U.
of Brasilia), Mariano Moscato (NIA), and Anthony Narkawicz (NASA).

2/88

Introduction

PVS0

Terminating PVS0 Programs

TCC Termination

Size-Change Principle

Calling Context Graphs

Matrix Weighted Graphs

Termination Analysis by CCG+MWG+Dutle’s Procedure

A Note on Computability

3/88

Termination

I In computer science, termination is the is the quintessential
example of a property that is undecidable.

I In 1939, Turing proved that it is impossible to construct an
algorithm that decides whether or not another algorithm
terminates on a given input [Tur37].

I Turing’s proof applies to algorithms written as Turing
machines, but the proof extends to other formalisms for
expressing computations: λ-calculus, rewriting systems,
computer programs.

4/88

Termination in Rewriting Systems

I Termination is a fundamental property of rewriting systems,
e.g., confluence is decidable in terminating systems.

I Termination is undecidable even when a rewrite system
consists of only one rule.

I Several syntactic and semantic techniques are available to
prove termination of rewriting systems.

I This lecture focuses on termination of recursive functions
specified in proof assistants.

5/88

Termination in Proof Assistants

I Termination is a meta-theoretical property in most interactive
theorem provers, e.g.,
I Termination is guaranteed for well-typed functions.
I Termination is guaranteed for functions satisfying some

constraints.
I Termination is guaranteed for functions satisfying some

semantic conditions.

I Once a definition of a function f is accepted by a proof
assistant, the statement “For every value a the computation
of f (a) terminates” is assumed to hold.

I Our proof assistant of choice: SRI’s Prototype Verification
System (PVS).2

2https://pvs.csl.sri.com.

https://pvs.csl.sri.com

6/88

PVS

I PVS is an interactive theorem prover based on classical
higher-order logic.

I PVS provides a strongly-typed specification language that
supports predicate sub-typing, dependent types, inductive
data types, parametric theories, etc.

I PVS is extensively used at NASA in the verification of
safety-critical and mission-critical systems.3

I The NASA PVS Library consists of more than 20K lemmas
(including the formalization presented in this lecture).4

3https://shemesh.larc.nasa.gov/people/cam/FM.
4https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/.

https://shemesh.larc.nasa.gov/people/cam/FM
https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/

7/88

Recursive Functions in PVS

factorial(n:nat): RECURSIVE nat =

IF n = 0 THEN 1

ELSE n*factorial(n-1)

ENDIF

MEASURE M BY R

where M is a measure, i.e., a function from the domain of factorial
into a type T , and R is a well-founded relation on T , e.g.,

I M = LAMBDA(n:nat):n,

I R = LAMBDA(n,m:nat):n < m.

8/88

Recursive Functions in PVS

The well-founded relation R is usually “<” on natural numbers. In
this case, it can be written

factorial(n:nat): RECURSIVE nat =

IF n = 0 THEN 1

ELSE n*factorial(n-1)

ENDIF

MEASURE n

PVS produces the following Termination Correctness Condition:5

factorial_TCC2: OBLIGATION

FORALL (n: nat): n /= 0 IMPLIES n - 1 < n

5This TCC corresponds to the so called Turing Termination Criterion.

9/88

Recursive Functions in PVS

gcd(m,n:nat) : RECURSIVE nat =

IF m = 0 OR n = 0 THEN m + n

ELSIF n >= m THEN gcd(m,n-m)

ELSE gcd(n,m)

ENDIF

MEASURE ?

10/88

Recursive Functions in PVS

gcd(m,n:nat) : RECURSIVE nat =

IF m = 0 OR n = 0 THEN m + n

ELSIF n >= m THEN gcd(m,n-m)

ELSE gcd(n,m)

ENDIF

MEASURE lex2(m,n)

In this case,

I T , the range of lex2 is ordinal.

I R, the well-founded relation, is < on ordinals.

11/88

Termination Correctness Conditions for gcd

gcd_TCC2: OBLIGATION

FORALL (m, n: nat):

n >= m AND NOT m = 0 AND NOT n = 0 IMPLIES

lex2(m, n - m) < lex2(m, n)

gcd_TCC3: OBLIGATION

FORALL (m, n: nat):

NOT n >= m AND NOT m = 0 AND NOT n = 0 IMPLIES

lex2(n, m) < lex2(m, n)

I factorial TCC2, gcd TCC2, and gcd TCC3 are automatically
discharged by PVS.

I In general, the user has to provide the measure, the
well-founded relation, and prove the TCCs.

12/88

Research Objectives

I Formalize in PVS different termination criteria and prove their
equivalence, e.g., Turing termination [Tur89], size change
principle [LJB01, TG03, KST+11], calling context
graphs [MV06], matrix-weighted graphs [Ave15], and
dependency pairs [Art96, YSTK16, AG00].

I Use these criteria to specify terminating recursive functions in
PVS and automatically discharge Termination Correctness
Conditions.

I Study meta-theoretical properties related to termination and
computability of PVS recursive functions.

13/88

Introduction

PVS0

Terminating PVS0 Programs

TCC Termination

Size-Change Principle

Calling Context Graphs

Matrix Weighted Graphs

Termination Analysis by CCG+MWG+Dutle’s Procedure

A Note on Computability

14/88

PVS0: A Simple Computational Model

I PVS0 is a deep embedding of first-order PVS functions of
type T → T , where T is a parametric type.

I PVS0 functional expressions consists of
I Constant values of type T .
I A variable symbol of type T .
I Unary and binary “built-in” operators.
I If-then-else expressions.
I Recursive calls.

I PVS0 is simple, but not minimal. In particular, it enables the
use of arbitrary PVS functions of types T → T and
T × T → T as built-in atomic operators.

15/88

PVS0 Expressions

I PVS0 expressions e have the following form:

cnst(v) | vr | op1(n, e) | op2(n, e, e) | rec(e) | ite(e, e, e),

where v is a value of type T and n ∈ N .

I In PVS, it is defined using the following abstract data type.

PVS0Expr[T:TYPE+] : DATATYPE

BEGIN

cnst(get val:T) : cnst?

vr : vr?

op1(get op:nat,get arg:PVS0Expr) : op1?

op2(get op:nat,get arg1,get arg2:PVS0Expr) : op2?

rec(get arg:PVS0Expr) : rec?

ite(get cond,get if,get else:PVS0Expr) : ite?

END PVS0Expr

16/88

PVS0 Programs

Given a concrete type Val , which instantiates T , a PVS0 program
with values in Val is a 4-tuple of the form (O1,O2,⊥, e), where

I O1 is a list of PVS functions of type Val → Val , where O1(i),
i.e., the i-th element of the list O1, interprets the unary
operator indexed by i in the constructor op1,

I O2 is a list of PVS functions of type Val × Val → Val , where
O2(i), i.e., the i-th element of the list O2, interprets the
binary operator indexed by i in the constructor op2,

I ⊥ is a constant of type Val representing the Boolean value
false in the conditional construction ite, and

I e is a PVS0Expr[Val], which is the syntactic representation of
the program itself.

16/88

PVS0 Programs

Given a concrete type Val , which instantiates T , a PVS0 program
with values in Val is a 4-tuple of the form (O1,O2,⊥, e), where

I O1 is a list of PVS functions of type Val → Val , where O1(i),
i.e., the i-th element of the list O1, interprets the unary
operator indexed by i in the constructor op1,

I O2 is a list of PVS functions of type Val × Val → Val , where
O2(i), i.e., the i-th element of the list O2, interprets the
binary operator indexed by i in the constructor op2,

I ⊥ is a constant of type Val representing the Boolean value
false in the conditional construction ite, and

I e is a PVS0Expr[Val], which is the syntactic representation of
the program itself.

16/88

PVS0 Programs

Given a concrete type Val , which instantiates T , a PVS0 program
with values in Val is a 4-tuple of the form (O1,O2,⊥, e), where

I O1 is a list of PVS functions of type Val → Val , where O1(i),
i.e., the i-th element of the list O1, interprets the unary
operator indexed by i in the constructor op1,

I O2 is a list of PVS functions of type Val × Val → Val , where
O2(i), i.e., the i-th element of the list O2, interprets the
binary operator indexed by i in the constructor op2,

I ⊥ is a constant of type Val representing the Boolean value
false in the conditional construction ite, and

I e is a PVS0Expr[Val], which is the syntactic representation of
the program itself.

