
Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Matching via Explicit Substitutions

F. L. C. de Moura

GTC/UnB

June 1, 2005

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Outline
Introduction

Motivation
Definition and a Small Example

Explicit Substitutions
The λσ-calculus

Second-Order Matching via Explicit Substitutions
The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Third-order Matching via Explicit Substitutions
Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Conclusion and Future Work
Conclusion
Future Work

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Motivation
Definition and a Small Example

Motivation

I Matching is a mechanism extensively used in computation for
implementing proof assistants and programming languages.

I This is useful when we consider low-level implementations in
which matching algorithms are to be implemented in the level
of the language itself.

I Explicit substitutions provide an adequate framework, closer
to implementations, for reason theoretically about operational
aspects of evaluation in the λ-calculus.

I In this work we present algorithms that decide second and
third-order matching problems in the simply typed
λσ-calculus.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Motivation
Definition and a Small Example

Motivation

I Matching is a mechanism extensively used in computation for
implementing proof assistants and programming languages.

I This is useful when we consider low-level implementations in
which matching algorithms are to be implemented in the level
of the language itself.

I Explicit substitutions provide an adequate framework, closer
to implementations, for reason theoretically about operational
aspects of evaluation in the λ-calculus.

I In this work we present algorithms that decide second and
third-order matching problems in the simply typed
λσ-calculus.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Motivation
Definition and a Small Example

Motivation

I Matching is a mechanism extensively used in computation for
implementing proof assistants and programming languages.

I This is useful when we consider low-level implementations in
which matching algorithms are to be implemented in the level
of the language itself.

I Explicit substitutions provide an adequate framework, closer
to implementations, for reason theoretically about operational
aspects of evaluation in the λ-calculus.

I In this work we present algorithms that decide second and
third-order matching problems in the simply typed
λσ-calculus.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Motivation
Definition and a Small Example

Motivation

I Matching is a mechanism extensively used in computation for
implementing proof assistants and programming languages.

I This is useful when we consider low-level implementations in
which matching algorithms are to be implemented in the level
of the language itself.

I Explicit substitutions provide an adequate framework, closer
to implementations, for reason theoretically about operational
aspects of evaluation in the λ-calculus.

I In this work we present algorithms that decide second and
third-order matching problems in the simply typed
λσ-calculus.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Motivation
Definition and a Small Example

Notation

I Matching equation:
a �? b

where a and b are two λ-terms of the same type under the
same context and b is ground.

I A substitution σ is a solution of the matching equation
a �? b iff aσ =βη b.

I A second-order (third-order, resp.) matching problem is a
finite set of matching equations in which all meta-variables are
at most second-order (third-order, resp.).

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Motivation
Definition and a Small Example

A Simple Example

I append (X 1) (2 · nil) <<? 1 · 1 · 2 · nil
I Solutions:

I X/λy .(1 · 1 · nil)
I X/λy .(1 · y · nil)
I X/λy .(y · 1 · nil)
I X/λy .(y · y · nil)
I Note that there is no more general solution!

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Motivation
Definition and a Small Example

A Simple Example

I append (X 1) (2 · nil) <<? 1 · 1 · 2 · nil
I Solutions:

I X/λy .(1 · 1 · nil)

I X/λy .(1 · y · nil)
I X/λy .(y · 1 · nil)
I X/λy .(y · y · nil)
I Note that there is no more general solution!

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Motivation
Definition and a Small Example

A Simple Example

I append (X 1) (2 · nil) <<? 1 · 1 · 2 · nil
I Solutions:

I X/λy .(1 · 1 · nil)
I X/λy .(1 · y · nil)

I X/λy .(y · 1 · nil)
I X/λy .(y · y · nil)
I Note that there is no more general solution!

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Motivation
Definition and a Small Example

A Simple Example

I append (X 1) (2 · nil) <<? 1 · 1 · 2 · nil
I Solutions:

I X/λy .(1 · 1 · nil)
I X/λy .(1 · y · nil)
I X/λy .(y · 1 · nil)

I X/λy .(y · y · nil)
I Note that there is no more general solution!

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Motivation
Definition and a Small Example

A Simple Example

I append (X 1) (2 · nil) <<? 1 · 1 · 2 · nil
I Solutions:

I X/λy .(1 · 1 · nil)
I X/λy .(1 · y · nil)
I X/λy .(y · 1 · nil)
I X/λy .(y · y · nil)
I Note that there is no more general solution!

