
Strategy Development in PVS

César A. Muñoz

NASA Langley Research Center
Cesar.A.Munoz@nasa.gov

PVS Tutorial 2017

1/33

PVS Strategies

I Strategies are user-defined proof scripts that conservatively
extend the theorem prover capabilities.

I Strategies do not compromise the soundness of the theorem
prover (as long as the proof context is accessed as read-only).

2/33

Nomenclature

I Proof Rule: Atomic (trusted) prover command, e.g., split,
skolem, hide, metit, etc.

I Strategy: A proof command that expands into one or more
atomic steps, e.g., grind, ground, etc.

I Black Box: Proof command that behaves as an atomic step
but can be expanded, e.g., grind, ground, interval, etc.

I Glass Box: A command that is always expanded, e.g., strategy
combinators such as then, if, etc. Black box strategies
alway have a “$”-glass box variant, e.g., grind$, ground$,
interval$, etc.

I Tactic: A strategy defined inside a proof.

3/33

Strategy Language: Basic Steps

I Any proof command, e.g., (ground), (case ...), etc.

I (skip) does nothing.

I (printf format ...) prints a formatted message.

I (comment message) adds a persistent comment to the proof
branch.

I (relabel label fnums) labels formulas fnums with label.

I (delabel fnums) unlabels formulas in fnums.

I . . . and more!

4/33

Examples
Basic Steps

{-1} 0 <= deg

{-2} deg <= 90

|-----

[1] sin_0_90(deg) <= sin_deg(deg)

Rule? (skip)

No change on: (skip)
...

Rule? (printf "Hello ~a" "world")

Hello world
...

Rule? (comment "Important branch")

;;; Important branch
...

5/33

Examples
Basic Steps

{-1} 0 <= deg

{-2} deg <= 90

|-----

[1] sin_0_90(deg) <= sin_deg(deg)

Rule? (skip)

No change on: (skip)
...

Rule? (printf "Hello ~a" "world")

Hello world
...

Rule? (comment "Important branch")

;;; Important branch
...

5/33

Examples
Basic Steps

{-1} 0 <= deg

{-2} deg <= 90

|-----

[1] sin_0_90(deg) <= sin_deg(deg)

Rule? (skip)

No change on: (skip)
...

Rule? (printf "Hello ~a" "world")

Hello world
...

Rule? (comment "Important branch")

;;; Important branch
...

5/33

Examples
Basic Steps

{-1} 0 <= deg

{-2} deg <= 90

|-----

[1] sin_0_90(deg) <= sin_deg(deg)

Rule? (skip)

No change on: (skip)
...

Rule? (printf "Hello ~a" "world")

Hello world
...

Rule? (comment "Important branch")

;;; Important branch
...

5/33

Examples
Basic Steps

{-1} 0 <= deg

{-2} deg <= 90

|-----

[1] sin_0_90(deg) <= sin_deg(deg)

Rule? (skip)

No change on: (skip)
...

Rule? (printf "Hello ~a" "world")

Hello world
...

Rule? (comment "Important branch")

;;; Important branch
...

5/33

Examples
Basic Steps

{-1} 0 <= deg

{-2} deg <= 90

|-----

[1] sin_0_90(deg) <= sin_deg(deg)

Rule? (skip)

No change on: (skip)
...

Rule? (printf "Hello ~a" "world")

Hello world
...

Rule? (comment "Important branch")

;;; Important branch
...

5/33

Strategy Language: Combinators

I Sequencing: (then step1 ...stepn).

I Branching: (branch step (step1 ...stepn)).

I Binding local variables:
(let ((var1 lisp1) ...(varn lispn)) step).

I Conditional: (if lisp step1 step2).

I Loop: (repeat step).

I Backtracking: (try step step1 step2).

6/33

Strategy Language: Sequencing

I (then step1 ...stepn):
Sequentially applies stepi to all the subgoals generated by
the previous step.

I (then@ step1 ...stepn):
Sequentially applies stepi to the first subgoal generated by
the previous step.

7/33

Strategy Language: Branching

I (branch step (step1 ...stepn)):
Applies step and then applies stepi to the i ’th subgoal
generated by step . If there are more subgoals than steps, it
applies stepn to the subgoals following the n’th one.

I (spread step (step1 ...stepn)):
Like branch, but applies skip to the subgoals following the
n’th one.

8/33

Binding Local Variables

I (let ((var1 lisp1) ...(varn lispn)) step):
Allows local variables to be bound to Lisp forms (vari is
bound to lispi).

I Lisp code may access the proof context using the PVS
Application Programming Interface (API).

9/33

Conditional and Loops

I (if lisp step1 step2):
If lisp evaluates to NIL then applies step2. Otherwise, it
applies step1.

I (repeat step):
Iterates step (while it does something) on the the first
subgoal generated at each iteration.

