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Motivation

» Higher-Order terms appear frequently in Mathematics, Logic,
Automated Reasoning, etc.

» Higher Order Unification (HOU) is a basic operation
extensively used in computational systems based on the
A-calculus such as functional programming languages and
proof assistants.

» Explicit substitutions are a refinement of the A-calculus in
which the substitution operation is not treated as a
meta-operation but as an operation of the calculus itself.
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Simply typed A-calculus in de Bruijn notation

Definition
The set Aygg(X) of untyped A-terms in de Bruijn notation:

ax=n|X|(ab)|Aa where n € Nand X € X.
The syntax of simply typed A-calculus in de Bruijn notation:
Types A:=K|A—B
Contexts [ ::=nil | AT
Terms a:x=n|X|(ab)]|la.a where n € Nand X € X.

The type of the term a is indicated by 7(a).
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Simply typed A-calculus in de Bruijn notation

Definition

1. Every A-term in B-normal form ((3-nf) has the form
)\A1 PN )\A".(h €1... ep)

where n,p > 0, h is a variable (or a constant) called its head
and ey,..., e, are A-terms in 3-nf called its arguments.

2. A A-term in -nf is rigid if its head is a constant or a bound
variable. If it is a meta-variable, the term is flexible.
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Simply typed A-calculus in de Bruijn notation

3 Let a € Ayg(X) be a A-term in de Bruijn notation of type
Al — ... — An — B with B atomic. The n-long form of a
(B-nf term a, written &, is inductively defined as follows:
> if a= A\s.bthen a’ = \4.b'.
» ifa=(nby...by) then
a=Ap ... 0, (m+mea...cgm’ ... 1), where ¢; (1 <j<q)
is the 7-long form of the normal form of U§™"(b;).
» ifa=(Xbyr...bg)thena = X4 ... \a, (X a...cqm" ... 1),
where ¢; (1 < j < q) is the n-long form of the normal form of
g™ (by)-
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Unification problems

Definition

A unification equation is an equation of the form a =7 b where a
and b are A-terms of the same type and under the same context.
A unification problem is a finite set of unification equations.

Examples:
A-nil _7? 4 A-nil
> XA =11y
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Unification problems

Definition
A unification equation is an equation of the form a =7 b where a
and b are A-terms of the same type and under the same context.
A unification problem is a finite set of unification equations.
Examples:
A-nil _? 4 A-nil
» XA ni — lA ni
» Solution: X/1
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Unification problems

Definition
A unification equation is an equation of the form a =7 b where a
and b are A-terms of the same type and under the same context.
A unification problem is a finite set of unification equations.
Examples:
A-nil _? 4 A-nil
» XA ni — lA ni
» Solution: X/1
A-nil 4 Anil\ _7? (oA-nil (\A-nil 1A-nil
> (XAZa 12™) =" (25 0A(Yala 12™))
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Unification problems

Definition
A unification equation is an equation of the form a =7 b where a
and b are A-terms of the same type and under the same context.
A unification problem is a finite set of unification equations.
Examples:

> Xﬁ-nil _? lﬁ-ni!

» Solution: X/1

> (X A7) =7 ATV 147)

» Solutions: o1 = {X/)\A(§ 1), Y/)\Al}

0Oy = {X/AA(ﬁ 2), Y/)\Al}
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Unification problems

> let A=A—A. A nil be a context.
AA. (2AHA XZ\A A) = )\A (2A—>A3AA)
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Unification problems

> let A=A—A. A nil be a context.
AA. (2AHA XZ\A A) = )\A (2A—>A3AA)
» Solution: X/2
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Unification problems

> let A=A A- A nil be a context.
Aa(2454 X2 2) =7 Ma(248430°2)

» Solution: X/2

» A X3 =7 Ma.14T, where I is any context, does not have
solutions.
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The procedure SIMPL

INPUT: A unif. problem P with at least one rigid-rigid equation:
Ay Aa(mef el )="Aa o Aa(mef el ) AP
where r, p1,p> > 0 and n,m > 0.

WHILE there exists a rigid-rigid equation in P DO

If n # m then stop and report a failure status else let p = p1 = po
and replace the selected equation by the conjunction

? ?
>\A1 ...)\Ar.ell = )\Al . ..)\Ar.elz/\.../\)\,q1 .. .)\A,.e; = )\A1 N W .e2

re-p

in P and call the result P (the simplified version of P).