16/88

PVS0 Programs

Given a concrete type Val , which instantiates T , a PVS0 program
with values in Val is a 4-tuple of the form (O1,O2,⊥, e), where

I O1 is a list of PVS functions of type Val → Val , where O1(i),
i.e., the i-th element of the list O1, interprets the unary
operator indexed by i in the constructor op1,

I O2 is a list of PVS functions of type Val × Val → Val , where
O2(i), i.e., the i-th element of the list O2, interprets the
binary operator indexed by i in the constructor op2,

I ⊥ is a constant of type Val representing the Boolean value
false in the conditional construction ite, and

I e is a PVS0Expr[Val], which is the syntactic representation of
the program itself.

17/88

Example 1: Factorial

factorial(n:nat): RECURSIVE nat =

IF n /= 0 THEN n*factorial(n-1)

ELSE 1

ENDIF

Let f ∈ PVS0[Val] = (O1,O2,⊥, ef), where

I Val = nat

I ⊥ = 0

I op1(0, n) = max(0, n − 1)

I op2(0, n,m) = n ∗m
I ef = ite(vr,op2(0,vr,rec(op1(0,vr))),cnst(1))

17/88

Example 1: Factorial

factorial(n:nat): RECURSIVE nat =

IF n /= 0 THEN n*factorial(n-1)

ELSE 1

ENDIF

Let f ∈ PVS0[Val] = (O1,O2,⊥, ef), where

I Val = nat

I ⊥ = 0

I op1(0, n) = max(0, n − 1)

I op2(0, n,m) = n ∗m
I ef = ite(vr,op2(0,vr,rec(op1(0,vr))),cnst(1))

17/88

Example 1: Factorial

factorial(n:nat): RECURSIVE nat =

IF n /= 0 THEN n*factorial(n-1)

ELSE 1

ENDIF

Let f ∈ PVS0[Val] = (O1,O2,⊥, ef), where

I Val = nat

I ⊥ = 0

I op1(0, n) = max(0, n − 1)

I op2(0, n,m) = n ∗m
I ef = ite(vr,op2(0,vr,rec(op1(0,vr))),cnst(1))

17/88

Example 1: Factorial

factorial(n:nat): RECURSIVE nat =

IF n /= 0 THEN n*factorial(n-1)

ELSE 1

ENDIF

Let f ∈ PVS0[Val] = (O1,O2,⊥, ef), where

I Val = nat

I ⊥ = 0

I op1(0, n) = max(0, n − 1)

I op2(0, n,m) = n ∗m

I ef = ite(vr,op2(0,vr,rec(op1(0,vr))),cnst(1))

17/88

Example 1: Factorial

factorial(n:nat): RECURSIVE nat =

IF n /= 0 THEN n*factorial(n-1)

ELSE 1

ENDIF

Let f ∈ PVS0[Val] = (O1,O2,⊥, ef), where

I Val = nat

I ⊥ = 0

I op1(0, n) = max(0, n − 1)

I op2(0, n,m) = n ∗m
I ef = ite(vr,op2(0,vr,rec(op1(0,vr))),cnst(1))

18/88

Example 2: GCD

gcd(m,n:nat) : RECURSIVE nat =

IF m = 0 OR n = 0 THEN m + n

ELSIF n >= m THEN gcd(m,n-m)

ELSE gcd(n,m)

ENDIF

Let g ∈ PVS0[Val] = (O1, null,⊥, eg), where

I Val = [nat, nat]

I ⊥ = (0, 0).

> = (1, 0)

I op1(0, (m, n)) = IF m = 0 OR n = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n >= m THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (m + n, 0)

I op1(3, (m, n)) = (m,max(0, n −m))

I op1(4, (m, n)) = (n,m)

18/88

Example 2: GCD

gcd(m,n:nat) : RECURSIVE nat =

IF m = 0 OR n = 0 THEN m + n

ELSIF n >= m THEN gcd(m,n-m)

ELSE gcd(n,m)

ENDIF

Let g ∈ PVS0[Val] = (O1, null,⊥, eg), where

I Val = [nat, nat]

I ⊥ = (0, 0).> = (1, 0)

I op1(0, (m, n)) = IF m = 0 OR n = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n >= m THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (m + n, 0)

I op1(3, (m, n)) = (m,max(0, n −m))

I op1(4, (m, n)) = (n,m)

18/88

Example 2: GCD

gcd(m,n:nat) : RECURSIVE nat =

IF m = 0 OR n = 0 THEN m + n

ELSIF n >= m THEN gcd(m,n-m)

ELSE gcd(n,m)

ENDIF

Let g ∈ PVS0[Val] = (O1, null,⊥, eg), where

I Val = [nat, nat]

I ⊥ = (0, 0).> = (1, 0)

I op1(0, (m, n)) = IF m = 0 OR n = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n >= m THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (m + n, 0)

I op1(3, (m, n)) = (m,max(0, n −m))

I op1(4, (m, n)) = (n,m)

18/88

Example 2: GCD

gcd(m,n:nat) : RECURSIVE nat =

IF m = 0 OR n = 0 THEN m + n

ELSIF n >= m THEN gcd(m,n-m)

ELSE gcd(n,m)

ENDIF

Let g ∈ PVS0[Val] = (O1, null,⊥, eg), where

I Val = [nat, nat]

I ⊥ = (0, 0).> = (1, 0)

I op1(0, (m, n)) = IF m = 0 OR n = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n >= m THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (m + n, 0)

I op1(3, (m, n)) = (m,max(0, n −m))

I op1(4, (m, n)) = (n,m)

18/88

Example 2: GCD

gcd(m,n:nat) : RECURSIVE nat =

IF m = 0 OR n = 0 THEN m + n

ELSIF n >= m THEN gcd(m,n-m)

ELSE gcd(n,m)

ENDIF

Let g ∈ PVS0[Val] = (O1, null,⊥, eg), where

I Val = [nat, nat]

I ⊥ = (0, 0).> = (1, 0)

I op1(0, (m, n)) = IF m = 0 OR n = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n >= m THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (m + n, 0)

I op1(3, (m, n)) = (m,max(0, n −m))

I op1(4, (m, n)) = (n,m)

18/88

Example 2: GCD

gcd(m,n:nat) : RECURSIVE nat =

IF m = 0 OR n = 0 THEN m + n

ELSIF n >= m THEN gcd(m,n-m)

ELSE gcd(n,m)

ENDIF

Let g ∈ PVS0[Val] = (O1, null,⊥, eg), where

I Val = [nat, nat]

I ⊥ = (0, 0).> = (1, 0)

I op1(0, (m, n)) = IF m = 0 OR n = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n >= m THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (m + n, 0)

I op1(3, (m, n)) = (m,max(0, n −m))

I op1(4, (m, n)) = (n,m)

18/88

Example 2: GCD

gcd(m,n:nat) : RECURSIVE nat =

IF m = 0 OR n = 0 THEN m + n

ELSIF n >= m THEN gcd(m,n-m)

ELSE gcd(n,m)

ENDIF

Let g ∈ PVS0[Val] = (O1, null,⊥, eg), where

I Val = [nat, nat]

I ⊥ = (0, 0).> = (1, 0)

I op1(0, (m, n)) = IF m = 0 OR n = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n >= m THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (m + n, 0)

I op1(3, (m, n)) = (m,max(0, n −m))

I op1(4, (m, n)) = (n,m)

19/88

Example 2: GCD

gcd(m,n:nat) : RECURSIVE nat =

IF m = 0 OR n = 0 THEN m + n

ELSIF n >= m THEN gcd(m,n-m)

ELSE gcd(n,m)

ENDIF

I eg =

ite(op1(0,vr),

op1(2,vr),

ite(op1(1,vr),

rec(op1(3,vr)),

rec(op1(4,vr))))

20/88

Example 3: Ackermann

ackermann(m,n:nat) : RECURSIVE nat =

IF m = 0 THEN n+1

ELSIF n = 0 THEN ackermann(m-1,1)

ELSE ackermann(m-1,ackermann(m,n-1))

ENDIF

Let a ∈ PVS0[Val] = (O1,O2,⊥, ea), where

I Val = [nat, nat]

I ⊥ = (0, 0).

