PVS for Computer Scientists Tutorial

Part 1: propositional and predicate logic

Mauricio Ayala-Rincón Universidade de Brasília Joint tutorial with César Muñoz and Mariano Moscato

Collocated with ITP/Tableaux/FroCoS 2017 Brasília, Brazil - Sep 25th 2017

Talk's Plan

Motivation: formalization - proofs & deduction

Deduction à la Gentzen

Exercise 1: propositional logic

Formal proofs — Proofs in the Prototype Verification System - PVS

Exercise 2: deduction in the predicate logic

 $Summary\ Gentzen\ versus\ PVS$

Additional Exercise: correctness of algorithms

sequents:

Table: Rules of Deduction à la Gentzen for predicate logic

left rules	right rules				
Axioms:					
$\Gamma, \varphi \Rightarrow \varphi, \Delta \ (Ax)$	$\perp,\Gamma\Rightarrow\Delta$ (L_{\perp})				
Structural rules:					
$\frac{\Gamma\Rightarrow\Delta}{\varphi,\Gamma\Rightarrow\Delta} \ \ (\textit{LW eakening})$	$rac{\Gamma\Rightarrow\Delta}{\Gamma\Rightarrow\Delta,arphi}$ (RW eakening)				
$\frac{\varphi, \varphi, \Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta} \ (\textit{LContraction})$	$\frac{\Gamma\Rightarrow\Delta,\varphi,\varphi}{\Gamma\Rightarrow\Delta,\varphi} \ (\textit{RContraction})$				

Table: Rules of Deduction à la Gentzen for predicate logic

left rules Logical rules:	right rules
$\frac{\varphi_{i\in\{1,2\}},\Gamma\Rightarrow\Delta}{\varphi_{1}\wedge\varphi_{2},\Gamma\Rightarrow\Delta}\ (L_{\wedge})$	$\frac{\Gamma\Rightarrow\Delta,\varphi\ \Gamma\Rightarrow\Delta,\psi}{\Gamma\Rightarrow\Delta,\varphi\wedge\psi}\ (R_{\wedge})$
$\frac{\varphi, \Gamma \Rightarrow \Delta \psi, \Gamma \Rightarrow \Delta}{\varphi \lor \psi, \Gamma \Rightarrow \Delta} (L_{\lor})$	$\frac{\Gamma \Rightarrow \Delta, \varphi_{i \in \{1,2\}}}{\Gamma \Rightarrow \Delta, \varphi_{1} \vee \varphi_{2}} \ (R_{\vee})$
$\frac{\Gamma \Rightarrow \Delta, \varphi \ \psi, \Gamma \Rightarrow \Delta}{\varphi \to \psi, \Gamma \Rightarrow \Delta} \ (L_{\to})$	$\frac{\varphi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \to \psi} \ (R_{\to})$
$\frac{\varphi[x/t], \Gamma \Rightarrow \Delta}{\forall_{X} \varphi, \Gamma \Rightarrow \Delta} \ (L_{\forall})$	$\frac{\Gamma\Rightarrow\Delta,\varphi[x/y]}{\Gamma\Rightarrow\Delta,\forall_x\varphi}\ (R_\forall), y\not\in\operatorname{fv}(\Gamma,\Delta)$
$\frac{\varphi[x/y], \Gamma \Rightarrow \Delta}{\exists_x \varphi, \Gamma \Rightarrow \Delta} \ (L_{\exists}), y \not\in fv(\Gamma, \Delta)$	$\frac{\Gamma \Rightarrow \Delta, \varphi[x/t]}{\Gamma \Rightarrow \Delta, \exists_x \varphi} \ (R_{\exists})$

Derivation of the Peirce's law:

$$(RW) \frac{\varphi \Rightarrow \varphi (Ax)}{\varphi \Rightarrow \varphi, \psi} \\ (R_{\rightarrow}) \frac{\Rightarrow \varphi, \varphi \rightarrow \psi}{\Rightarrow \varphi, \varphi \rightarrow \psi} \qquad \varphi \Rightarrow \varphi (Ax) \\ \frac{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi}{\Rightarrow ((\varphi \rightarrow \psi) \rightarrow \varphi) \rightarrow \varphi} (R_{\rightarrow})$$

Cut rule:

$$\frac{\Gamma \Rightarrow \Delta, \varphi \quad \varphi, \Gamma' \Rightarrow \Delta'}{\Gamma\Gamma' \Rightarrow \Delta\Delta'} \ (\textit{Cut})$$

Gentzen Calculus - dealing with negation: c-equivalence

$$\varphi, \Gamma \Rightarrow \Delta$$
 one-step c-equivalent $\Gamma \Rightarrow \Delta, \neg \varphi$

$$\Gamma \Rightarrow \Delta, \varphi \quad \text{one-step c-equivalent} \quad \neg \varphi, \Gamma \Rightarrow \Delta$$

The c-equivalence is the equivalence closure of this relation.