DONE.

If there exists a flexible-rigid equation in P then return P else stop
and report a success status.
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Example of SIMPL

AAHAHA)\A'(gAHA*)A XA lA) :? AA*)AHAAA'(ZA*)AHA QA (YA—A l))

simplifies to
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Example of SIMPL

AAHAHA)\A'(gAHA*)A XA lA) :? AA*)AHAAA'(ZA*)AHA QA (YA—A l))

simplifies to

MoaoaraXa =" Aaa.ara3a

A
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Example of SIMPL

AAHAHA)\A'(gAHA*)A XA lA) :? AA*)AHAAA'(ZA*)AHA QA (YA—A l))

simplifies to

MoaoaraXa =" Aaa.ara3a

A

MoAarals =" Moaara.(Ya 4 1)
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The procedure MATCH

> Takes a flexible-rigid equation as argument and returns a
finite set of substitutions called ¥.
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The procedure MATCH

> Takes a flexible-rigid equation as argument and returns a
finite set of substitutions called ¥.

» Input: A flexible-rigid equation of the form:

Ay Aa-(Xef...et)="Aa ... da(mef...3) (1)

where 7(X) = By — ... — B, — C, where py, p,r >0,
n> 0 and C is atomic.
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The procedure MATCH

> Takes a flexible-rigid equation as argument and returns a
finite set of substitutions called ¥.

» Input: A flexible-rigid equation of the form:

Ay Aa-(Xef...et)="Aa ... da(mef...3) (1)

where 7(X) = By — ... — B, — C, where py, p,r >0,
n> 0 and C is atomic.

» The procedure MATCH is based on two rules named imitation
and projection.
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The imitation rule

The imitation substitution corresponds exactly to the n-long term
of the type of X, whose head corresponds to the head of the rigid
term:

X/Ag, A, (pr+n—1 (Xip1...1)...(Xp, p1...1))

where Xi,...,X,, are meta-variables with appropriate type and all
sub-terms are in 7-normal form.
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Imitation example

Consider the equation:
Aada-(Xasa 14) =" Mada-(3aa(Ya—a(daa 14)))
Generated imitation substitution:

Xa—a/Aa-(2a—a (X144 14))
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The projection rule

» A projection can be used in case the head of the rigid term is
a constant or a bound variable.
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The projection rule

» A projection can be used in case the head of the rigid term is
a constant or a bound variable.

» The projection rule consists in “projecting” the head of the
flexible term onto one of its arguments which eventually
contains the index that corresponds to the head of the rigid
term.
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The projection rule

» A projection can be used in case the head of the rigid term is
a constant or a bound variable.

» The projection rule consists in “projecting” the head of the
flexible term onto one of its arguments which eventually
contains the index that corresponds to the head of the rigid
term.

» The projections substitutions always have the form
AB; - .)\Bpl.(i (X1 Pi-- l) - (Xk pPi-- l)), where
1<i<pr.
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The projection rule

» A projection can be used in case the head of the rigid term is
a constant or a bound variable.

» The projection rule consists in “projecting” the head of the
flexible term onto one of its arguments which eventually
contains the index that corresponds to the head of the rigid
term.

» The projections substitutions always have the form
AB; - .)\Bpl.(i (X1 Pi-- l) - (Xk pPi-- l)), where
1<i<pr.

» This gives at most p; possible different projections, one for
each argument of X.
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Projection example

Consider the equation:
?
>\A>\A-(XA—>A lA) = )\A)\A-lA
Generated projection substitution:

Xa—a/Aada
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Unification Tree Notation

» The unification tree notation is obtained from the matching
tree of Huet by adding labels to the unification problems as
well as to the generated substitutions.

» These labels provide information about the position of the
unification problems and of the substitutions in the matching
tree.