> = (1, 0)

I op1(0, (m, n)) = IF m = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n = 0 THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (n + 1, 0)

I op1(3, (m, n)) = (max(0,m − 1), 1)

I op1(4, (m, n)) = (m,max(0, n − 1))

I op2(0, (m, n), (i , j)) = (max(0,m − 1), i)

20/88

Example 3: Ackermann

ackermann(m,n:nat) : RECURSIVE nat =

IF m = 0 THEN n+1

ELSIF n = 0 THEN ackermann(m-1,1)

ELSE ackermann(m-1,ackermann(m,n-1))

ENDIF

Let a ∈ PVS0[Val] = (O1,O2,⊥, ea), where

I Val = [nat, nat]

I ⊥ = (0, 0).> = (1, 0)

I op1(0, (m, n)) = IF m = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n = 0 THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (n + 1, 0)

I op1(3, (m, n)) = (max(0,m − 1), 1)

I op1(4, (m, n)) = (m,max(0, n − 1))

I op2(0, (m, n), (i , j)) = (max(0,m − 1), i)

20/88

Example 3: Ackermann

ackermann(m,n:nat) : RECURSIVE nat =

IF m = 0 THEN n+1

ELSIF n = 0 THEN ackermann(m-1,1)

ELSE ackermann(m-1,ackermann(m,n-1))

ENDIF

Let a ∈ PVS0[Val] = (O1,O2,⊥, ea), where

I Val = [nat, nat]

I ⊥ = (0, 0).> = (1, 0)

I op1(0, (m, n)) = IF m = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n = 0 THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (n + 1, 0)

I op1(3, (m, n)) = (max(0,m − 1), 1)

I op1(4, (m, n)) = (m,max(0, n − 1))

I op2(0, (m, n), (i , j)) = (max(0,m − 1), i)

20/88

Example 3: Ackermann

ackermann(m,n:nat) : RECURSIVE nat =

IF m = 0 THEN n+1

ELSIF n = 0 THEN ackermann(m-1,1)

ELSE ackermann(m-1,ackermann(m,n-1))

ENDIF

Let a ∈ PVS0[Val] = (O1,O2,⊥, ea), where

I Val = [nat, nat]

I ⊥ = (0, 0).> = (1, 0)

I op1(0, (m, n)) = IF m = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n = 0 THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (n + 1, 0)

I op1(3, (m, n)) = (max(0,m − 1), 1)

I op1(4, (m, n)) = (m,max(0, n − 1))

I op2(0, (m, n), (i , j)) = (max(0,m − 1), i)

20/88

Example 3: Ackermann

ackermann(m,n:nat) : RECURSIVE nat =

IF m = 0 THEN n+1

ELSIF n = 0 THEN ackermann(m-1,1)

ELSE ackermann(m-1,ackermann(m,n-1))

ENDIF

Let a ∈ PVS0[Val] = (O1,O2,⊥, ea), where

I Val = [nat, nat]

I ⊥ = (0, 0).> = (1, 0)

I op1(0, (m, n)) = IF m = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n = 0 THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (n + 1, 0)

I op1(3, (m, n)) = (max(0,m − 1), 1)

I op1(4, (m, n)) = (m,max(0, n − 1))

I op2(0, (m, n), (i , j)) = (max(0,m − 1), i)

20/88

Example 3: Ackermann

ackermann(m,n:nat) : RECURSIVE nat =

IF m = 0 THEN n+1

ELSIF n = 0 THEN ackermann(m-1,1)

ELSE ackermann(m-1,ackermann(m,n-1))

ENDIF

Let a ∈ PVS0[Val] = (O1,O2,⊥, ea), where

I Val = [nat, nat]

I ⊥ = (0, 0).> = (1, 0)

I op1(0, (m, n)) = IF m = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n = 0 THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (n + 1, 0)

I op1(3, (m, n)) = (max(0,m − 1), 1)

I op1(4, (m, n)) = (m,max(0, n − 1))

I op2(0, (m, n), (i , j)) = (max(0,m − 1), i)

20/88

Example 3: Ackermann

ackermann(m,n:nat) : RECURSIVE nat =

IF m = 0 THEN n+1

ELSIF n = 0 THEN ackermann(m-1,1)

ELSE ackermann(m-1,ackermann(m,n-1))

ENDIF

Let a ∈ PVS0[Val] = (O1,O2,⊥, ea), where

I Val = [nat, nat]

I ⊥ = (0, 0).> = (1, 0)

I op1(0, (m, n)) = IF m = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n = 0 THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (n + 1, 0)

I op1(3, (m, n)) = (max(0,m − 1), 1)

I op1(4, (m, n)) = (m,max(0, n − 1))

I op2(0, (m, n), (i , j)) = (max(0,m − 1), i)

20/88

Example 3: Ackermann

ackermann(m,n:nat) : RECURSIVE nat =

IF m = 0 THEN n+1

ELSIF n = 0 THEN ackermann(m-1,1)

ELSE ackermann(m-1,ackermann(m,n-1))

ENDIF

Let a ∈ PVS0[Val] = (O1,O2,⊥, ea), where

I Val = [nat, nat]

I ⊥ = (0, 0).> = (1, 0)

I op1(0, (m, n)) = IF m = 0 THEN > ELSE ⊥ ENDIF

I op1(1, (m, n)) = IF n = 0 THEN > ELSE ⊥ ENDIF

I op1(2, (m, n)) = (n + 1, 0)

I op1(3, (m, n)) = (max(0,m − 1), 1)

I op1(4, (m, n)) = (m,max(0, n − 1))

I op2(0, (m, n), (i , j)) = (max(0,m − 1), i)

21/88

Example 3: Ackermann

ackermann(m,n:nat) : RECURSIVE nat =

IF m = 0 THEN n+1

ELSIF n = 0 THEN ackermann(m-1,1)

ELSE ackermann(m-1,ackermann(m,n-1))

ENDIF

I ea =

ite(op1(0,vr),

op1(2,vr),

ite(op1(1,vr),

rec(op1(3,vr)),

rec(op2(0,vr,rec(op1(4,vr))))))

22/88

Semantic Evaluation Relation ε

Given a PVS0 program pvso = (O1,O2,⊥, epvso) of type
PVS0[Val], the predicate ε holds when the semantic evaluation of
an expression e of type PVS0Expr[Val] on the input value vi results
in the value vo .

ε(pvso)(e, vi , vo) := CASES e OF
cnst(v) : vo = v ;

vr : vo = vi ;
op1(j , e1) : j < |O1| ∧ ∃ v ′ ∈ Val :

ε(pvso)(e1, vi , v
′) ∧ vo = O1(j)(v ′);

op2(j , e1, e2) : j < |O2| ∧ ∃ v ′, v ′′ ∈ Val :
ε(pvso)(e1, vi , v

′) ∧
ε(pvso)(e2, vi , v

′′) ∧
vo = O2(j)(v ′, v ′′);

rec(e1) : ∃ v ′ ∈ Val : ε(pvso)(e1, vi , v
′) ∧

ε(pvso)(epvso , v
′, vo)

ite(e1, e2, e3) : ∃ v ′ : ε(pvso)(e1, vi , v
′) ∧

IF v ′ 6= ⊥ THEN ε(pvso)(e2, vi , vo)
ELSE ε(pvso)(e3, vi , vo) ENDIF .

23/88

The Relation ε is Deterministic

Lemma 1.
Let pvso be a PVS0 program of type PVS0[Val]. For any
expression e of type PVS0Expr[Val] and all values vi , v

′
o , v
′′
o ∈ Val,

ε(pvso)(e, vi , v
′
o) and ε(pvso)(e, vi , v

′′
o) implies v ′o = v ′′o .

The proof of this lemma uses the induction schema generated for
the inductive relation ε.

24/88

Semantic Evaluation Function χ

I Given a PVS0 program pvso = (O1,O2,⊥, epvso) of type
PVS0[Val] and a natural number n, representing a maximum
number of recursive calls, the function χ evaluates an
expression e of type PVS0Expr[Val] on the input value vi .
The function returns either the undefined value ♦ or a value
of type Val .

I The function χ is recursively defined on the structure of e.