Lemma (One-step c-equivalence)

(i)
$$\vdash_{\mathsf{G}} \varphi, \Gamma \Rightarrow \Delta \text{ iff } \vdash_{\mathsf{G}} \Gamma \Rightarrow \Delta, \neg \varphi;$$

(ii)
$$\vdash_{G} \neg \varphi, \Gamma \Rightarrow \Delta \text{ iff } \vdash_{G} \Gamma \Rightarrow \Delta, \varphi.$$

Gentzen Calculus - dealing with negation

Proof.

(i) Necessity:

$$\frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta, \perp} \text{ (RW)}$$
$$\frac{\Gamma \Rightarrow \Delta, \neg \varphi}{\Gamma \Rightarrow \Delta, \neg \varphi} \text{ (R}_{\rightarrow}\text{)}$$

Sufficiency:

$$(\mathrm{LW}) \ \frac{\Gamma \Rightarrow \Delta, \neg \varphi}{\varphi, \Gamma \Rightarrow \Delta, \neg \varphi} \qquad \qquad \frac{(Ax) \ \varphi, \Gamma \Rightarrow \Delta, \varphi \qquad \bot, \varphi, \Gamma \Rightarrow \Delta \ (L_{\bot})}{\neg \varphi, \varphi, \Gamma \Rightarrow \Delta} \ (\mathrm{Cut})$$

Gentzen Calculus - dealing with negation

(ii) Necessity:

$$\begin{array}{c} \begin{pmatrix} R_{\rightarrow} \\ L_{\rightarrow} \end{pmatrix} & \frac{\langle Ax \rangle \, \varphi, \Gamma \Rightarrow \Delta, \varphi, \varphi, \bot}{\Gamma \Rightarrow \Delta, \varphi, \varphi, \varphi} & \bot, \Gamma \Rightarrow \Delta, \varphi, \varphi \, (\mathcal{L}_{\bot}) \\ R_{\rightarrow} \end{pmatrix} & \frac{\Gamma \Rightarrow \Delta, \varphi, \varphi, \neg \varphi}{\Gamma \Rightarrow \Delta, \varphi, \neg \neg \varphi \rightarrow \varphi} & \frac{\neg \varphi, \Gamma \Rightarrow \Delta}{\neg \varphi, \Gamma \Rightarrow \Delta, \varphi, \bot} \begin{pmatrix} RW \\ \neg \varphi, \Gamma \Rightarrow \Delta, \varphi, \bot \\ \hline \Gamma \Rightarrow \Delta, \varphi, \neg \neg \varphi \end{pmatrix} \begin{pmatrix} RW \\ \neg \varphi, \Gamma \Rightarrow \Delta, \varphi \\ \neg \neg \varphi \rightarrow \varphi, \Gamma \Rightarrow \Delta, \varphi \end{pmatrix}$$

Sufficiency:

$$\frac{\Gamma \Rightarrow \Delta, \varphi \qquad \bot, \Gamma \Rightarrow \Delta}{\neg \varphi, \Gamma \Rightarrow \Delta} \; \big(L_{\rightarrow}\big)$$

There is no Plan B - Exercise 1

There can be no Plan B because' there is no "planet B,"

UN Secretary-General Ban Ki-moon

Avatar's Interstellar VS

Valérian's Spaceship P. Christin & J.-C. Mézières

Going to "Planet B"

Pandora Alflolol Edena

Moebius' Word of Edena

There is no Plan B - Exercise 1

See the file planetB.pvs in:

www.mat.unb.br/~ayala/planetB.pvs

or

www.cic.unb.br/ \sim ayala/planetB.pvs

The Prototype Verification System - PVS

PVS is a verification system, developed by the SRI International Computer Science Laboratory, which consists of

- a specification language:
 - HO functional language;
 - a type system based on Church's simple theory of types augmented with *subtypes* and *dependent types*.
- an interactive theorem prover:
 - based on Gentzen's sequent calculus: Γ ⊢ Δ, where Γ and Δ
 are finite sequences of formulae, with the usual Gentzen
 semantics.

Sequent calculus in PVS

• Representation of $A_1, A_2, ..., A_m \vdash B_1, B_2, ..., B_n$:

$$[-1] A_1$$
 \vdots
 $[-m] A_m$
 $|-- [1] B_1$
 \vdots
 $[n] B_n$

- Proof tree: each node is labelled by a sequent.
- A PVS proof command corresponds to the application of an inference rule.

