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Abstract

The simulation of processors over simple architectures is important for enabling
test and verification prior to the expensive implementation involved in the develop-
ment of new hardware technologies. Arvind’s group has illustrated how to describe
processors by term rewriting systems and has introduced a technique for prov-
ing the correctness of specifications for elaborated processors with respect to basic
ones. They propose that the described processors should be simulated over stan-
dard hardware description languages such as Verilog, after translating these rewrite
descriptions adequately, and not directly over the rewriting specifications. In this
work we show how rewriting-logic may be applied for purely rewriting based spec-
ification as well as simulation of processors. Furthermore, we show how rewriting
based simulation may be used for evaluating the performance of important hardware
aspects of processors. Rewriting-logic environments such as ELAN, the one we use
here, are sufficiently versatile to allow for adequate specifications and simulations
which through easy modifications of the strategies enable a dynamic verification of
aspects intrinsically related to hardware properties such as the size and control of
reorder buffers and the method of predictions used by speculative processors.
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1 Introduction

In recent years some work on applying rewriting techniques to the design
of hardware has been developed. In particular, Arvind’s group at MIT has
treated the implementation of processors over simple architectures [12,13,1],
rewrite based description and synthesis of simple logical digital circuits [8]
and description of cache protocols over memory systems [14,16]. Their work
has made evident the great capacity and possibilities of rewriting as an effec-
tive framework for dealing with simulation and estimation of hardware before
expensive physical implementations are done. In this work we discuss the ad-
vantages and difficulties of a real rewrite based simulation of descriptions of
processors over simple architectures. For this purpose we use the well-known
rewriting-logic environment ELAN [5.4].

Our work, as that of Arvind group’s in [12,13,1], is focused on the im-
plementation of processors over the AX RISC architecture. Rules for the
processors are specified in the ELAN system and different architectural com-
ponents such as memory, registers, etc. are discriminated in a natural way,
taking advantage of this typed language. Proving the soundness of the pro-
cessors is thus reduced to proving that they simulate and are simulated by
a basic processor. In our ELAN approach the separation between logic and
rewriting allows us to define rules for the instructions of the processors and to
specify strategies describing architectural characteristics as the size of reorder
buffers - ROBs. Unlike the approach of Arvind’s group, in our implementa-
tions we can simulate the execution of assembly description programs over
our rewriting-specified processors; for instance, generation of the Fibonacci
sequence, quick-sort, computation of the Knuth-Morris-Pratt jump function,
etc., while dynamically changing strategies for estimating the most adequate
form of implementing these architectural components. This is all done without
translating the rewriting specifications into hardware description languages as
suggested by the approach of Arvind’s group. After a simulation is performed,
these estimations are given by an analysis of the ELAN statistics for the num-
ber of times each rewriting rule (i.e. processor instruction) is applied. Other
important architectural aspects such as predictions in processors with specu-
lative execution are implemented in their own rewriting rules. Rewrite based
simulation of programs in assembly description does not correspond exactly to
the execution of these programs over real architectures, since many additional
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steps are executed in a rewriting based system; in particular, many unsuc-
cessful attempts to apply rewriting rules slow down the simulation. However,
ELAN statistics allow for a concrete estimation of how these processors should
work in real hardware implementations.

Additionally, we point out some interesting problems inherent in the way
rewriting rules (and strategies) are applied in true purely rewrite based sys-
tems. In particular, that rules are not naturally applied in a non-deterministic
manner; they are selected as the first applicable rule found in the order the
rules are defined and applied in the first positions (left-most, inner-most or
similarly) that they match over the target term. In our implementation these
problems arise when important architectural aspects as out-of-order erecu-
tion of instruction templates over ROBs are to be simulated. Although our
implementations are deterministic we comment on how one can overcome
these problems in a non-purely rewriting system like ELAN, where some non-
deterministic strategies are available.

2 Architecture and processors descriptions

We assume familiarity with the basic concepts of computer architecture and
rewriting theory as presented respectively in [7] and [3]. Additionally, we
suppose the reader familiar with rewriting-logic environments like ELAN. We
briefly describe the AX RISC architecture and the specifications in ELAN of
a basic processor over this architecture and a more elaborated one that allows
for speculative execution over a reorder buffer.

2.1 The AX RISC architecture

AX is a set of RISC instructions where all memory access is done by load and
store instructions and the arithmetic operations are done over the registers at
the register file (rf). A sequence of instructions that describes a program is
placed at the instruction memory (im). The instructions are executed in-order
and after each instruction execution the contents of the program counter (pc)
is incremented by one except for branch instructions (Jz).

The set of different instructions of AX, INST, is described as:

INST = r:= Loadc(v) || r:= Loadpc | r:=0p(ri,r) ||
Jz(r1,79) | r:= Load(ry) || Store(ri,rs)

The load-constant instruction, r:= Loadc(v), puts the constant v into the
register r. The load-program-counter instruction, r := Loadpc, puts the con-
tent of the program counter into the register . The arithmetic-operation
instruction, r:=O0p(ry, r9), performs the (abstract) arithmetic operation spec-
ified by Op on the operands specified by the registers r; and r and puts the
result into the register 7. The branch instruction Jz(ry,rs), sets the program
counter to the target instruction address specified by the register ro when the
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Fig. 1. Description of the basic processor

contents of the register r; is zero and increments the program counter by one
otherwise. The load instruction, r := Load(r), loads the memory cell speci-
fied by the register r; into the register 7. The store instruction, Store(ry,rs),
stores the contents of the register 75 into the memory cell specified by the
register 7.