I (repeat* step):
Like repeat, but carries out the repetition of step along all
the subgoals generated at each iteration.∗

∗Note that repeat and repeat* are potential sources of infinite loops.

10/33

Backtracking

I (try step step1 step2):
Tries step, if it skips or fails, applies step2. Otherwise,
applies step1.

I (else step1 step2):
Tries step1, if it skips or fails, applies step2. Otherwise,
skips.

I (fail):
Fails the current goal and reaches the innermost try.

I A failure that is not caught propagates within the scope of a
black-box strategy and then skips.

I Failures propagate beyond glass-box strategies.

11/33

Backtracking Example

I What does (else (then (grind) (fail)) (skip)) do ?

I It either discharges the current sequent or does nothing.

test :

|-----

{1} x * x + x >= 1

Rule? (else (then (grind)(fail)) (skip))

...

No change on: (skip)

test :

|-----

[1] x * (1 + x) >= 1

12/33

Backtracking Example

I What does (else (then (grind) (fail)) (skip)) do ?

I It either discharges the current sequent or does nothing.

test :

|-----

{1} x * x + x >= 1

Rule? (else (then (grind)(fail)) (skip))

...

No change on: (skip)

test :

|-----

[1] x * (1 + x) >= 1

12/33

Creating Fresh Labels

I (with-fresh-labels bindings steps):
Creates fresh labels and binds them to formulas specified in
bindings. Then, sequentially applies steps to all branches.
All created labels are removed before the strategy exits.
bindings is s list of the form ((var1 fnum1) ...(varn

fnumn))

I with-fresh-labels@ is a variant of with-fresh-labels
that applies steps to the main branch.

I Example:

(with-fresh-labels

((l 1) (m -1))

(inst? l :where m))

13/33

Creating Fresh Names

I (with-fresh-names bindings steps):
Creates fresh names and binds them to expressions specified
in bindings. Then, sequentially applies steps to all
branches. All created names are removed before the strategy
exits. bindings is s list of the form ((var1 fnum1)

...(varn fnumn))

I with-fresh-names@ is a variant of with-fresh-names that
applies steps to the main branch.

I Example:

(with-fresh-names

((e "x+2") (f "sqrt(x)"))

(inst 1 e f))

14/33

Writing your Own Strategies

I New strategies are defined in a file named pvs-strategies

in the current context.

I PVS automatically loads this file every time the theorem
prover is invoked.

I The IMPORTING clause automatically loads any file
pvs-strategies in the importing chain.

15/33

Strategy Definitions

I defstep defines a black-box strategy and its glass-box $-form:

(defstep name (parameters &optional parameters)

step

help-string format-string)

I defhelper defines a black-box strategy that is excluded from
the standard user interface:

(defhelper name (parameters &optional parameters)

step

help-string format-string)

I defstrat defines a glass-box strategy:

(defstrat name (parameters &optional parameters)

step

help-string)

16/33

Example: try-grind

In pvs-strategies:

(defstep try-grind ()

(else (then (grind)(fail)) (skip))

"Tries GRIND. UNDO, if it doesn’t discharge

the sequent"

"Trying GRIND")

17/33

Example: try-grind

In pvs-strategies:

(defstep try-grind ()

(else (then (grind)(fail)) (skip))

"Tries GRIND. UNDO, if it doesn’t discharge

the sequent"

"Trying GRIND")

17/33

Example: try-grind

In pvs-strategies:

(defstep try-grind ()

(else (then (grind)(fail)) (skip))

"Tries GRIND. UNDO, if it doesn’t discharge

the sequent"

"Trying GRIND")

17/33

Example: try-grind

In pvs-strategies:

(defstep try-grind ()

(else (then (grind)(fail)) (skip))

"Tries GRIND. UNDO, if it doesn’t discharge

the sequent"

"Trying GRIND")

17/33

Example: try-grind

In pvs-strategies:

(defstep try-grind ()

(else (then (grind)(fail)) (skip))

"Tries GRIND. UNDO, if it doesn’t discharge

the sequent"

"Trying GRIND")

17/33

Example: try-grind

In pvs-strategies:

(defstep try-grind ()

(else (then (grind)(fail)) (skip))

"Tries GRIND. UNDO, if it doesn’t discharge

the sequent"

"Trying GRIND")

17/33

|-----

{1} x * (1 + x) >= 0

Rule? (help try-grind)

(try-grind/$) :

Tries GRIND. UNDO, if it doesn’t discharge the sequent

Rule? (try-grind)

No change on: (try-grind)
test :

|-----

{1} x * (1 + x) >= 0

18/33

|-----

{1} x * (1 + x) >= 0

Rule? (help try-grind)

(try-grind/$) :

Tries GRIND. UNDO, if it doesn’t discharge the sequent

Rule? (try-grind)