» Facilitates the computation of the solutions.
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Motivation
Visualising the Tree
Formal Construction
Example

Visualising the Tree

SIMPL(F,)

Py P ... P,
SIMPL(P) SIMPL(F) . SIMPL(P)
. e ﬁ"

-
-
-
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Formal Construction

A unification tree, for a given unification problem P, is given by:

1. Label P with € (the empty position) as a subscript, i.e., Pe.

2. For a node labeled with Py, its sibling node is labeled with Py,
whenever the unification problem derives by applying the
procedure SIMPL. This step is represented by a curly line in
the unification.

3. For a node labeled with P4 containing a flexible-rigid equation,
call 041, 0g2, ..., 0qk the incremental substitutions generated
by an application of the procedure MATCH to this equation.

4. The sibling nodes of Pg, written Pqi, ..., Py are defined by
the composition Py := Pyog;, for i =1,... k.
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Example

AaX 3="X4.2(43)

o ={X/As2(X1 1)} - o2 ={X/Aa 1}
Aa2(X13) =" 2a2(43) Aa3="2412(43)
SIMPL SIMPL
A X13="2,43 Fail
o1 = {X1/Aa.1) The o2 = {X1/Aa (X0 1))
Aa3="A443 Aaa(X23)="Xa43
SIMPL SIMPL
—?
Fail Aa. X2 g/f Aa-3
o121 ={X2/ a3} .7 o122 = {X2/Aa.1}
Suc(:/ess Success
_ _ _ _ dashed lines denote imitation steps
solid lines denote projection steps
F.L.C. de Moura HOU a la Huet and a la ES
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The \o-calculus

The syntax of typed Ao-calculus is given by

Types A = K|A—-B

Contexts r == nl|A-T

Terms a == 1|X|(ab)|Ara.a]a[s]
Substitutions s == id| 1 |a-s|sos
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The \o-calculus

The typing rules:
Alra:B
(var) AlFE1:A (lambda) FFona ADB

lrN-a:A—=BTkFb:A NlNEselM MEa: A

(clos)

(app) [ (ab):B [+ afs]: A

(id) Feidol (shift) AT 1 5T

(cons) FEa:ATkssl (comp) FEs’ol [MEs sl
° - aso Al comp s os/ ol

(meta) = X : A, where I is any context.
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The \o-calculus

(Beta) (Aa)b — a[b-id]

(App) (ab)ls] — (als])(bs])
(Abs) (Aa)ls] —  AalL-(se )]
(Clos) (alshlt] — alsot]
(VarCons) ila-s] — a

(Id) alid] — a

(Assoc) (sot)ou — so(tou)
(Map) (a-s)ot — aft]-(sot)
(ldL) idos — s

(1dR) soid — s

(ShiftCons) To(a-s) — s

(VarShift) 17 — id

(SCons) 1[s]- (T os) — s

(Eta) X(al) — b if a=, b[1]




Ao-grammar and rules
Ao-unification
The Ao-calculus SIMPL
MATCH,
The Main Procedure

Unification in the \o-calculus

Motivation:
» Reduce substitution to grafting.
» Remain closer to implementations.

» Development of a programming language based on ES that
includes HOU in a lower level.
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Ao-unification
The M\o-calculus SIMPL

MATCH, .,
The Main Procedure

Unification in the \o-calculus

Motivation:
» Reduce substitution to grafting.
» Remain closer to implementations.

» Development of a programming language based on ES that
includes HOU in a lower level.
» Possible drawback:
» Inclusion of a non-trivial equational theory (77).
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SIMPL

MATCH,,

The Main Procedure

The M\o-calculus

Unification in Explicit Substitutions Calculi

Unification Problem

Unification rules

Precooking

********* l
|
|

|

Back translation|

Precooking !

I
I

I

I

I

I

I

I

I

I

|

Solutions |
I

I

I

I

I

|

I

1~ Solutions !
I

Language of the A-calculus Language of the explicit

substitutions calculus.

substitution s
grafting
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The Ao-unification rules (part 1)

The Ao-simplification rules:
PAMXa.e :?)\J AA-€

Dec-\ 5
PAe =\s €2

Pr(nel...ef)=}, (mef...€e3)

Dec-App 1_7 2 1 2
PNe =5, e N.. Ne :)\U_ep
PA(mel...el)=, (me?...e>

Dec-Fail (e "1; /A (mer ), if m # n.

ai
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The SIMPL,, procedure

INPUT: A unification problem P, (in the language of the
Ao-calculus) with at least one rigid-rigid equation.