25/88

The Function χ

χ(pvso)(e, vi , n) := IF n = 0 THEN ♦ ELSE CASES e OF

cnst(v) : v ;
vr : vi ;

op1(j , e1) : IF j < |O1| THEN
LET v ′ = χ(pvso)(e1, vi , n) IN
IF v ′ = ♦ THEN ♦ ELSE O1(j)(v ′) ENDIF

ELSE ⊥ ENDIF ;
op2(j , e1, e2) : IF j < |O2| THEN

LET v ′ = χ(pvso)(e1, vi , n),
v ′′ = χ(pvso)(e2, vi , n) IN

IF v ′ = ♦ ∨ v ′′ = ♦ THEN ♦ ELSE O2(j)(v ′, v ′′) ENDIF
ELSE ⊥ ENDIF ;

rec(e1) : LET v ′ = χ(pvso)(e1, vi , n) IN
IF v ′ = ♦ THEN ♦ ELSE χ(pvso)(epvso , v

′, n − 1) ENDIF ;
ite(e1, e2, e3) : LET v ′ = χ(pvso)(e1, vi , n) IN

IF v ′ = ♦ THEN ♦
ELSIF v ′ 6= ⊥ THEN χ(pvso)(e2, vi , n)
ELSE χ(pvso)(e3, vi , n) ENDIF ;

ENDIF

26/88

Equivalence of ε and χ Evaluation

Theorem 2.
Let pvso be a PVS0 program of type PVS0[Val]. For any vi ∈ Val
and e of type PVS0Expr[Val],

ε(pvso)(e, vi , vo) if and only if vo = χ(pvso)(e, vi , n),

for some n, where vo 6= ♦.

27/88

Factorial, GCD, and Ackermann Lemmas

I The PVS0 program f computes the PVS function factorial,
i.e., for any n, k ∈ nat,

factorial(n) = k if and only if ε(f)(ef , n, k).

I The PVS0 program g computes the PVS function gcd, i.e.,
for any n,m, k ∈ nat,

gcd(m, n) = k if and only if ε(g)(eg , (m, n), (k , i)),

for some i .

I The PVS0 program a computes the PVS function ackermann,
i.e., for any n,m, k ∈ nat,

ackermann(m, n) = k if and only if ε(a)(ea, (m, n), (k , i)),

for some i .

28/88

Introduction

PVS0

Terminating PVS0 Programs

TCC Termination

Size-Change Principle

Calling Context Graphs

Matrix Weighted Graphs

Termination Analysis by CCG+MWG+Dutle’s Procedure

A Note on Computability

29/88

ε-Termination

I The PVS0 program pvso ∈ PVS0[Val] ε-terminates for an
input vi ∈ Val if the following predicate holds

Tε(pvso, vi) ≡ ∃ vo ∈ Val : ε(pvso)(epvso , vi , vo).

I The PVS0 program pvso is ε-terminating if for all vi ∈ Val ,
Tε(pvso, vi) holds.

30/88

χ-Termination

I The PVS0 program pvso ∈ PVS0[Val] χ-terminates for an
input vi ∈ Val if the following predicate holds

Tχ(pvso, vi) ≡ ∃ n ∈ nat : χ(pvso)(epvso , vi , n) 6= ♦.

I The PVS0 program pvso is χ-terminating if for all vi ∈ Val ,
Tχ(pvso, vi) holds.

31/88

Equivalence of Tε and Tχ

Theorem 3.
Let pvso be a PVS0 program of type PVS0[Val]. The following
conditions hold:

1. For any vi ∈ Val, Tε(pvso, vi) if and only if Tχ(pvso, vi).

2. pvso is ε-terminating if and only if pvso is χ-terminating.

A PVS0 program pvso that is ε-terminating (or equivalently,
χ-terminating) is said to be terminating, denoted
terminating(pvso).

32/88

Existence of Non-terminating PVS0 Programs

Lemma 4.
Let ∆ = (O1,O2,⊥, rec(vr)). For any v ∈ Val, ¬Tχ(∆, v).

Proof.

1. Define µ(pvso, v), for any pvso and v such that Tχ(pvso, v),
as the minimum n that satisfies

χ(pvso)(epvso , v , n) 6= ♦.

2. By contradiction, assume that χ(∆)(e∆, v , n) 6= ♦ for some
n.

3. Therefore, χ(∆)(e∆, v , µ(∆, v)) 6= ♦, by definition of µ.

4. By definition of ∆ and χ, it is also the case that
χ(∆)(e∆, v , µ(∆, v)− 1).

5. This is a contradiction because µ(∆, v)− 1 < µ(∆, v).

33/88

Evaluation of Terminating PVS0 Programs

Let pvso = (O1,O2,⊥, epvso) be a terminating PVS0 program in
PVS0[Val], i.e., terminating(pvso). The evaluation of pvso on v
can be defined as
pvs0 eval(pvso)(v) ≡ pvs0 eval expr(pvso)(epvso , v), where

pvs0 eval expr(pvso)(e, vi) := CASES e OF

cnst(v) : v ;
vr : vi ;

op1(j , e1) : IF j < |O1| THEN
O1(j)(pvs0 eval expr(pvso)(e1, vi))

ELSE ⊥ ENDIF ;
op2(j , e1, e2) : IF j < |O2| THEN

O1(j)(pvs0 eval expr(pvso)(e1, vi),
pvs0 eval expr(pvso)(e2, vi))

ELSE ⊥ ENDIF ;
rec(e1) : pvs0 eval expr(pvso)(epvso)(pvs0 eval expr(pvso)(e1, vi))

ite(e1, e2, e3) : LET v ′ = pvs0 eval expr(pvso)(e1, vi) IN
IF v ′ 6= ⊥ THEN pvs0 eval expr(pvso)(e2, vi)
ELSE pvs0 eval expr(pvso)(e3, vi) ENDIF .

34/88

Correctness of pvs0 eval

Theorem 5.
For all terminating programs pvso ∈ PVS0[Val] and vi , vo ∈ Val,
ε(pvso)(epvso , vi , vo) if and only if vo = pvs0 eval(pvso)(vi).

35/88

Introduction

PVS0

Terminating PVS0 Programs

TCC Termination

Size-Change Principle

Calling Context Graphs

Matrix Weighted Graphs

Termination Analysis by CCG+MWG+Dutle’s Procedure

A Note on Computability

36/88

A Syntactic Termination Criterion

I Tε and Tχ are impractical as termination criteria since they
require case by case analysis on the input to the function.

I Turing Termination Criterion: If there is a measure on a
well-founded relation that strictly decreases at every recursive
call, the function is terminating.

I This criterion, which implements a simple static analysis,
requires the formalization of several syntactic elements:
I Recursive calls.
I Conditions.
I Paths.

37/88

PVS0 Calling Context

A PVS0 Calling Context is triple (r ,P,C), where

I r is a PVS0Expr of the form rec(e), where e is a PVS0Expr.

I P is a path, i.e., a list of natural numbers.

I C is a list of Boolean expressions, i.e., a PVS0Expr or a
negation of a PVS0Expr.

A (r ,P,C) is a valid calling context of e ∈ PVS0Expr if

I r is a subexpression of e.

I P is the path of r in e,

I C is the set of accumulated conditions for the path P.

The set of valid calling contexts of e are denoted
pvs0 tcc valid cc(e).

38/88

Valid Calling Contexts of Ackermann

IF m = 0 THEN n+1

ELSIF n = 0 THEN ackermann(m-1,1)

ELSE ackermann(m-1,ackermann(m,n-1))

ENDIF

ite〈0〉(op1〈00〉(0,vr〈000〉),op1〈10〉(2,vr〈010〉),
ite〈20〉(op1〈020〉(1,vr〈0020〉),rec〈120〉(op1〈0120〉(3,vr〈00120〉)),

rec〈220〉(op2〈0220〉(0,vr〈00220〉,
rec〈10220〉(op1〈0...〉(4,vr〈00...〉))))))

I cc1 =
(rec(op1(3,vr)), 〈120〉, {op1(1,vr), !(op1(0,vr))}).

I cc2 =
(rec(op2(0,vr,...)), 〈220〉, {!(op1(1,vr)), !(op1(0,vr))}).

I cc3 =
(rec(op1(0,vr)), 〈10220〉, {!(op1(4,vr)), !(op1(0,vr))}).

38/88

Valid Calling Contexts of Ackermann

IF m = 0 THEN n+1

ELSIF n = 0 THEN ackermann(m-1,1)

ELSE ackermann(m-1,ackermann(m,n-1))

ENDIF

ite〈0〉(op1〈00〉(0,vr〈000〉),op1〈10〉(2,vr〈010〉),
ite〈20〉(op1〈020〉(1,vr〈0020〉),rec〈120〉(op1〈0120〉(3,vr〈00120〉)),

rec〈220〉(op2〈0220〉(0,vr〈00220〉,
rec〈10220〉(op1〈0...〉(4,vr〈00...〉))))))

I cc1 =
(rec(op1(3,vr)), 〈120〉, {op1(1,vr), !(op1(0,vr))}).

I cc2 =
(rec(op2(0,vr,...)), 〈220〉, {!(op1(1,vr)), !(op1(0,vr))}).