No change on: (try-grind)
test :

|-----

{1} x * (1 + x) >= 0

18/33

|-----

{1} x * (1 + x) >= 0

Rule? (help try-grind)

(try-grind/$) :

Tries GRIND. UNDO, if it doesn’t discharge the sequent

Rule? (try-grind)

No change on: (try-grind)
test :

|-----

{1} x * (1 + x) >= 0

18/33

|-----

{1} x * (1 + x) >= 0

Rule? (help try-grind)

(try-grind/$) :

Tries GRIND. UNDO, if it doesn’t discharge the sequent

Rule? (try-grind)

No change on: (try-grind)
test :

|-----

{1} x * (1 + x) >= 0

18/33

test.1 :

{-1} x >= 0

|-----

[1] x * (1 + x) >= 0

Rule? (try-grind)

Trying GRIND,

This completes the proof of test.1.

19/33

test.1 :

{-1} x >= 0

|-----

[1] x * (1 + x) >= 0

Rule? (try-grind)

Trying GRIND,

This completes the proof of test.1.

19/33

Glass-Box Strategies

I try-grind is a black-box strategy. Therefore, it is saved in
the proof even when it skips.

I When try-grind skips, it would be better not to save the
command grind, which is expensive.

I Two alternatives:
I Use try-grind$ instead of try-grind.
I Define try-grind as a glass-box strategy:

(defstrat try-grind ()

(else (then (grind)(fail)) (skip))

"Tries GRIND. UNDO, if it doesn’t discharge

the sequent")

20/33

Example: Defining A Finite Loop Combinator

In pvs-strategies:

(defstrat for (n step)

(if (<= n 0)

(skip)

(let ((m (- n 1)))

(then@ step (for m step))))

"Repeats step n times")

21/33

ex1 :

|-----

{1} sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) <= x+y+z

Rule? (for 2 (rewrite "sqrt_sq_abs"))

...

|-----

{1} abs(x) + abs(y) + sqrt(sq(z)) <= x+y+z

22/33

ex1 :

|-----

{1} sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) <= x+y+z

Rule? (for 2 (rewrite "sqrt_sq_abs"))

...

|-----

{1} abs(x) + abs(y) + sqrt(sq(z)) <= x+y+z

22/33

Tactic Definitions

I A tactic is a strategy defined inside a proof (arguments are
optional):

(deftactic name args step)

I The scope of a tactic is the branch where it is defined.

I Example:

Rule? (deftactic mytactic (the (flatten)(split)(assert)))

Defining local tactic mytactic,
...

Rule? (mytactic)

...

23/33

Tactic Definitions

I A tactic is a strategy defined inside a proof (arguments are
optional):

(deftactic name args step)

I The scope of a tactic is the branch where it is defined.

I Example:

Rule? (deftactic mytactic (the (flatten)(split)(assert)))

Defining local tactic mytactic,
...

Rule? (mytactic)

...

23/33

Tactic Definitions

I A tactic is a strategy defined inside a proof (arguments are
optional):

(deftactic name args step)

I The scope of a tactic is the branch where it is defined.

I Example:

Rule? (deftactic mytactic (the (flatten)(split)(assert)))

Defining local tactic mytactic,
...

Rule? (mytactic)

...

23/33

Tactic Definitions

I A tactic is a strategy defined inside a proof (arguments are
optional):

(deftactic name args step)

I The scope of a tactic is the branch where it is defined.

I Example:

Rule? (deftactic mytactic (the (flatten)(split)(assert)))

Defining local tactic mytactic,
...

Rule? (mytactic)

...

23/33

Level of Strategy Development

Easy Repetitive tasks, e.g., (flatten)(assert)(replace
-1)...(flatten)(assert)(replace -1).

Medium Programatic tasks, e.g., (case "0 <= n AND n < 1"), . . . ,
(case "1023 <= n AND n < 1024").

Advanced Control flow, e.g., implementation of a new proof combinator.

Expert Proof search, e.g., implementation of a decision procedure or
an heuristic method.

24/33

Using Lisp to Access PVS Proof Context

I Arbitrary Lisp expressions (functions, global variables, etc.)
can be included in a strategy file.

I PVS’s data structures are based on various Common Lisp
Object System (CLOS) classes. They are available to the
strategy programmer through global variables and accessory
functions.

25/33

Proof Context: Global Variables

ps Current proof state
goal Goal sequent of current proof state
label Label of current proof state
par-ps Current parent proof state
par-label Label of current parent
par-goal Goal sequent of current parent
+ Consequent sequent formulas
- Antecedent sequent formulas
new-fmla-nums Numbers of new formulas in current sequent
current-context Current typecheck context
module-context Context of current module
current-theory Current theory

26/33

PVS Context: Accessory Functions

I (extra-get-formula fnum) retrieves the formula fnum

from the current context.