• In general:
$$\frac{\Gamma \mid --- \Delta}{\Gamma_1 \mid --- \Delta_1 \dots \Gamma_n \mid --- \Delta_n}$$
 (Rule Name)

• Structural:

$$[-i] A \wedge \neg B$$

$$[-i] A \wedge \neg B$$

$$[-(i+1)] A \wedge \neg B$$

• Structural:

$$\begin{bmatrix} -1 \end{bmatrix} A \wedge \neg B \\ \vdots \\ [-(i+1)] A \wedge \neg B \\ \vdots \\ [---] \\ \vdots \\ [j] \neg C \rightarrow D \\ \vdots \\ [j] \neg C$$

• Propositional:

$$\begin{array}{c} |---| \\ [1] A \wedge B \rightarrow (C \vee D \rightarrow C \vee (A \wedge C)) \end{array} \quad \begin{array}{c} [-1] A \\ [-2] B \\ [-3] C \vee D \\ |---| \\ [1] C \\ [2] A \wedge C \end{array}$$

• Propositional:

$$[-1] (A \rightarrow B) \rightarrow A \qquad [1] A \\ |--- \qquad \qquad [1] A \\ |--- \qquad \qquad (split-1) \\ [1] A \qquad \qquad |--- \qquad \qquad [1] A \rightarrow B \\ [2] A$$

Propositional - semantics of PVS instructions:

$$\frac{a, \Gamma | --- \Delta, b}{\Gamma | --- \Delta, a \to b} \text{ (flatten)} \qquad \frac{\Gamma | --- \Delta, a, c}{\Gamma | --- \Delta, \neg a \to c} \text{ (flatten)}$$
$$\frac{1}{\Gamma | --- \Delta, \text{if } a \text{ then } b \text{ else } c \text{ endif}} \text{ (split)}$$

$$\frac{a,b,\Gamma|---\Delta}{a\wedge b,\Gamma|---\Delta} \text{ (flatten)} \qquad \frac{c,\Gamma|---\Delta,a}{\neg a\wedge c,\Gamma|---\Delta} \text{ (flatten)}$$

$$\text{if a then b else c endif,$\Gamma|---\Delta$}$$

• Propositional:

```
[-1] \ m \ge n
|---
[1] \ \gcd(m,n) = \gcd(n,m)
|---
[1] \ \gcd(m,n) = \gcd(n,m)
|---
[1] \ m \ge n
[2] \ \gcd(m,n) = \gcd(n,m)
```

• Propositional (propax):

$$\frac{\Gamma, A \mid --- A, \Delta}{\mathbf{(Ax)}}$$

$$\frac{\Gamma, \mathit{FALSE} \vdash \Delta}{} \; (\mathsf{FALSE} \mid ---)$$

$$\frac{\Gamma|---TRUE,\Delta}{} \ (\vdash \mathsf{TRUE})$$

• Predicate:

$$\begin{bmatrix} -1 \end{bmatrix} \forall_{x:T} : P(x) \\ [-2] \exists_{x:T} : \neg P(x)$$
 (skolem -2 "z")
$$\begin{bmatrix} -1 \end{bmatrix} \forall_{x:T} : P(x) \\ [-1] \exists_{x:T} : P(x) \\ [-1] \exists_{x:T} : P(x)$$

Analysis of GCD properties - Exercise 2

Dealing with variables:

Definition (GCD)

For all $m, n \in \mathbb{Z} \setminus (0,0)$ the greatest common divisor of m and n, denoted as gcd(m,n) is the smallest number that divides both m and n.

Theorem (Improved Euclid Theorem ~ 300 BC- Gabriel Lamé 1844)

$$\forall (m,n): \mathbb{Z} \setminus (0,0): GCD(m,n) = GCD(rem(n)(m),n)$$

Analysis of GCD properties - Exercise 2

See the file pred_gcd.pvs in:

www.mat.unb.br/~ayala/pred_gcd.pvs

or

 $\verb|www.cic.unb.br/\sim| ayala/pred_gcd.pvs|$

Summary - Gentzen Deductive Rules vs Proof Commands

Table: STRUCTURAL LEFT RULES VS PROOF COMMANDS

PVS commands
$rac{arphi, \Gamma dash \Delta}{\Gamma dash \Delta}$ (hide)
$rac{arphi, \Gamma dash \Delta}{arphi, arphi, \Gamma dash \Delta}$ (copy)

$Summary \ - \ Gentzen \ Deductive \ Rules \ vs \ Proof \ Commads$

Table: STRUCTURAL RIGHT RULES VS PROOF COMMANDS

Structural right rules	PVS commands
$\frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \varphi} \text{ (RW)}$	$rac{\Gamma dash \Delta, arphi}{\Gamma dash \Delta}$ (hide)
$ \frac{\Gamma \Rightarrow \Delta, \varphi, \varphi}{\Gamma \Rightarrow \Delta, \varphi} \text{ (RC)} $	$\frac{\Gamma \vdash \Delta, \varphi}{\Gamma \vdash \Delta, \varphi, \varphi} \ (\textit{copy})$