I cc3 =
(rec(op1(0,vr)), 〈10220〉, {!(op1(4,vr)), !(op1(0,vr))}).

38/88

Valid Calling Contexts of Ackermann

IF m = 0 THEN n+1

ELSIF n = 0 THEN ackermann(m-1,1)

ELSE ackermann(m-1,ackermann(m,n-1))

ENDIF

ite〈0〉(op1〈00〉(0,vr〈000〉),op1〈10〉(2,vr〈010〉),
ite〈20〉(op1〈020〉(1,vr〈0020〉),rec〈120〉(op1〈0120〉(3,vr〈00120〉)),

rec〈220〉(op2〈0220〉(0,vr〈00220〉,
rec〈10220〉(op1〈0...〉(4,vr〈00...〉))))))

I cc1 =
(rec(op1(3,vr)), 〈120〉, {op1(1,vr), !(op1(0,vr))}).

I cc2 =
(rec(op2(0,vr,...)), 〈220〉, {!(op1(1,vr)), !(op1(0,vr))}).

I cc3 =
(rec(op1(0,vr)), 〈10220〉, {!(op1(4,vr)), !(op1(0,vr))}).

39/88

Evaluation of Conditions

eval conds(pvso)(C , vi) := CASES C OF

null : TRUE;
cons(e,C ′) : (∃ vo ∈ Val : ε(pvso)(e, vi , vo) ∧ vo 6= ⊥) ∧

eval conds(pvso)(C ′, vi);
cons(!(e),C ′) : (∃ vo ∈ Val : ε(pvso)(e, vi , vo) ∧ vo = ⊥) ∧

eval conds(pvso)(C ′, vi).

40/88

Termination Correctness Condition

I A PVS0 program pvso ∈ PVS0[Val] satisfies the predicate
pvs0 tcc termination(pvso) for a type M if and only

I There exists a function m from Val into M and a well-founded
relation < on M such that for all vi , vo : Val and
(rec(e),P,C) ∈ pvs0 tcc valid cc(epvso),
I ε(pvso)(e, vi , vo) and
I eval conds(pvso)(C , vi)

implies m(vo) < m(vi).

41/88

TCC Correctness

Theorem 6.
Let pvso be a PVS0 program of type PVS0[Val]. The predicate
pvs0 tcc termination(pvso) holds for a type M if and only if
terminating(pvso), i.e., for all v : Val, Tε(pvso, v) (or,
equivalently, Tχ(pvso, v)) .

I The direction “←” uses M = nat and the well-founded order
< on natural numbers.

I The proof of this statement uses the definition of

Ωm(v) := min({n : N+ | ∀ v ′ ∈ V : ¬(m(v) >n m(v ′))}).

I Intuitively, Ωm(v) is the length of the longest path downwards
starting from m(v).

42/88

Ω and µ

The following lemma states a relation between µ and Ω.

Lemma 7.
Let pvso be a PVS0 program that satisfies
pvs0 tcc termination(pvso) for a well-founded relation < over
M and a measure function m. For any value v ∈ Val,
µ(pvso, v) ≤ Ωm(v).

43/88

The PVS0 Ackermann Program is Terminating

Theorem 8.
The PVS0 Ackerman program a satisfies terminating(a).

I By Theorem 6, it suffices to check
pvs0 tcc termination(a).

I pvs0 tcc termination(a) can be checked for all the PVS0
calling contexts of a, i.e., {cc1, cc2, cc3} using M = [nat, nat]
and (a, b) < (c, d) ≡ a < c OR (a = c AND b < d).

I The proofs of these conditions correspond to the proofs of the
actual termination correctness conditions generated by the
PVS Type Checker for the PVS function ackermann.

44/88

Introduction

PVS0

Terminating PVS0 Programs

TCC Termination

Size-Change Principle

Calling Context Graphs

Matrix Weighted Graphs

Termination Analysis by CCG+MWG+Dutle’s Procedure

A Note on Computability

45/88

The Size-Change Principle (SCP)

SCP Termination Criterion
A program terminates on all inputs if every infinite call sequence
(following program control flow) would cause an infinite descent
(over a well-founded relation) in some data values. [LJB01].

46/88

Infinite Sequence of Computations

Let pvso ∈ PVS0[Val], cc = (rec(e0),P0,C0), . . . be an infinite
sequence of calling contexts of pvso, and V = v0, . . . be an infinite
sequence of values in Val such that the following predicate holds.

infinite seq ccs(cc,V) ≡
∀(i : nat) : (eval conds(pvso)(Ci , vi) AND

ε(pvso)(ei , vi , vi+1)).

Let < be a well-founded relation over Val , SCP<(pvso) holds if for
all infinite sequence cc of calling contexts of pvso and infinite
sequence V of values in Val that satisfy
infinite seq ccs(cc,V), vi+1 < vi for all i .

47/88

SCP Termination Criterion

scp termination(pvso) holds if there are no infinite sequence cc
of calling contexts of pvso and infinite sequence V of values in Val
that satisfy infinite seq ccs(cc,V).

Theorem 9.
For all pvso ∈ PVS0[Val], terminating(pvso) if and only if
scp termination(pvso).

Theorem 10.
For all pvso ∈ PVS0[Val], scp termination(pvso) if and only if
SCP<(pvso) for a well-founded relation < over Val.

48/88

Implementing SCP: Size Change Graph (SG)

To every call c associated to a function call
f (x1, ..., xn)

c→ f (x ′1, ..., x
′
m), the graph Gc is defined such that

there is an edge xi
B−→ x ′j if xi B x ′j , where B ∈ {>,≥}:

Formals of f

x1

x2

...

xi
...

xn

B //
B //
B

))
B

55

B

&&
B

55

x ′1
x ′2

...

x ′j
...

x ′n

Recursive call of f

︸ ︷︷ ︸
Edges

49/88

SCGs for Ackermann

ack(m, n) = ite(m = 0, n + 1,
ite(n = 0, ack︸︷︷︸

1

(m − 1, 1),

ack︸︷︷︸
2

(m − 1, 3 : ack︸︷︷︸
3

(m, n − 1)))

G1 : G2 : G3 :

m
> //

≥

##

m − 1

n 1

m
> // m − 1

n ack(m, n − 1)

m
≥ // m

n
> // n − 1

50/88

Multipaths and Threads

I A multipath is a sequence, potentially infinite, Gc1 ,Gc2 , . . . of
SCGs. A multipath can be seen as a concatenated graph.

I E.g., the Ackermann sequence of calls c1c3c1c2 yields the
multipath G1,G3,G1,G2:

m

≥

!!

> // m − 1
≥ // m − 1

> //

≥

&&

(m − 1)− 1
> // ((m − 1)− 1)− 1

n 1
> // 1− 1 1 ack(m, 1− 1)

51/88

Threads

I A thread in a multipath is a connected path of arcs

r1
B1 // r2

B2 //

I A thread is descending if at least one Bi is >. The thread is
infinitely descending if it contains infinitely many occurrences
of >.

I Size Change Principle: A program terminates if every infinite
call sequence yields an infinitely descending thread (over a
well-founded order <).

52/88

Introduction

PVS0

Terminating PVS0 Programs

TCC Termination

Size-Change Principle

Calling Context Graphs

Matrix Weighted Graphs

Termination Analysis by CCG+MWG+Dutle’s Procedure

A Note on Computability

53/88

Calling Context Graphs (CCG)

I CCG a termination analysis technique based on the
size-change principle [MV06].

I SCG Multipaths are represented by:
I A directed graph of calling contexts,
I where edges are labelled using a family of measures.