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The λσ-calculus

The λσ-calculus

I Developed by M. Abadi, L. Cardelli, P.-L. Curien and
J.J. Lévy in 1991[ACCL91].

I It uses two sorts:
terms: t ::= 1 | X | (t t) | λA.t | t[s], where X ∈ X .
substitutions: s ::= id | ↑ | t · s | s ◦ s

I Properties of the typed λσ-calculus:

1. Confluent.
2. Weakly Terminating.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

The precooking translation

Solutions

Matching rules

Precooking

Precooking

Matching Problem

Matching Problem

Language of the Lambda calculus

Substitution Grafting

Language of the ES calculus

−1

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

The precooking translation

Definition (Precooking [DHK00])

Let a ∈ ΛdB(X) such that Γ ` a : A. To every meta-variable X of
type B in the term a, we associate the type B and the context Γ in
the λσ-calculus. The precooking of a from ΛdB(X) to the set
Λλσ(X) of λσ-terms is given by aF = F (a, 0), where F (a, n) is
defined by:

1. F ((λB .a), n) = λB .F (a, n + 1).

2. F (k, n) = 1[↑k−1].

3. F ((a b), n) = (F (a, n) F (b, n)).

4. F (X , n) = X [↑n].

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Remarks on decidability

I Second-Order Matching (SOM) is decidable for the simply
typed λ-calculus [?].

I The method of Dowek, Hardin and Kirchner does not decide
arbitrary second-order λσ-matching problems:

I The counter-example: Consider m ≤ n and A an atomic type.

XA→A·∆
A [(λA.1A·Γ

A) · ↑nΓ
∆] =?

λσ (mΓ
B1→...→Bq→A b1

Γ
B1 . . . bq

Γ
Bq)

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Remarks on decidability

I Second-Order Matching (SOM) is decidable for the simply
typed λ-calculus [?].

I The method of Dowek, Hardin and Kirchner does not decide
arbitrary second-order λσ-matching problems:

I The counter-example: Consider m ≤ n and A an atomic type.

XA→A·∆
A [(λA.1A·Γ

A) · ↑nΓ
∆] =?

λσ (mΓ
B1→...→Bq→A b1

Γ
B1 . . . bq

Γ
Bq)

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Remarks on decidability

I Second-Order Matching (SOM) is decidable for the simply
typed λ-calculus [?].

I The method of Dowek, Hardin and Kirchner does not decide
arbitrary second-order λσ-matching problems:

I The counter-example: Consider m ≤ n and A an atomic type.

XA→A·∆
A [(λA.1A·Γ

A) · ↑nΓ
∆] =?

λσ (mΓ
B1→...→Bq→A b1

Γ
B1 . . . bq

Γ
Bq)

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Exp-App

X [(λ.1) · ↑n] =?
λσ (m b1 . . . bq) →Exp−App

X [(λ.1)· ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1)

Exp-App
P ∧ X [a1 · . . . · ap· ↑n] =?

λσ (m b1 . . . bq)

P ′ ∧
∨

r∈Rp∪Ri

X =?
λσ (r H1 . . .Hk)

if X has an atomic type and is not solved

where P ′ = P ∧ X [a1 · . . . · ap· ↑n] =?
λσ (m b1 . . . bq),

H1, . . . ,Hk are variables of appropriate types, not occurring in
P, with contexts ΓHi

= ΓX , Rp is the subset of {1, . . . , p}
such that (r H1 . . .Hk) has the right type, Ri = if m > n then
{m − n + p} else ∅.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Exp-App

X [(λ.1) · ↑n] =?
λσ (m b1 . . . bq) →Exp−App

X [(λ.1)· ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1)

Exp-App
P ∧ X [a1 · . . . · ap· ↑n] =?

λσ (m b1 . . . bq)

P ′ ∧
∨

r∈Rp∪Ri

X =?
λσ (r H1 . . .Hk)

if X has an atomic type and is not solved

where P ′ = P ∧ X [a1 · . . . · ap· ↑n] =?
λσ (m b1 . . . bq),

H1, . . . ,Hk are variables of appropriate types, not occurring in
P, with contexts ΓHi

= ΓX , Rp is the subset of {1, . . . , p}
such that (r H1 . . .Hk) has the right type, Ri = if m > n then
{m − n + p} else ∅.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Replace

X [(λ.1) · ↑n] =?
λσ (m b1 . . . bq) →Exp−App

X [(λ.1)· ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1)

Replace
P ∧ X =?