OUTPUT: A terminal (failure or success) status or an equivalent
unification problem P, without rigid-rigid equations and containing
at least one flexible-rigid equation.

Assume that Dec-) is applied eagerly.
WHILE there exists a rigid-rigid equation in Pg DO
1. Apply Dec-Fail, if possible.
2. Apply Dec-App, and if the resulting unification problem
contains a flexible-rigid equation, call it P, and give P, as

result, else stop and report a success status.
DONE.
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The SIMPL,, procedure

Theorem
The application of the procedure SIMPL), to any unification

problem P (in the language of the Ao-calculus) always terminates.

Proof.[Sketch| Applications of the simplification rules decrease the
size of the terms in the equations. O
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Ao-unification
The Ao-calculus SIMPL
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The SIMPL and SIMPL,, correspondence

Theorem
If P is a unification problem in the pure \-calculus and Pf its

precooked image, then:
1. SIMPL(P) fails < SIMPL),(PF) fails.
2. SIMPL(P) stops and reports a success status <
SIMPL,(PF) stops and reports a success status;

3. SIMPL(P) returns a unification problem containing at least
one flexible-rigid equation < SIMPLy,(Pg) returns a
unification problem containing at least one flexible-rigid
equation.
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Ao-unification
The Ao-calculus SIMPL

MATCH )
The Main Procedure

Solved forms

Definition (DHKO00)
A unification problem P is in Ao-solved form if all its
meta-variables are of atomic type and it is a conjunction of
nontrivial equations of the following forms:
> Solved: X =} _ a where the meta-variable X does not appear
anywhere else in P and a is in Eta-long form. Such an
equation is said to be solved in P and the variable X is also
said to be solved.
> Flexible-flexible: X[a;. - .ap. 1™ =5, Y[b1. - .bg. 1],
where X[a1. - .ap. T"] and Y[b;.--- .by. 1] are Eta-long
terms and the equation is not solved.
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The Ao-unification rules (part Il)

P

Y (Ar-B),PAX :Z\U Y
if (X:THA— B)eTVar(P), Y & TVar(P),
and X is not a solved variable.

Exp-\

Pnrel =}, e . . _

——— 57— if e; or & is not in long form,
P A e{ =)o &2
where ef (resp. €}) is the long form of e; (resp. &)

if e (resp. e) is not a solved variable and e; (resp. e;)

otherwise.

Normalise

PAX =5t
{X—=tHPYAX =t
if t is a constant then t € TVar(P).

F.L.C. de Moura HOU a la Huet and a la ES
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The Ao-unification rules (part Ill)

PAX[a1. .ap.1"]=a,m(b1,...,bg)
PAX[ar.- .ap.17]=% m(b1,...,bg) A \/ 3Hy.. 3HGX= (M, Hi)
re R,UR;
if X has an atomic type and is not solved.
where Hy, ..., Hy are variables of appropriate types, not occurring
in P, with the contexts 'y, = I'x, R, is the subset of {1,..., p}

such that r(Hi,. .., Hk) has the right type, R; =if m > n+ 1 then
{m—n+ p} else 0.

Exp-App
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The procedure MATCH,,

INPUT: A unification system Pg with at least one flexible-rigid

equation.
OUTPUT: A disjunction of equivalent unification systems, written
qu\/...\/qu.

Assume that the rule Dec-\ is applied eagerly.

1. Apply Exp-A and Replace as much as possible to the selected
equation and call P(’7 the resulting unification system.

2. Apply Exp-App and Replace and Normalise to P, and call
Pq1V ...V Py the resulting unification problem.

F.L.C. de Moura HOU a la Huet and a la ES
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The procedure MATCH,,

Definition

Let X/a be a substitution generated in the pure A-calculus by
Huet's algorithm. We say that the equation Y :2 b corresponds
(or is associated) to the substitution X/a if X and Y are two
meta-variables of the same type and the terms a and b have the

same headings, where £ € {\o, As.}.
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SIMPL

MATCH )