54/88

Calling Contexts (Reminder)

Calling contexts are a representation of recursive calls and their
governing conditions.

ack(m, n) = ite(m = 0, n + 1,
ite(n = 0, ack(m − 1, 1),

ack(m − 1, ack(m, n − 1)))

I cc1 = (ack(m − 1, 1),m 6= 0 ∧ n = 0)

I cc2 = (ack(m − 1, ack(m, n − 1)),m 6= 0 ∧ n 6= 0)

I cc3 = (ack(m, n − 1),m 6= 0 ∧ n 6= 0)

54/88

Calling Contexts (Reminder)

Calling contexts are a representation of recursive calls and their
governing conditions.

ack(m, n) = ite(m = 0, n + 1,
ite(n = 0, ack(m − 1, 1),

ack(m − 1, ack(m, n − 1)))

I cc1 = (ack(m − 1, 1),m 6= 0 ∧ n = 0)

I cc2 = (ack(m − 1, ack(m, n − 1)),m 6= 0 ∧ n 6= 0)

I cc3 = (ack(m, n − 1),m 6= 0 ∧ n 6= 0)

54/88

Calling Contexts (Reminder)

Calling contexts are a representation of recursive calls and their
governing conditions.

ack(m, n) = ite(m = 0, n + 1,
ite(n = 0, ack(m − 1, 1),

ack(m − 1, ack(m, n − 1)))

I cc1 = (ack(m − 1, 1),m 6= 0 ∧ n = 0)

I cc2 = (ack(m − 1, ack(m, n − 1)),m 6= 0 ∧ n 6= 0)

I cc3 = (ack(m, n − 1),m 6= 0 ∧ n 6= 0)

55/88

Calling Context Graph

Given a PVS0 program pvso ∈ PVS0[Val], a directed graph G of is
built, where

I the nodes of G are the calling contexts in
pvs0 tcc valid cc(epvso),

I there is an edge between calling contexts (rec(ea),Pa,Ca)
and (rec(eb),Pb,Cb) if

∃(va, vb : Val) :eval conds(pvso)(Ca, va) AND

ε(pvso)(ea, va, vb) AND

eval conds(pvso)(Cb, vb).

I Remark: The above is not an “if-and-only-if” condition.
Hence, a fully connected graph of calling contexts satisfies
this condition.

56/88

A CCG for Ackermann

I cc1 = (ack(m − 1, 1),m 6= 0 ∧ n = 0)

I cc2 = (ack(m − 1, ack(m, n − 1)),m 6= 0 ∧ n 6= 0)

I cc3 = (ack(m, n − 1),m 6= 0 ∧ n 6= 0)

cc1

�� ��
cc2

EE

66
,, cc3

YY

ll hh

I There is no edge between cc1 and itself because

6 ∃(m, n : nat) : (m 6= 0 ∧ n = 0) ∧ (m − 1 6= 0 ∧ 1 = 0)

I There is an edge between cc2 and cc1 even although

6 ∃(m, n : nat) : (m 6= 0 ∧ n 6= 0) ∧ (m−1 6= 0 ∧ ack(m, n−1) = 0)

57/88

Walks, Circuits, and Cycles

Let Gpvso be a CCG of a PVS0 program pvso in PVS0[Val].

I A walk of Gpvso is a sequence cci1 , . . . , ccin of calling contexts
such that for all 1 ≤ j < n there is an edge between ccij and
ccij+1

.

I A circuit is a walk cci1 , . . . , ccin , with n > 1, where cci1 = ccin .

I A cycle is an elementary circuit, i.e., a circuit cci1 , . . . , ccin
where the only repeating nodes are cci1 and ccin .

58/88

Measure Combination

Let M be a family of N measures µk : Val → M, with 1 ≤ k ≤ N,
and < be a well-founded relation over M.

I A measure combination of a walk cci1 , . . . , ccin is a sequence
of natural numbers k1, . . . , kn, with 1 ≤ kj ≤ N representing
measure µkj , such that for all 1 ≤ j < n, v , v ′ ∈ Val ,

eval conds(pvso)(Cj , v) AND ε(pvso)(ej , v , v
′)

IMPLIES µkj (v) Bj µkj+1
(v ′),

where ccij = (Cj ,Pj , rec(ej)) and Bj ∈ {>,≥}.
I A measure combination is descending if at least one Bj is >.

59/88

CCG Termination Criterion

I Let Gpvso be a CCG of a PVS0 program pvso in PVS0[Val]
and M be a family of N measures for a well-founded relation
< over a type M.

I ccg terminationM(Gpvso) holds if for all circuits
cci1 , . . . , ccin in Gpvso there is a descending measure
combination k1, . . . , kn, with k1 = kn.

60/88

Finding Descending Measure Combinations

µ1(m, n) = m
µ2(m, n) = n

cc1

�� ��
cc2

EE

66
,, cc3

YY

ll hh

µ1µ1

µ1µ2

µ2µ1

µ2µ2

ack(m, n) ≡ . . .

cc1 = (ack(m − 1, 1),m 6= 0 ∧ n = 0)
cc2 = (ack(m − 1, ack(m, n − 1)),m 6= 0 ∧ n 6= 0)
cc3 = (ack(m, n − 1),m 6= 0 ∧ n 6= 0)

60/88

Finding Descending Measure Combinations

µ1(m, n) = m
µ2(m, n) = n

cc1
>

��

>

��
cc2

EE

66
,, cc3

YY

ll hh

µ1µ1

ack(m, n) ≡ . . .

cc1 = (ack(m − 1, 1),m 6= 0 ∧ n = 0)
cc2 = (ack(m − 1, ack(m, n − 1)),m 6= 0 ∧ n 6= 0)
cc3 = (ack(m, n − 1),m 6= 0 ∧ n 6= 0)

60/88

Finding Descending Measure Combinations

µ1(m, n) = m
µ2(m, n) = n

cc1
>,≥

��

>,≥

��
cc2

EE

66
,, cc3

YY

ll hh

µ1µ2

ack(m, n) ≡ . . .

cc1 = (ack(m − 1, 1),m 6= 0 ∧ n = 0)
cc2 = (ack(m − 1, ack(m, n − 1)),m 6= 0 ∧ n 6= 0)
cc3 = (ack(m, n − 1),m 6= 0 ∧ n 6= 0)

60/88

Finding Descending Measure Combinations

µ1(m, n) = m
µ2(m, n) = n

cc1
>,≥,×

��

>,≥,×

��
cc2

EE

66
,, cc3

YY

ll hh

µ2µ1

ack(m, n) ≡ . . .

cc1 = (ack(m − 1, 1),m 6= 0 ∧ n = 0)
cc2 = (ack(m − 1, ack(m, n − 1)),m 6= 0 ∧ n 6= 0)
cc3 = (ack(m, n − 1),m 6= 0 ∧ n 6= 0)

60/88

Finding Descending Measure Combinations

µ1(m, n) = m
µ2(m, n) = n

cc1
>,≥,×,×

��

>,≥,×,×

��
cc2

EE

66
,, cc3

YY

ll hh

µ2µ2

ack(m, n) ≡ . . .

cc1 = (ack(m − 1, 1),m 6= 0 ∧ n = 0)
cc2 = (ack(m − 1, ack(m, n − 1)),m 6= 0 ∧ n 6= 0)
cc3 = (ack(m, n − 1),m 6= 0 ∧ n 6= 0)

60/88

Finding Descending Measure Combinations

µ1(m, n) = m
µ2(m, n) = n

cc1
>,≥,×,×

��

>,≥,×,×

��
cc2>,×,×,× 66

>,×,×,× ,,
>,×,×,×

EE

cc3 ≥,×,×,>hh≥,×,×,>ll

≥,×,×,>

YY

µ1µ1

µ1µ2

µ2µ1

µ2µ2

ack(m, n) ≡ . . .

cc1 = (ack(m − 1, 1),m 6= 0 ∧ n = 0)
cc2 = (ack(m − 1, ack(m, n − 1)),m 6= 0 ∧ n 6= 0)
cc3 = (ack(m, n − 1),m 6= 0 ∧ n 6= 0)

61/88

Finding Descending Measure Combinations

µ1µ1 µ1µ2

µ2µ1 µ2µ2

cc1
>,≥,×,×

��

>,≥,×,×

��
cc2>,×,×,× 66

>,×,×,× ,,
>,×,×,×

EE

cc3 ≥,×,×,>hh≥,×,×,>ll

≥,×,×,>

YY

I Consider the circuit cc1, cc3, cc2, cc2, cc1, the measure
combination 1, 1, 1, 1, 1, i.e., >,≥, >,>, is descending.

I Consider the circuit cc3, cc3, the measure combination 2, 2,
i.e., >, is descending.

I The measure µ1 is not enough to prove termination because
2, 2 is the only measure combination that is descending for
cc3, cc3.

62/88

CCG Termination Correctness

Theorem 11.
For all pvso ∈ PVS0[Val], scp termination(pvso) if and only if
ccg terminationM(Gpvso) for some CCG Gpvso of pvso and
family M of measures.

I The number of cycles in a graph is finite. However, the
number of circuits is potentially infinite.

I It’s not enough to check for decreasing measure combinations
in cycles (see [Ave15]).