λσ t

{X 7→ t}(P) ∧ X =?
λσ t

if X ∈ T Var(P),X 6∈ T Var(t) and,

if t is a meta-variable then t ∈ T Var(P).

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Replace

X [(λ.1) · ↑n] =?
λσ (m b1 . . . bq) →Exp−App

X [(λ.1)· ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1) →Replace

(1 H1)[(λ.1). ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1)

Replace
P ∧ X =?

λσ t

{X 7→ t}(P) ∧ X =?
λσ t

if X ∈ T Var(P),X 6∈ T Var(t) and,

if t is a meta-variable then t ∈ T Var(P).

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Replace

X [(λ.1) · ↑n] =?
λσ (m b1 . . . bq) →Exp−App

X [(λ.1)· ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1) →Replace

(1 H1)[(λ.1). ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1)

Replace
P ∧ X =?

λσ t

{X 7→ t}(P) ∧ X =?
λσ t

if X ∈ T Var(P),X 6∈ T Var(t) and,

if t is a meta-variable then t ∈ T Var(P).

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Normalise

X [(λ.1) · ↑n] =?
λσ (m b1 . . . bq) →Exp−App

X [(λ.1)· ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1) →Replace

(1 H1)[(λ.1). ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1)

Normalise
P ∧ e1 =?

λσ e2

P ∧ e ′1 =?
λσ e ′2

if e1 or e2 is not in η-long normal form, where

e ′1 (resp. e ′2) is the η-long normal form of e1 (resp. e2) if e1

(resp. e2) is not a solved variable and e1 (resp. e2) otherwise.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Normalise

X [(λ.1) · ↑n] =?
λσ (m b1 . . . bq) →Exp−App

X [(λ.1)· ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1) →Replace

(1 H1)[(λ.1). ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1) →Normalise

H1[(λ.1)· ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1)

Normalise
P ∧ e1 =?

λσ e2

P ∧ e ′1 =?
λσ e ′2

if e1 or e2 is not in η-long normal form, where

e ′1 (resp. e ′2) is the η-long normal form of e1 (resp. e2) if e1

(resp. e2) is not a solved variable and e1 (resp. e2) otherwise.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Normalise

X [(λ.1) · ↑n] =?
λσ (m b1 . . . bq) →Exp−App

X [(λ.1)· ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1) →Replace

(1 H1)[(λ.1). ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1) →Normalise

H1[(λ.1)· ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1)

Normalise
P ∧ e1 =?

λσ e2

P ∧ e ′1 =?
λσ e ′2

if e1 or e2 is not in η-long normal form, where

e ′1 (resp. e ′2) is the η-long normal form of e1 (resp. e2) if e1

(resp. e2) is not a solved variable and e1 (resp. e2) otherwise.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Normalise

X [(λ.1) · ↑n] =?
λσ (m b1 . . . bq) →Exp−App

X [(λ.1)· ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1) →Replace

(1 H1)[(λ.1). ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1) →Normalise

H1[(λ.1)· ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1)

Normalise
P ∧ e1 =?

λσ e2

P ∧ e ′1 =?
λσ e ′2

if e1 or e2 is not in η-long normal form, where

e ′1 (resp. e ′2) is the η-long normal form of e1 (resp. e2) if e1

(resp. e2) is not a solved variable and e1 (resp. e2) otherwise.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Characterisation of Matching Problems

Theorem
Let M be a second-order matching problem which is in the image
of the precooking translation. Then every flexible term occurring in
M ′ which is in the matching path of M, and of the form
X [a1 · . . . · ap· ↑n], with a1 · . . . · ap· ↑n in σ-normal form, is such
that a1, . . . , ap are of atomic type.

Graphically:

X [a1 · . . . · ap·︸ ︷︷ ︸ n + 1 · n + 2 · . . .︸ ︷︷ ︸]

atomic at most
type 2nd -order type

≡ X [a1 · . . . · ap· ↑n]

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Matching Rules

Decm-λ
〈σ,P ∪ {λA.a <<?

λσ λA.b}〉
〈σ,P ∪ {a <<?

λσ b}〉

Decm-App
〈σ,P ∪ {(n a1 . . . ap) <<?

λσ (n b1 . . . bp)}〉
〈σ,P ∪ {a1 <<?