The Main Procedure

The M\o-calculus

Correspondence from MATCH to MATCH,,

Theorem

Let

M- A (Xel . oeh)="Aa,... \a.(nef...€2) bea
flexible-rigid equation in n-long form in the pure A-calculus where
pi,p2,r >0 and 7(X) = By — ... — By, — B with B atomic.
Then, for each substitution generated by the procedure MATCH,
when applied to this equation, there exists a corresponding
equation in the Ao-calculus generated by the procedure MATCH)
to the precooked version of the given equation.
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SIMPL

MATCH )

The Main Procedure

The M\o-calculus

Correspondence from MATCH,, to MATCH

Theorem

For each new generated equation by the rule Exp-App, when
applied to a flexible-rigid equation which is in the image of the
precooking translation, there exists a corresponding substitution in
the pure A-calculus in the following sense: for each element in R,
there exists a corresponding substitution in the pure \-calculus and,
if Ri # () then there exists an imitation in the pure \-calculus for
the inverse of the precooking translation applied to this equation.
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The MATCH and MATCH,, correspondence

Theorem

Let eq be a flexible-rigid equation in n-long form in the pure
A-calculus and eqr its precooked image. Then, MATCH applied to
eq generates a substitution o if and only if MATCH), applied to
eqr generates a substitution equivalent to o.
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The Main Procedure

INPUT: A unification system P,.

OUTPUT: A success or a failure status and in the former case the
solutions are the solved equations whose left-hand side corresponds
to the meta-variables of the initial problem. If the initial problem is
non-unifiable the algorithm may not terminate.

1. If P4 contains a rigid-rigid equation, then apply SIMPL ), and
go to the next step, else if P, contains a non-solved flex-rig
equation then rename it to P, and go to the next step.

2. Apply MATCH,, to Piq. and let Pg1 V...V Py, be the
resulting unification problem.

3. If the current unification problem contains a unification
system not in solved form then select it and go to step 1, else
stop and report a success status.
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The Ase-grammar and rules
Ase-unification rules
SIMPL .

MATCH ,_

The Main Procedure

The \sq-calculus

The As.-grammar

Terms of the As.-calculus are given by:

Ase = n | X | AseNse | AAse | Aseo/Ase | @iAse,
where n, j,i>1, k>0 and X € X.

The typing rules:

Fn:B
ATH1:A z

(var) . (vam)  AFraci B

(s0) (Fa:AmBIEbiA () AlFaB

PP FF (ab):B FFisa:A—B

(Si ma) FZ,-Fb:B <i- .FZ,-Fa:A (hl) ng.FZkJr,-Fa'A

g [+ aoib: A P MFpla:A

(meta) TE X : A, where [ is any context.
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The Ase-grammar and rules
Ase-unification rules
SIMPL .

The \sq-calculus MATCH \l,ﬁ

The Main Procedure

(o-generation) (\a)b — aclb
(c-\-transition) (Ma)o'b  —  A.(ac'ib)
(o-app-transition)  (ay a)a'b —  (ayo'b)(ax0’b)
n—1 if n>i
(o-destruction) no'b — ohb if n=i
n if n<i
(p-\-transition) ei(Xa) —  A(pi1a)

(p-app-transition) pi(ara) —  (plar)(pia)

Pik n if n<k

(Eta) A(al) — b if a=s @b

(p-destruction)
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The Ase-grammar and rules
Ase-unification rules

The \sq-calculus

MATCH .
The Main Procedure

(0-o-transition) (ao'b) o’ CH(a otle)ol (bo/ =L c)if i<
(o~p-transition 1)(y} a) of b—p)~ if k<j<k+i
(o-p-transition 2) (¢l a) o/ b—i(ac/~"*1 b) if k+i<j
(p-o-transition) @} (ac? b)— (@}, a) 0! (Plyy_jb) if j<k+1
(p-p-transition 1) @l (o) a)—¢) (Phr1j2) if 1+j<k
(p-p-transition 2) i (¢ha)—¢|" " a if I<k<I+j
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The \sq-calculus

Ase-unification rules (part I)

Dec-)\

PAhel =" e
Dec.A P An(e}, .,eé)z’g(ef, .,€2)
ecapp Prel="e2N...Nel="¢e2

17— 170 P =P

Anleg, ,e1 =" m(ey, , 2

App-Fail (e P}E),/ (1 P2/ ifm+#n
ai
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The A\sc-grammar and rules
Ase-unification rules

The \sq-calculus
\s
The Main onc(‘dum

Ase-unification rules (part II)
P

Exp-)
P 3Y (AT F B),PAX = MY

if (X:THA— B)eTVar(P), Y &TVar(P),
and X is not a solved variable.