63/88

Introduction

PVS0

Terminating PVS0 Programs

TCC Termination

Size-Change Principle

Calling Context Graphs

Matrix Weighted Graphs

Termination Analysis by CCG+MWG+Dutle’s Procedure

A Note on Computability

64/88

Matrix Weighted Graphs

I Matrix Weighted Graphs is an effective technique to check for
descending measure combinations in a CCG using an algebra
over matrices [Ave15].

I Every edge in a CCG is labeled with a N×N-matrix of values
in {−1, 0, 1}, where N is the number of measures in M.

65/88

Matrix Weighted Graph (MWG)

I Let Gpvso be a CCG of a PVS0 program pvso in PVS0[Val]
and M be a family of N measures.

I A matrix weighted graph (MWG) Wpvso of a PVS0 program
pvso in PVS0[Val] consists of a CCG Gpvso whose edges are
correctly labeled by N×N-matrices of values {−1, 0, 1}.

66/88

Correct Labels

Mab is a correct label of an edge cca, ccb in Gpvso if and only if for
all 1 ≤ i , j ≤ N one of the following cases holds:

I Mab(i , j) = 1 only if for all va, vb ∈ Val ,

eval conds(pvso)(Ca, va) AND ε(pvso)(ea, va, vb)

IMPLIES µi (va) > µj(vb).

I Mab(i , j) = 0 only if for all va, vb ∈ Val ,

eval conds(pvso)(Ca, va) AND ε(pvso)(ea, va, vb)

IMPLIES µi (va) ≥ µj(vb).

I Mab(i , j) = −1.

67/88

A MWG for Ackermann

I cc1 = (ack(m − 1, 1),m 6= 0 ∧ n = 0)

I cc2 = (ack(m − 1, ack(m, n − 1)),m 6= 0 ∧ n 6= 0)

I cc3 = (ack(m, n − 1),m 6= 0 ∧ n 6= 0)

I µ1(m, n) = m

I µ2(m, n) = n

cc1

M1

��
M1

��
cc2M2 66

M2 ,,
M2

EE

cc3

M3

YY

M3
ll M3hh

M1 =

[
1 0
−1 −1

]
M2 =

[
1 −1
−1 −1

]

M3 =

[
0 −1
−1 1

]

68/88

Basic Operations

I Let x , y be in {−1, 0, 1}.

x × y =

−1 if x = −1 ∨ y = −1

1 if x = 1 ∨ y = 1

0 otherwise.

x + y = max(x , y).

I Matrix multiplication of values in {−1, 0, 1} is defined as
usual where addition and multiplication of values is defined as
above.

69/88

Weight of Walk

I The weight of a walk cci1 , . . . , ccin of a matrix weighted graph
Wpvso is defined as Πn−1

j=1 Mij ij+1
.

I A weight M is positive is there exists 1 ≤ j ≤ N such that
M(i , i) > 0.

70/88

MWG Termination Criterion

I Let Wpvso be a MWG of a PVS0 program pvso in PVS0[Val]
and M be a family of N measures for a well-founded relation
< over a type M.

I mwg terminationM(Wpvso holds if all circuits in Wpvso have
a positive weight.

I Dutle’s Procedure:
I A sound and complete effective procedure to decide positive

weight of all circuits in a CCG.
I Formally verified in PVS.

Theorem 12.
For all pvso ∈ PVS0[Val], ccg terminationM(Gpvso) for some
CCG Gpvso if and only if mwg terminationM(Wpvso) for some
MWG Wpvso .

71/88

Introduction

PVS0

Terminating PVS0 Programs

TCC Termination

Size-Change Principle

Calling Context Graphs

Matrix Weighted Graphs

Termination Analysis by CCG+MWG+Dutle’s Procedure

A Note on Computability

72/88

Termination Analysis by CCG

I How to build a CCG?

I Which well-founded relation?

I Which family of measures?

I How to build the matrices?

I How to check for positive weight of all circuits in a CCG?

I How is CCG integrated into PVS?

73/88

How to Build a CCG

I The set of calling contexts is finite and can be extracted from
the program by syntactic analysis.

I A fully connected CCG is sound (of course, the more edges
the more inefficient the method).

I The theorem prover can be used to soundly remove edges
from the graph, i.e., an edge cca, ccb can be removed if

` ∀(va, vb : Val) :eval conds(pvso)(Ca, va) AND

ε(pvso)(ea, va, vb) IMPLIES

NOT eval conds(pvso)(Cb, vb).

can be discharged.

74/88

Which well-founded relation? Which family of measures?

I The order relation < over natural numbers is a good starting
point.

I Since CCG allows for a family of measures, it is sound to add
as many measures as possible (of course the more measures
the more inefficient the method).

I Predefined functions can be used, e.g., parameter projections
(in the case of natural numbers), natural size of parameters
(in the case of data types), maximum/minimum of
parameters, etc. More complex recursions may need heuristics
based on static analysis.

I Manolios and Vroon report that “[CCG] was able to
automatically prove termination for over 98% of the more than
10,000 functions in the regression suite [of ACL2s]” [MV06].

75/88

How to Build the Matrices

I All edges starting in a given a calling context cca are labelled
with the same matrix Ma.

I To build a matrix Ma for the edges starting in cca, it is sound
to set all its entries to -1.

I The theorem prover can be used to soundly reset the entries
in Ma(i , j) to either 0 or 1 as follows,
I If

` ∀(va, vb : Val) : eval conds(pvso)(Ca, va) AND

ε(pvso)(ea, va, vb) IMPLIES µi (va) > µj(vb),

can be discharged then set Ma(i , j) to 1.
I If

` ∀va, vb : Val) : eval conds(pvso)(Ca, va) AND

ε(pvso)(ea, va, vb) IMPLIES µi (va) ≥ µj(vb),

can be discharged, then set Ma(i , j) to 0.

76/88

How to check for positive weight of all circuits in a CCG

Use Dutle’s procedure!

77/88

PVS Development

I The development presented in this lecture is fully formalized
in PVS (including Dutle’s procedure).

I For reference, see CCG and PVS0 in NASA PVS Library
(https://github.com/nasa/pvslib).

I In particular, it’s formally verified that the following
termination criteria are all equivalent: ε-termination,
χ-termination, pvs0 tcc termination, SCP<,
scp termination, ccg terminationM,
mwg terminationM, and Dutle’s procedure.

https://github.com/nasa/pvslib

78/88

Howe is CCG Being Integrated into PVS

ack(m,n:nat) : RECURSIVE nat =

IF m = 0 THEN n+1

ELSIF n = 0 THEN ack(m-1,1)

ELSE ack(m-1, ack(m,n-1))

ENDIF

MEASURE AUTO BY CCG

//

pvs0 ack : PVS0 = (false val,

ack op1,ack op2,

ite(op1(0,vr), op1(2,vr),

ite(op1(1,vr),rec(op1(3,vr)),

rec(op2(0,vr,rec(op1(4,vr)))))))

rz
��

mu1(m,n:nat):m

mu2(m,n:nat):n

�� ��
M1: M2: M3:
1 0 1 -1 0 -1
-1 -1 -1 -1 -1 1

+3

��
Dutle’s Procedure.

78/88

Howe is CCG Being Integrated into PVS

ack(m,n:nat) : RECURSIVE nat =

IF m = 0 THEN n+1

ELSIF n = 0 THEN ack(m-1,1)

ELSE ack(m-1, ack(m,n-1))

ENDIF

MEASURE AUTO BY CCG

//

pvs0 ack : PVS0 = (false val,

ack op1,ack op2,

ite(op1(0,vr), op1(2,vr),

ite(op1(1,vr),rec(op1(3,vr)),

rec(op2(0,vr,rec(op1(4,vr)))))))

rz
��

mu1(m,n:nat):m

mu2(m,n:nat):n

�� ��
M1: M2: M3:
1 0 1 -1 0 -1
-1 -1 -1 -1 -1 1

+3

��
Dutle’s Procedure.

S[

79/88

Introduction

PVS0

Terminating PVS0 Programs

TCC Termination

Size-Change Principle

Calling Context Graphs

Matrix Weighted Graphs

Termination Analysis by CCG+MWG+Dutle’s Procedure

A Note on Computability

80/88

PVS ⊆ PVS0

By design, the PVS0 language can directly encode any PVS
function f of type T → T , where T is an arbitrary PVS type.

Lemma 13.
Let f be a PVS function of type T → T . The program
mk pvs0(f) = (O1,O2,⊥, ef) of type PVS0, where ef = op1(0, vr)
and O1(0)(t) = f (t), satisfies the following properties:

I terminating(mk pvs0(f)), i.e., for any t ∈ T ,
Tε(mk pvs0(f), t).