λσ b1, . . . , ap <<?
λσ bp}〉

Decm-Fail
〈σ,P ∪ {(n a1 . . . ap) <<?

λσ (m b1 . . . bq)}〉
Fail

,

if m 6= n.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Matching Rules

Imit
〈σ,P ∪ {X [a1 · . . . · ap· ↑n] �?

λσ (m b1 . . . bq)}〉
〈σ′,Pσ′∪{(m−n+p H1. . .Hq)[a1σ′ ·. . .·apσ′·↑n]�?

λσ (mb1. . .bq)}〉
if X has atomic type and m > n, where
σ′ = σ{X 7→ (m−n+p H1 . . .Hq)}, H1, . . . ,Hq are
meta-variables with appropriate type and with contexts
ΓHi

= ΓX (∀1 ≤ i ≤ q), and m-n+p is at most third order.

Proj
〈σ,P ∪ {X [a1 · . . . · ap· ↑n] �?

λσ (m b1 . . . bq)}〉
〈σ{X 7→j}, {P{X 7→j} ∪ {aj{X 7→j} �?

λσ (m b1 . . . bq)}〉
if

X has atomic type, and the j-th element (1 ≤ j ≤ p) of the
explicit substitution [a1 · . . . · ap· ↑n] has the same type of X .

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

The precooking translation
Remarks on decidability
The counter-example
Characterisation of Matching Problems
Matching Rules
Termination, Correctness and Completeness

Termination, Correctness and Completeness

Theorem
Applications of the previous rules to second-order matching
problems, whose terms satisfy the previous theorem, always
terminate.

Theorem
Solved forms of the algorithm derived from the presented
second-order matching rules are in the image of the precooking
translation.

Theorem
The presented second-order matching rules are correct and
complete, in the sense that the set of matchers remains unchanged
by applications of the matching rules.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Third-order Matching via Explicit Substitutions

I Third-order matching is decidable in the simply typed
λ-calculus [Dow94].

I We proved that the Dowek’s decision procedure can be
adapted to the simply typed λσ-calculus.

I This is useful when we consider low-level implementations in
which matching algorithms are to be implemented in the level
of the language itself.

I The decision procedure is achieved firstly by reducing
matching problems to interpolation problems in the language
of the λσ-calculus.

I After that we show that if an interpolation problem has a
solution then it also has a solution which depends only the
initial matching problem.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Third-order Matching via Explicit Substitutions

I Third-order matching is decidable in the simply typed
λ-calculus [Dow94].

I We proved that the Dowek’s decision procedure can be
adapted to the simply typed λσ-calculus.

I This is useful when we consider low-level implementations in
which matching algorithms are to be implemented in the level
of the language itself.

I The decision procedure is achieved firstly by reducing
matching problems to interpolation problems in the language
of the λσ-calculus.

I After that we show that if an interpolation problem has a
solution then it also has a solution which depends only the
initial matching problem.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Third-order Matching via Explicit Substitutions

I Third-order matching is decidable in the simply typed
λ-calculus [Dow94].

I We proved that the Dowek’s decision procedure can be
adapted to the simply typed λσ-calculus.

I This is useful when we consider low-level implementations in
which matching algorithms are to be implemented in the level
of the language itself.

I The decision procedure is achieved firstly by reducing
matching problems to interpolation problems in the language
of the λσ-calculus.

I After that we show that if an interpolation problem has a
solution then it also has a solution which depends only the
initial matching problem.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Third-order Matching via Explicit Substitutions

I Third-order matching is decidable in the simply typed
λ-calculus [Dow94].

I We proved that the Dowek’s decision procedure can be
adapted to the simply typed λσ-calculus.

I This is useful when we consider low-level implementations in
which matching algorithms are to be implemented in the level
of the language itself.

I The decision procedure is achieved firstly by reducing
matching problems to interpolation problems in the language
of the λσ-calculus.

I After that we show that if an interpolation problem has a
solution then it also has a solution which depends only the
initial matching problem.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Third-order Matching via Explicit Substitutions

I Third-order matching is decidable in the simply typed
λ-calculus [Dow94].

I We proved that the Dowek’s decision procedure can be
adapted to the simply typed λσ-calculus.

I This is useful when we consider low-level implementations in
which matching algorithms are to be implemented in the level
of the language itself.