PAX ASet

{X/tHPYAX =}, t
and if t € X = t € TVar(P).

Replace if X € TVar(P),X & TVar(t)

. P A el ,?\5 . .
Normalise —/ if e1 or ey is not in long form.
PAel =}, &

where e] (resp. €}) is the long form of e; (resp. &),
if e1 (resp. e2) is not solved and e; (resp. e») otherwise.
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The A\sc-grammar and rules
cation rules

The \sq-calculus

The Main onc(‘dum

Ase-unification rules (part )

~ Exp-App
PG4t (X a1,..,3p) =] o m( b1, b)

P/\wfg...zpjll(x,al,...,ap)zggg(bl,...,bq)A \/ aHl..aHk,xz;Se;(Hl,...,Hk)
rGRpUR,-

if z/)"’ X ,a1,...,ap) is the skeleton of a As. normal term,
and X has an atomic type and is not solved, where Hy,..., Hy are
meta-variables of appropriate types, not occurring in P, with the
contexts 'y, = x, Rp is the subset of {i1,...,i,} of superscripts
of the o operator such that r(Hi,..., Hx) has the right type,

R, = Ui:o ifix>m+p—k— 27:k+1j/ > ik41 then
{m+p—k—%{_ i} else O, where iy = oo and ip11 = 0.
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The A\sc-grammar and rules
Ase-unification rules

SIMPL 5,

MATCH .

The Main Procedure

The \sq-calculus

INPUT: A unification problem P, with at least one rigid-rigid
equation.

OUTPUT: A terminal (failure or success) status or an equivalent
unification problem P, without rigid-rigid equations and containing
at least one flexible-rigid equation.

Assume that Dec-) is applied eagerly.
WHILE there exists a rigid-rigid equation in P4 DO:
1. Apply Dec-App-) or App-Fail.
2. Apply Dec-App and, if the resulting unification problem
contains a flexible-rigid equation, call it P, and give P, as

result, else stop and report a success status.
DONE.
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The A\sc-grammar and rules

Ase-unification rules
SIMPL
MATCHXSE
The Main Procedure

The \sq-calculus

INPUT: A unification system P, with at least one flexible-rigid

equation.
OUTPUT: A disjunction of equivalent unification systems, written
qu\/...\/qu.

Assume that Dec-)\ is applied eagerly.

1. Apply Exp-) and Replace as much as possible to the selected
flexible-rigid equation and call Pt’7 the resulting unification
system.

2. Apply Exp-App and Replace and Normalise to P(’7 and call
Pg1 V ... Pgr the resulting unification problem.
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The A\sc-grammar and rules
Ase-unification rules
SIMPL

The \sq-calculus MATCH \':,

The Main Procedure

The Main Procedure

INPUT: A unification system P,.

OUTPUT: A success or a failure status and in the former case the
solutions are the solved equations whose left-hand side corresponds
the meta-variables of the initial problem. If the initial problem is
non-unifiable the algorithm may not terminate.

1. If P4 contains a rigid-rigid equation then apply SIMPL ¢, to
it, else if Py contains a non-solved flexible-rigid equation then
rename it to Py and go to the next step.

2. Apply MATCH),, to Pic, and let Pg1 V...V Py, be the
resulting unification problem.

3. If the current unification problem contains a unification
system not in solved form then select it and go to step 1, else
stop and report a success status.
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Corresponding equations
Translating \s.-terms into Ao-terms
Translating Ao-terms into As.-terms
. P Correspondence from MATCH , , to MATCH
Comparing the Ao- and the As.-styles of unification Correspondence between MATCH y .. and MATC

Corresponding equations

Definition

Let X :3\0 aand X :;Se a’ be two flexible-rigid equations in the
Ao- and Asg-calculus respectively. These equations are said to be
corresponding (or associated) if a and a’ have the same heading.
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Corresponding equations

Translating \se-terms into \o-terms
Translating Ao-terms into Asc-terms
Correspondence from MATCH \o to MATCH ),

Comparing the Ao- and the As.-styles of unification Correspondence between MATCH y . and MATCH

Translating As.-terms into Ao-terms

Definition
The operator T : Ays, — A\ is defined inductively as:
1. TX)=X
2. T(n) = 1[1"]
3. T(ab)=T(a) T(b)
4. T(X.a)=A\T(a)
5. T(ac'b) =T(a)[1.2.--- .i — 1.T(b)[1"1].1771], where i > 1.