I f = pvs0 eval(mk pvs0(f)), i.e., for any t ∈ T ,
f (t) = pvs0 eval(mk pvs0(f))(t).

81/88

PVS0 6⊆ PVS

Some PVS0 programs cannot be embedded as PVS functions.

Lemma 14.
Let T be non-empty type. There is no PVS function f of type
T → T such that for any t ∈ T , ε(∆)(e∆, t, f (t)), where ∆ is the
PVS0 program defined in Lemma 4.

82/88

PVS0 ⊆ PVS ∪{♦}

However, any PVS0 program, even non-terminating ones, can be
encoded as a PVS function of type T → T ∪ {♦}.

Lemma 15.
Let pvso be a, possibly non-terminating, program of type PVS0 and
epvso the PVS0 expression of pvso. The PVS function

f (t) := IF Tχ(pvso, t) THEN χ(pvso)(epvso , t, µ(pvso, t))

ELSE ♦ ENDIF ,

satisfies the following property for any ti , to ∈ T :

ε(pvso)(epvso , ti , to) if and only if f (ti) = to .

83/88

An Oracle for PVS0 Programs

It is possible to define an oracle of type PVS0[PVS0[Val]] that
decides if a program of type PVS0[Val] is terminating or not.

Theorem 16.
The program Oracle = (O1,O2,⊥, e) of type PVS0[PVS0[Val]],
where

e = mk pvs0(LAMBDA(pvso : PVS0[Val]) :

IF terminating(pvso) THEN > ELSE ⊥ENDIF),

with ⊥ 6= >, has the following properties.

I Oracle is a terminating PVS0[PVS0[Val]] program, i.e., forall
pvso of type PVS0[Val], Tε(Oracle, pvso).

I Oracle decides termination of any PVS0[Val] program, i.e., for
all pvso of type PVS0[Val],

χ(Oracle)(e, pvso, µ(Oracle, pvso)) = > if and only if Tε(pvso).

84/88

An Oracle for PVS0 Programs

I This counterintuitive result is possible because PVS, in
contrast to proof assistants based on constructive logic, allows
for the definition of total functions that are non-computable,
e.g.,

LAMBDA(pvso : PVS0[Val]) :

IF terminating(pvso) THEN > ELSE ⊥ENDIF .

I These non-computable functions can be used in the
construction of terminating PVS0 programs through the
built-in operators.

85/88

Partial Recursive PVS0 Programs

Formalizing the notion of partial recursive functions in PVS0
requires to restrict the way in which programs are built.

1. The parametric type T is set to N, i.e., Val = N, where the
number 0 represents the value false, i.e., ⊥ = 0. Any value
different from 0 represents a true value, in particular > = 1.

2. The built-in operators used in the construction of programs
are restricted by a hierarchy of levels:
I Operators in the first level can only be defined using

I projections (Π1(x , y : N) := x and Π2(x , y : N) := y),
I successor (succ(x : N) : x + 1), and
I greater or equal than functions.

I Operators in higher levels can only be constructed using
programs from the previous level.

86/88

Partial Recursive PVS0 Programs

A hierarchy of PVS0[nat] program levels is formalized by the
following predicate.

pvs0 level(n)(O1,O2,⊥, e) :=
IF n = 0 THEN O1 = 〈succ〉 ∧ O2 = 〈Π1,Π2, ge〉
ELSE (∃p′ ∈ PVS0[N] : pvs0 level(n − 1)(p′) ∧

LET (O1
′,O2

′,⊥′, e ′) = p′, l ′1 = |O1
′| IN

|O1| = l ′1 + 1 ∧
(∀i ∈ N : i < l ′1 ⇒ O1(i) = O1

′(i)) ∧
(∀v ∈ N : ε(p′)(e ′, v ,O1(l ′1)(v)))) ∧

(∃p′ ∈ PVS0[N] : pvs0 level(n − 1)(p′) ∧
LET (O1

′,O2
′,⊥′, e ′) = p′, l ′2 = |O2

′| IN
|O2| = l ′2 + 1 ∧
(∀i ∈ N : i < l ′2 ⇒ O2(i) = O2

′(i)) ∧
(∀v1, v2 ∈ N : ε(p′)(e ′, κ2 (v1, v2),O2(l ′2)(v1, v2)))),

where the function κ2 is an encoding of pairs of natural numbers
onto natural numbers.

87/88

Undecidability of the Halting Problem

I The type PartialRecursive is defined to be a subtype of
PVS0[N] containing all the programs pvso such that there is a
natural n for which pvs0 level(n)(pvso) holds.

I Computable is a subtype of PartialRecursive containing
those elements that are also terminating.

I PartialRecursive, and thus Computable, are enumerable.

Theorem 17.
There exists a PVS function of type N→ PartialRecursive

that is surjective.
I The inverse of this surjective function, denoted as κP , is an

injective function of type PartialRecursive→ N.

88/88

Undecidability of the Halting Problem

Theorem 18.
There is no program oracle = (O1,O2,⊥, eo) of type Computable

such that for all pvso = (O1
′,O2

′,⊥, e) of type
PartialRecursive and for all n ∈ N,

Tε(pvso, n) if and only if ¬ε(oracle)(eo , κ2 (κP(pvso), n),⊥).

Proof.
See [RMAR+18].

88/88

Thomas Arts and Jürgen Giesl.
Termination of term rewriting using dependency pairs.
Theor. Comput. Sci., 236(1-2):133–178, 2000.

Thomas Arts.
Termination by absence of infinite chains of dependency pairs.
In Proceedings Trees in Algebra and Programming - CAAP
1996, 21st International Colloquium, volume 1059 of Lecture
Notes in Computer Science, pages 196–210. Springer, 1996.

Andréia B. Avelar.
Formalização da automação da terminação através de grafos
com matrizes de medida.
PhD thesis, Universidade de Braśılia, Departamento de
Matemática, Braśılia, Distrito Federal, Brasil, 2015.
In Portuguese.

Alexander Krauss, Christian Sternagel, René Thiemann,
Carsten Fuhs, and Jürgen Giesl.
Termination of Isabelle Functions via Termination of
Rewriting.

88/88

In Proceedings Interactive Theorem Proving - Second
International Conference, ITP 2011, volume 6898 of Lecture
Notes in Computer Science, pages 152–167. Springer, 2011.

Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram.
The size-change principle for program termination.
In Conference Record of POPL 2001: The 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 81–92, 2001.

Panagiotis Manolios and Daron Vroon.
Termination analysis with calling context graphs.
In Lecture Notes in Computer Science, volume 4144, pages
401–414. Springer, 2006.

Thiago Mendonça Ferreira Ramos, César Muñoz, Mauricio
Ayala-Rincón, Mariano Moscato, Aaron Dutle, and Anthony
Narkawicz.
Formalization of the undecidability of the halting problem for a
functional language.

88/88

In Lawrence S. Moss, Ruy de Queiroz, and Maricarmen
Martinez, editors, Logic, Language, Information, and
Computation, volume 10944 of Lecture Notes in Computer
Science, pages 196–209, Oxford, UK, July 2018. Springer
Berlin Heidelberg.

René Thiemann and Jürgen Giesl.
Size-change termination for term rewriting.
In Robert Nieuwenhuis, editor, Proceedings Rewriting
Techniques and Applications, 14th International Conference,
RTA 2003, volume 2706 of Lecture Notes in Computer
Science, pages 264–278. Springer, 2003.

Alan M. Turing.
On computable numbers, with an application to the
Entscheidungsproblem.
Proc. of the London Mathematical Society, 42(1):230–265,
1937.

Alan M. Turing.
Checking a large routine.

88/88

In Martin Campbell-Kelly, editor, The Early British Computer
Conferences, pages 70–72. MIT Press, Cambridge, MA, USA,
1989.

Akihisa Yamada, Christian Sternagel, René Thiemann, and
Keiichirou Kusakari.
AC dependency pairs revisited.
In Proceedings 25th EACSL Annual Conference on Computer
Science Logic, CSL 2016, volume 62 of LIPIcs, pages 8:1–8:16.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

	Introduction
	PVS0
	Terminating PVS0 Programs
	TCC Termination
	Size-Change Principle
	Calling Context Graphs
	Matrix Weighted Graphs
	Termination Analysis by CCG+MWG+Dutle's Procedure
	A Note on Computability