I The decision procedure is achieved firstly by reducing
matching problems to interpolation problems in the language
of the λσ-calculus.

I After that we show that if an interpolation problem has a
solution then it also has a solution which depends only the
initial matching problem.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

From Matching Problems to Interpolation Problems

Definition
Let a �?

λσ b be a matching equation and σ a ground solution to
this equation, i.e., the λσ-normal form of aσ is equal to b. We
define the interpolation problem Φ(a �?

λσ b, σ) inductively over
the number of occurrences of a as follows:

• If a = λA.c then b is also an abstraction of the form λA.d and
then σ is also a solution of c �?

λσ d and we let
Φ(a �?

λσ b, σ) = Φ(c �?
λσ d , σ).

• If a = (k c1 . . . cm) then b is also of the form (k d1 . . . dm)
because a �?

λσ b is solvable and we let

Φ(a �?
λσ b, σ) =

⋃
i

Φ(ci �?
λσ di , σ).

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

From Matching Problems to Interpolation Problems

Definition (cont.)

• If a = (X [a1 · . . . · ap· ↑n] c1 . . . cm) then we let
Φ(a �?

λσ b, σ) =

{(X [a1 · . . . · ap· ↑n] c1σ . . . cmσ) �?
λσ b}

⋃
i

Hi , where

Hi =


Φ(ci �?

λσ ciσ, σ), if the dummy symbol � occurs
in the normal form of

(Xσ[a1σ · . . . · apσ· ↑n] c1σ . . . ci−1σ � ci+1σ . . . cmσ);
∅, otherwise.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

From Matching Problems to Interpolation Problems

Theorem
Let a �?

λσ b be a matching equation and σ a ground solution to
this equation. Then the substitution σ is a solution to
Φ(a �?

λσ b, σ) and, conversely, if σ′ is a solution to Φ(a �?
λσ b, σ)

then σ′ is also a solution to the matching equation a �?
λσ b.

Definition
Let Ψ be a third-order matching problem and σ be a solution to Ψ.
We let Φ(Ψ, σ) be the following third-order interpolation problem:

Φ(Ψ, σ) =
⋃

a�?
λσb∈Ψ

Φ(a �?
λσ b, σ).

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

λσ-Böhm Trees

Definition (λσ-Böhm Trees)

A λσ-Böhm tree is a tree whose nodes are labeled with pairs
〈l , v∆

A 〉 such that l is a positive integer and v∆
A is a λσ-term of

type A under context ∆.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

λσ-Böhm tree of a λσ-term in normal form

Definition (λσ-Böhm tree of a λσ-term in normal form)

Let aΓ
A = λA1 · · ·λAk

.(hΣ
B1→...→Bm→B b1

Σ
B1
· · · bm

Σ
Bm

) be a term in

λσ-nf, where Σ = A1 · . . . · Ak · Γ. The Böhm tree of aΓ
A is

recursively defined as the tree whose root is labeled with the pair
〈k, hΣ

B1→...→Bm→B〉 and whose sons are the λσ-Böhm trees of:

1. b1
Σ
B1

,. . . ,bm
Σ
Bm

, if hΣ
B1→...→Bm→B is a de Bruijn index;

2. a1
Σ
A1

, . . . , ap
Σ
Ap

, b1
Σ
B1

, . . . , bm
Σ
Bm

, if hΣ
B1→...→Bm→B is a

meta-variable of the form X Γ
A[a1

Σ
A1
· . . . · ap

Σ
Ap
· ↑nΣ

∆], where

a1
Σ
A1
· . . . · ap

Σ
Ap
· ↑nΣ

∆ is a substitution in λσ-nf.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Example

The λσ-Böhm tree of the term λAλAλA.(4Γ
A→A→A X Γ

A 1Γ
A), where

Γ = A · A · A · A → A → A · nil is given by:

〈3, 4Γ
A→A→A〉

〈0,X Γ
A〉

qqqqqqqqqq
〈0, 1Γ

A〉

MMMMMMMMMM

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Another Example

The λσ-Böhm tree of the term
λAλAλA.(4Γ

A→A→A (X∆
A→A[(λA.1A·Γ

A) · 1Γ
A · ↑2Γ

Γ≥2
] 2Γ

A) 1Γ
A), where

Γ = A ·A ·A ·A → A → A · nil and ∆ = A → A ·A · Γ≥2 is given by:

〈3, 4Γ
A→A→A〉

KKKKKKKKKKK

〈0,X∆
A [(λA.1A·Γ

A) · 1Γ
A · ↑2Γ

Γ≥2
]〉

kkkkkkkkkkkkkkk

〈0, 1Γ
A〉

〈1, 1A·Γ
A 〉

llllllllllllll
〈0, 1Γ

A〉 〈0, 2Γ
A〉

SSSSSSSSSSSSSSSS

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Accessible Occurrence

Definition
Consider an equation of the form (X [a1 · . . . · ap· ↑n]c1 . . . cq) = b
and the term t = λC1 . . . λCq .u with the same type of X . The set
of occurrences in the λσ-Böhm tree of t accessible w.r.t. the
equation (X [a1 · . . . · ap· ↑n] c1 . . . cq) = b is inductively defined as:

• the root of the λσ-Böhm tree of t is accessible.

• if α is an accessible occurrence labeled with a de Bruijn index
j with 1 ≤ j ≤ p + q and dj is relevant in its r -th argument
then the occurrence α〈r〉 is accessible, where:

dj =

{
aj if q < j ≤ p + q,
cq−i+1 if 1 ≤ j ≤ q.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Accessible Occurrence

Definition (cont.)

• if α is an accessible occurrence labeled with a de Bruijn index
greater than p + q or with a meta-variable then all the sons of
α are accessible.

• if α is an accessible occurrence labeled with a meta-variable
then each son of α is accessible.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Accessible term

Definition (Occurrence accessible w.r.t. an interpolation
problem [Dow94])

An occurrence is accessible with respect to an interpolation
problem if it is accessible with respect to one of the equations of
this problem.

Definition (λσ-term accessible w.r.t. to an interpolation
problem)

A λσ-term is accessible with respect to an interpolation problem if
all occurrences of its λσ-Böhm tree which are not leaves are
accessible with respect to this problem.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Accessible Solution

Definition (Accessible solution built from a solution)

Let Φ be an interpolation problem and let σ be a ground solution
to this problem. For each meta-variable X occurring in the
equations of Φ consider the λσ-term t such that {X 7→ t} ⊆ σ. In
the λσ-Böhm tree of t, we prune all occurrences non accessible
(that are not leaves) with respect to the equations of Φ in which X
has an occurrence and put λσ-Böhm trees of ground terms of
depth 0 of the expected type as leaves. Call t ′ the term whose
λσ-Böhm is obtained this way and σ̂ the resulting substitution.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Accessible Solution

Theorem
Let Φ be an interpolation problem generated from a precooked
matching problem and let σ be a ground solution to Φ. Then the
accessible solution σ̂, built from σ, is a solution to Φ.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Compact λσ-term

Definition
λσ-term t = λC1 . . . λCq .u (u atomic) is compact w.r.t. an
interpolation problem Φ if no de Bruijn index j with 1 ≤ j ≤ q
appears free in a path of the λσ-Böhm tree of u more than h + 1
times, where h is the maximum depth in the λσ-Böhm tree of the
right-hand side of the equations of Φ.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Compact Solution

Definition
Let Φ be an interpolation problem, σ̂ be an accessible solution to
this problem and h be the maximum depth in the λσ-Böhm tree of
the right-hand side of the equations of Φ. The grafting σ̂ is a
compact accessible solution built from an accessible solution to Φ
if, for all meta-variable X occurring in Φ, the term
t = X σ̂ = λC1 . . . λCq .u (u atomic) is such that there is no path in
the λσ-Böhm tree of u containing more than h + 1 occurrences
labeled with the de Bruijn index j (1 ≤ j ≤ q). If there exists a
path in the λσ-Böhm tree of u that has more than h + 1 free
occurrences of the de Bruijn index j (1 ≤ j ≤ q) then the compact
accessible solution σ′ is built as follows: we replace all these
occurrences of j by λB1 . . . λBp .r.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Compact Solution

Theorem
Let Φ be an interpolation problem, σ a solution to Φ, σ̂ be the
accessible solution built from σ and σ′ be the compact accessible
solution built from σ̂. Then σ′ is also a solution to Φ.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Compact Solution

Theorem
Let Φ be an interpolation problem, σ be a solution to Φ, σ̂ be the
accessible solution built from σ and σ′ be the compact accessible
solution built from σ̂. If h is the maximum depth in the λσ-Böhm
tree of the right-hand side of the equations of Φ, then for every
meta-variable X of arity q, the depth of the λσ-Böhm tree of
Xσ′ = λC1 . . . λCq .u