Summary - Gentzen Deductive Rules vs Proof Commads Table: Logical Left Rules vs Proof Commands

left rules	PVS commands				
$\frac{\varphi_1, \varphi_2, \Gamma \Rightarrow \Delta}{\varphi_1 \wedge \varphi_2, \Gamma \Rightarrow \Delta} \ (L_{\wedge})$	$\frac{\varphi_1 \wedge \varphi_2, \Gamma \vdash \Delta}{\varphi_{i \in \{1,2\}, \Gamma \vdash \Delta}} \ \ (\mathit{flatten})$				
$\frac{\varphi, \Gamma \Rightarrow \Delta \ \psi, \Gamma \Rightarrow \Delta}{\varphi \lor \psi, \Gamma \Rightarrow \Delta} \ (L_{\lor})$	$\frac{\varphi \vee \psi, \Gamma \vdash \Delta}{\varphi, \Gamma \vdash \Delta \ \psi, \Gamma \vdash \Delta} \ (\textit{split})$				
$\frac{\Gamma \Rightarrow \Delta, \varphi \ \psi, \Gamma \Rightarrow \Delta}{\varphi \to \psi, \Gamma \Rightarrow \Delta} \ (L_{\to})$	$\frac{\varphi \to \psi, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \varphi \psi, \Gamma \vdash \Delta} \textit{(split)}$				
$\frac{\varphi[x/t], \Gamma \Rightarrow \Delta}{\forall_X \varphi, \Gamma \Rightarrow \Delta} \ (L_{\forall})$	$\frac{\forall_{X}\varphi, \Gamma \vdash \Delta}{\varphi[x/t], \Gamma \vdash \Delta} \ \ (\mathit{inst})$				
$\frac{\varphi[x/y], \Gamma \Rightarrow \Delta}{\exists_x \varphi, \Gamma \Rightarrow \Delta} (L_{\exists})$	$\frac{\exists_x \varphi, \Gamma \vdash \Delta}{\varphi[x/y], \Gamma \vdash \Delta} \ (\textit{skolem}), \textit{y} \not \in \texttt{fv}(\Gamma, \Delta)$				

Summary - Gentzen Deductive Rules vs Proof Commads

Table: LOGICAL RIGHT RULES VS PROOF COMMANDS

PVS commands				
$\frac{\Gamma \vdash \Delta, \varphi \land \psi}{\Gamma \vdash \Delta, \varphi \ \Gamma \vdash \Delta, \psi} \ (\textit{split})$				
$\frac{\Gamma \vdash \Delta, \varphi_1 \lor \varphi_2}{\Gamma \vdash \Delta, \varphi_1, \varphi_2} \textit{(flatten)}$				
$\frac{\Gamma \vdash \Delta, \varphi \rightarrow \psi}{\varphi, \Gamma \vdash \Delta, \psi} \textit{(flatten)}$				
$\frac{\Gamma \vdash \Delta, \forall_{X} \varphi}{\Gamma \vdash \Delta, \varphi[X/y]} \ \ \textit{(skolem)}, \textit{y} \not \in \mathtt{fv}(\Gamma, \Delta)$				
$\frac{\Gamma \vdash \Delta, \exists_x \varphi}{\Gamma \vdash \Delta, \varphi[x/t]} \textit{(inst)}$				

PVS proof rules versus Gentzen SC rules

	(hide)	(copy)	(flatten)	(split)	(skolem)	(inst)	(lemma)	(case)
(Ax)			√	√	√	√		√
(L_{\perp})			✓	✓	✓	✓		✓
(LW)	×							
(LC)		×						
(L∧) (L∨)			×					
(L_{\lor})				×				
(L_{\rightarrow}) (L_{\forall})				×				
(L_{\forall})						×		
(L_{\exists})					×			
(RW)	×							
(RC)		×						
(R_{\wedge})				×				
(R_{\lor})			×					
(R_{\rightarrow})			×					
(R_{\forall})					×			
(R _∃)						×		
(Cut)							×	×

GCD algorithm correctness - Additional Exercise

See the files gcd.pvs in:

```
www.mat.unb.br/~ayala/pred_gcd.pvs / .prf
```

or

www.cic.unb.br/~ayala/pred_gcd.pvs / .prf

Checking algorithmic properties - Addional Exercise

It works?

Does this specification compute correctly the ''gcd'' of the definition?

Checking algorithmic properties - Addional Exercise

References

Logic for CS with applications to algorithm verification and details on the relations between Gentzen DN and SC rules and PVS proof commands

2017