6. T(pi(a)) = (a)[;.g. - k. Tk+=1] where k >0 and i > 1.

If r=0in thelist 1.--- .r, then it is to be interpreted as the
empty list. In addition, 1= id.
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Corresponding equations

Translating \se-terms into \o-terms
Translating Ao-terms into As.-terms
Correspondence from MATCH , , to MATCH

Comparing the Ao- and the \s.-styles of unification Correspondence between MATCH, ,_ and MATCH , .

Preservation of types by T

Theorem
Let T be a context, A a type and a a term in the language of the
Ase-calculus such that T = a: A. ThenT + T(a) : A.
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Corresponding equations

Translating \se-terms into \o-terms
Translating Ao-terms into As.-terms
Correspondence from MATCH , , to MATCH

Comparing the Ao- and the As.-styles of unification e ey e AT G LI ., and MATCH o

As.-skeleton

Definition (Ayala & Kamareddine 2001)

Let t be a Ase-normal term whose root operator is either o or ¢
and let X be its leftmost innermost meta-variable. Denote by 17/
the k-th operator following the sequence of operators o and ¢,
considering only left arguments of the o operators, in the
innermost outermost ordering. Additionally, if w{kk corresponds to
an operator ¢ then ji and i, denote its superscripts and subscripts,
respectively, and if w{: corresponds to an operator o then j, =0
and i, denote its superscript. Let a, denote the corresponding
right argument of the k-th operator if w{: = o'k and the empty

argument if ¢ = <. The skeleton of t, written as sk(t), is
ip j1
wf ,.l(X,al,...,ap).



Corresponding equations

Translating \se-terms into \o-terms
Translating Ao-terms into As.-terms
Correspondence from MATCH , , to MATCH

Comparing the Ao- and the As.-styles of unification Correspondence between MATCH .. and MATEH _

Correspondence from MATCH,,, to MATCH,,

Theorem
Let _
P 1 (X, a1,...,ap) :;se (m by ...bq) be a flexible-rigid

equation in the \s.-calculus, where X has atomic type. Then, for
each equation generated by the rule Exp-App.s, there exists a
corresponding equation in the \o-calculus generated by the rule
Exp-App,, for the equation

TP (X a1, ) =} T(mbr ... b)
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Corresponding equations
Translating \se-terms into \o-terms
Translating Ao-terms into As.-terms
. e . Correspondence from MATCH Ao to MATCH
Comparing the Ao- and the As.-styles of unification Correspondence between MATCH y . and MATCH -

Example

Consider the unification problem
P1(((¢3X)o°a)a®b) ={,, (6 b1 ... bq)
The Exp-App,s, rule generates the equation X _/\s (4 Hi...Hg).
The Ao-normal form of T(3(((¢3X)o°a)o3b)) is computed by:
T(¢1(((#3X)o°a)o®b)) =

T(((p3X)o°a)o’b)[1. 1%] =

(((p%X)a a)[1.2. T(b)[17]. 12][L. 1%] =5

T((3X)o°a)[L.5. T(b)[1°]. 1°] =

T(3X)[1.2.3.4.T(a)[1*]. 1*])[L.5. T(b)[1°]. 1°] =5

T(3X)[1.5. T(b)[1°].6. T(a)[TG]- 1] =

X[1.5.T(b)[1°].6.T(a )[TG]-Z-& 10]



Corresponding equations

Translating \se-terms into \o-terms
Translating Ao-terms into As.-terms
Correspondence from MATCH , , to MATCH

Comparing the Ao- and the As.-styles of unification Correspondence between MATCH .. and MATEH _

Example

The rule Exp-App), generates the corresponding equation

X :3\0 4(Y1...Yqy) which corresponds to the selection of the de
Bruijn index 6 inside the explicit substitution
[1.5.T(b)[1%].6.T(a)[1°].7-8. T1°].
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Corresponding equations