′ is less than or equal to (q + 1)(h + 1)− 1.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Compact Solution

Corollary

Let Φ be a third-order interpolation problem, σ be a solution to Φ,
σ̂ be the accessible solution built from σ and σ′ be the compact
accessible solution built from σ̂. If h is the maximum depth in the
λσ-Böhm tree of the right-hand side of the equations of Φ, then for
every meta-variable X of arity q, the depth of the λσ-Böhm tree of
Xσ′ = λC1 . . . λCq .u

′ is less than or equal to (q + 1)(h + 1)− 1.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

The Decision Procedure

Theorem
The class of third-order λσ-matching problems that come from the
simply typed λ-calculus is decidable.

Proof.
Let Ψ be a third-order matching problem in the λσ-calculus.
Enumerate all ground substitutions for the meta-variables occurring
in the equations of the form (X [a1 · . . . · ap· ↑n] c1 . . . cq) �?

λσ b of
Ψ, such that the terms to be substituted for X have depth less
than or equal to (q + 1)(h + 1)− 1, where h is the depth of the
λσ-Böhm tree of b. If none of these substitutions is a solution Φ
then Φ is not solvable. Otherwise, it is solvable.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Conclusion
Future Work

Conclusion

I We presented a second-order matching algorithm which uses
an adequate notation that does not mix graftings with
matching equations.

I This algorithm decides all second-order matching problems
that are originated in the simply typed λ-calculus.

I We adapted the Dowek’s decision procedure for third-order
matching in the simply-typed λσ-calculus.

I To do so, we defined the notion of λσ-Böhm tree, which
extends the usual notion of Böhm tree for the λσ-calculus.

I This work is important for considering low-level
implementations of languages based on the simply typed
λ-calculus in which matching algorithms are to be
implemented in the level of the language itself.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Conclusion
Future Work

Future Work

I Extension of this work to other styles of explicit substitutions.

I Implementation of the algorithms to evaluate performance.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Conclusion
Future Work

M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy.

Explicit Substitutions.
J. of Func. Programming, 1(4):375–416, 1991.

G. Dowek, T. Hardin, and C. Kirchner.

Higher-order unification via explicit substitutions.
Information and Computation, 157:183–235, 2000.

G. Dowek.

Third-order matching is decidable.
APAL 69:135–155, 1994.

G. Huet.

A Unification Algorithm for Typed λ-Calculus.
TCS, 1:27–57, 1975.

G. Huet.

Résolution d’équations dans les langages d’ordre 1,2,. . . ,ω.
PhD thesis, University Paris-7, 1976.

F. L. C. de Moura, F. Kamareddine, and M. Ayala-Rincón.

Second-Order Matching via Explicit Substitutions
Springer-Verlag LNAI 3452, 2005.

F. L. C. de Moura, F. Kamareddine, and M. Ayala-Rincón.

Third-Order Matching via Explicit Substitutions
Submitted, 2005.

F.L.C. de Moura Matching via Explicit Substitutions

Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Conclusion
Future Work

Solved Forms

Definition
A unification problem P is in λσ-solved form if all its
meta-variables are of atomic type and it is a conjunction of
nontrivial equations of the following forms:

I Solved: X =?
λσ a where the meta-variable X does not appear

anywhere else in P and a is in η-long normal form. Such an
equation is said to be solved in P and the variable X is also
said to be solved.

I Flexible-flexible: X [a1 · . . . · ap· ↑n] =?
λσ Y [b1 · . . . · bq· ↑m],

where X [a1 · . . . · ap· ↑n] and Y [b1 · . . . · bq· ↑m] are λσ-terms
in η-long normal form and the equation is not solved.

return

F.L.C. de Moura Matching via Explicit Substitutions

	Introduction
	Motivation
	Definition and a Small Example

	Explicit Substitutions
	The -calculus

	Second-Order Matching via Explicit Substitutions
	The precooking translation
	Remarks on decidability
	The counter-example
	Characterisation of Matching Problems
	Matching Rules
	Termination, Correctness and Completeness

	Third-order Matching via Explicit Substitutions
	Interpolation Problems
	-Böhm Trees
	Examples
	Accessible Solution
	Compact Solution
	The Decision Procedure

	Conclusion and Future Work
	Conclusion
	Future Work