I (extra-get-expr exprloc) retrieves the expression
referenced by exprloc.

I (operator expr), (args1 expr), and (args2 expr)

return the operator, first argument, and second argument,
respectively, of expression expr.

27/33

PVS Context: Recognizers

Negation (negation? expr)

Disjunction (disjunction? expr)

Conjunction (conjunction? expr)

Implication (implication? expr)

Equality (equation? expr)

Equivalence (iff? expr)

Conditional (branch? expr)

Universal (forall-expr? expr)

Existential (exists-expr? expr)

Formulas in the antecedent are negations.

28/33

Fresh Labels and Names

I When new names and labels are needed in a strategy, fresh
identifiers should be used to avoid clashes with existing ones.

I (freshname prefix): Creates a valid name, with a given
prefix, that is fresh in the current sequent.

I (freshlabel prefix): Creates a valid formula label, with a
given prefix, that is fresh in the current sequent.

I Caveat: Fresh labels and names should be removed before
exiting the scope where they were created since there is no
guarantee that the same identifiers will be created when the
proof is rerun.

29/33

Gold Mining in PVS

I In the theorem prover the command LISP evaluates a Lisp
expression.

I In Lisp, show (or describe) displays the content and
structure of a CLOS expression. The generic print is also
handy.

30/33

Example

|-----

{1} sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) >= x+y+z

Rule? (lisp (show (extra-get-formula 1)))

sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) >= x + y + z is

an instance of #<STANDARD-CLASS INFIX-APPLICATION>:

The following slots have :INSTANCE allocation:

OPERATOR >=

ARGUMENT (sqrt(sq(x))+sqrt(sq(y))+sqrt(sq(z)),

x + y + z)

...

31/33

Example

|-----

{1} sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) >= x+y+z

Rule? (lisp (show (extra-get-formula 1)))

sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) >= x + y + z is

an instance of #<STANDARD-CLASS INFIX-APPLICATION>:

The following slots have :INSTANCE allocation:

OPERATOR >=

ARGUMENT (sqrt(sq(x))+sqrt(sq(y))+sqrt(sq(z)),

x + y + z)

...

31/33

Strategy Development Pitfalls

I Strategies may not terminate, e.g.,

Rule? (repeat (case "0=0"))

I Strategies may be non-deterministic, e.g.,

Rule? (let ((n (freshname "n"))) (name n "10"))

I Non-deterministic black-box strategies are not robust, i.e.,
they may fail when the proof is rerun.

I If non-determinism is unavoidable, use glass-box strategies.

I If fresh identifiers are needed, use the robust glass-box
strategies with-fresh-labels and with-fresh-names.

32/33

Strategy Development Pitfalls

I Strategies may not terminate, e.g.,

Rule? (repeat (case "0=0"))

I Strategies may be non-deterministic, e.g.,

Rule? (let ((n (freshname "n"))) (name n "10"))

I Non-deterministic black-box strategies are not robust, i.e.,
they may fail when the proof is rerun.

I If non-determinism is unavoidable, use glass-box strategies.

I If fresh identifiers are needed, use the robust glass-box
strategies with-fresh-labels and with-fresh-names.

32/33

Strategy Development Pitfalls

I Strategies may not terminate, e.g.,

Rule? (repeat (case "0=0"))

I Strategies may be non-deterministic, e.g.,

Rule? (let ((n (freshname "n"))) (name n "10"))

I Non-deterministic black-box strategies are not robust, i.e.,
they may fail when the proof is rerun.

I If non-determinism is unavoidable, use glass-box strategies.

I If fresh identifiers are needed, use the robust glass-box
strategies with-fresh-labels and with-fresh-names.

32/33

Strategy Development Pitfalls

I Strategies may not terminate, e.g.,

Rule? (repeat (case "0=0"))

I Strategies may be non-deterministic, e.g.,

Rule? (let ((n (freshname "n"))) (name n "10"))

I Non-deterministic black-box strategies are not robust, i.e.,
they may fail when the proof is rerun.

I If non-determinism is unavoidable, use glass-box strategies.

I If fresh identifiers are needed, use the robust glass-box
strategies with-fresh-labels and with-fresh-names.

32/33

References

I Documentation: PVS Prover Guide, N. Shankar, S. Owre, J.
Rushby, D. Stringer-Calvert, SRI International:
http://www.csl.sri.com/pvs.html.

I Proceedings of STRATA 2003:
http://hdl.handle.net/2060/20030067561.

I Examples:
I Manip: http:

//shemesh.larc.nasa.gov/people/bld/manip.html.
I Field: http://research.nianet.org./~munoz/Field.

I Programming: Lisp The Language, G. L. Steele Jr., Digital
Press. See, for example,
http://www.supelec.fr/docs/cltl/clm/node1.html.

33/33