Translating Ase-terms into Ao-terms
Translating Ao-terms into \s.-terms
Correspondence from MATCH , , to MATCH

Comparing the Ao- and the As.-styles of unification Correspondence between MATCH y . and MATCH

Translating Ao-terms into As.-terms

Definition
The operator L : Ayy—terns — A)s, is defined inductively as:
L(X)=X
L(1[1™1]) = m, where m € N
L(a b) = L(a) L(b)
L(\.2) = \.L(a)
L(alay.az. -.3p. 1)) =
ol..oP” 10pg0"+1(L(a),L(ap),L(ap,l),...,L(ag),L(al)), where
ai.az.---.ap. |" is a substitution in Ao-normal form, and n, p > 0.
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Corresponding equations

Translating A\s.-terms into Ao-terms
Translating Ao-terms into \s.-terms
Correspondence from MATCH , , to MATCH

Comparing the Ao- and the \s.-styles of unification Correspondence between MATCH,,_ and MATCH , .

Preservation of types by L

Theorem
Let T be a context, A a type and a a term in the language of the
Ao-calculus such that T+ a: A. ThenT - L(a) : A.
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Corresponding equations

Translating A\s.-terms into Ao-terms
Translating Ao-terms into As.-terms
Correspondence from MATCH ,, to MATCH s,

Comparing the Ao- and the \s.-styles of unification Correspondence between MATCH , and MATCH, ,

Correspondence from MATCH,, to MATCH,,,

Theorem
Let X[a1. -+ .ap. 1" =5, (m by ... by) be a flexible-rigid equation
in the \o-calculus, where X has atomic type and ay.--- .ap. " is a

Ao-normal substitution. Then, for each equation generated by the
rule Exp-App,, there exists a corresponding equation in the
Ase-calculus generated by the rule Exp-App)s, for the equation

L(X[a1.--+ ap. 1) =Ls, (@ L(b1)... L(bg))
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Corresponding equations

Translating A\s.-terms into Ao-terms
Translating Ao-terms into As.-terms
Correspondence from MATCH , , to MATCH

Comparing the Ao- and the As.-styles of unification Carespaidnes e MATCH,\Se and MATCHAG

Correspondence between MATCH,,, and MATCH,,

Theorem

Let P be a unification problem in the simply typed A-calculus, and
P¢ its precooking translation to the §-calculus of explicit
substitutions, where £ € {\o, Ase}. Then Py, is unifiable if and
only if Pys, is unifiable. Moreover, whenever unifiers exist, they are
associated.
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Corresponding equations

Translating A\s.-terms into Ao-terms
Translating Ao-terms into As.-terms
Correspondence from MATCH , , to MATCH

Comparing the Ao- and the As.-styles of unification Carespaidnes e MATCH,\Se and MATCHAG

Ao and As, correspondence

Corollary

Let Py, be a unification problem in the \o-calculus of explicit
substitutions, and L(Py,) its translation to the As.-calculus of
explicit substitutions. Then Py, is unifiable if and only if L(Py,) is
unifiable. Moreover, whenever unifiers exists, they are associated.

F.L.C. de Moura HOU a la Huet and a la ES



Conclusion

Conclusion

» In this work we compared the Ao- and the Ase-styles of
unification.

» To do so, we presented the unification tree notation which
allows a clear presentation of the Huet's algorithm in de
Bruijn notation.

» This notation was applied to unification problems in de Bruijn
notation, but it can be applied to A-terms with names with
minor modifications.
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Conclusion

Conclusion

» We compared the classical method of Huet for HOU and the
one of Dowek, Hardin and Kirchner for the Ao-calculus.

» We described the counterpart of the procedures SIMPL and
MATCH, called SIMPL,, and MATCH,,.

» We concluded that there exists a correspondence between the
substitutions generated by Huet's algorithm and the graftings
generated by the Ao-HOU algorithm for unification problems
which are in the image of the precooking translation.

» This comparison was extended to the As.-HOU algorithm.
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Conclusion

Conclusion

» We concluded that the Ao- and the As.-HOU algorithms
generate associated graftings.
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