2.2 Basic processor

The operational semantics of the AX RISC instruction set is defined by a
single-cycle, non pipelined, in-order execution processor that we will call the
basic processor. See figure 1 for a description in register transfer level.

The description of the system Sys is given by its memory m and processor
Proc: Sys(m,Proc), the latter consists of the instruction address ia of the pc,
the register file rf and the program prog: Proc(ia,rf,prog).

The rewriting rules implementing the AX instructions in ELAN are given
in the Table 1. This follows straightforwardly from the operational semantics
given earlier of these instructions. We explain the most complex of these rules:
the branch instruction Jz. All other rules are similarly explained.

Whenever the current instruction of the program prog at the position (of
the instruction memory im) given by the instruction address ia is a branch
instruction of the form Jz(r1,r2), the program counter should be changed ei-
ther by the contents of the register r2 or by ia+1. The former, in the case that
the contents of the register rl equals zero (checked by valueofReg(ri,rf)
== 0); the last, otherwise (checked by valueofReg(ri,rf) != 0). The aux-
iliary premise isinstJz(selectinst (prog,ia)) checks whether the current
instruction is a branch. The role of the “where _ :=() _” commands is to set
auxiliary variables.

2.8 Implementation of a processor with speculative execution over a ROB

As in [12,13,1] more sophisticated processors may be described by rewriting
rules and then proved correct by showing that they are simulated by the basic
processor and simulate the basic processor. Here we describe the implemen-
tation of a processor that does speculative execution over a ROB. See figure
2. A ROB holds instructions that have been decoded but have not completed
their execution. Conceptually, the ROB divides the processor into two asyn-
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[Loadc] Sys(m,Proc(ia,rf,prog)) => Sys(m,Proc(ia+l,insertRF(zf,r,v),prog))
where instIa :=() selectinst(prog,ia) if isinstLoadc(instIa)
where r :=() nameoflLoadc(instIa)
where v :=() valueofLoadc(instIa) end

[Loadpc]| Sys(m,Proc(ia,rf,prog)) =>
Sys(m,Proc(ia+l,insertRF(rf,r,ia),prog))
where instIa :=() selectinst(prog,ia) if isinstLoadpc(instIa)
where r :=() nameofLoadpc(instIa) end

[Op] Sys(m,Proc(ia,rf,prog)) => Sys(m,Proc(ia+1,insertRF(rf,r,v),prog))
where instIa :=() selectinst(prog,ia) if isinstOp(instIa)
where r1 :=() reglofOp(instIa) where r2 :=() reg2ofOp(instla)
where r :=() nameofOp(instlIa) where v:=() valueofOp(rl,r2,rf) end

[Jz] Sys(m,Proc(ia,rf,prog)) => Sys(m,Proc(nia,rf,prog))
where instIa :=() selectinst(prog,ia) if isinstJz(instIa)
where r1:=() reglofJz(instIa) where r2:=() reg2ofJz(instIa)
choose try where nia:=()ia+l if valueofReg(rl,rf)!=0
try where nia:=()valueofReg(r2,rf) if valueofReg(rl,rf)==0
end end

[Load] Sys(m,Proc(ia,rf,prog)) =>
Sys(m,Proc(ia+1,insertRF(rf,r0,v0) ,prog))
where inst :=() selectinst(prog,ia) if isinstLoad(inst)
where r0 :=() nameoflLoad(inst) where v0 :=() getMem(inst,rf,m) end
[Store] Sys(m,Proc(ia,rf,prog)) =>
Sys (insertMEM(m,valueofReg(rA,rf),valueofReg(rB,rf)) ,Proc(ia+l,rf,prog))
where inst :=() selectinst(prog,ia) if isinstStore(inst)
where rA :=() nameofStoreR1(inst)
where rB :=() nameofStoreR2(inst) end

Table 1
Rewriting rules for the basic processor

@ Fetch/Decode/Rename Kill
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Fig. 2. Description of the speculative processor
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chronous parts. The first one fetches the instruction and after decoding and
renaming registers, dumps it into the next available slot in the ROB. The
ROB slot index serves the purpose of the renaming tag, and the instruction
templates in the ROB (ITB) always contain tags or values instead of register
names. An instruction template in the ROB can be solved (“executed”) if
all its operands are available. The second part takes any enabled instruction
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[PsOp]
Sys(m,Proc(ia,rf,ITB(ial,k,t(k) |[-0p(v,vl),wf,sf).itbs2,btb,prog)) =>
Sys(m,Proc(ia,rf,ITB(ial,k,t (k) |-execOponval (v,vl) ,wf,sf).itbs2,
btb,prog)) end

[PsValueForward]
Sys(m,Proc(ia,rf,ITB(ial,k,t (k) |-v,wf,sf).itbs2,btb,prog)) =>
Sys(m,Proc(ia,rf,ITB(ial,k,t (k) |-v,wf,sf).ValueForward(t(k),v,itbs2),
btb,prog)) if TagExists(t(k),itbs2) end

[PsValueCommit]
Sys(m,Proc(ia,rf,ITB(ial,k,t(k)|-v,Wreg(r),sf).itbs2,btb,prog)) =>
Sys(m,Proc(ia, insertRF(rf,r,v),itbs2,btb,prog))

if not TagExists(t(k),itbs2) end

Table 2
Arithmetic Operation and Value Propagation Rules

out of the ROB and dispatches it to an appropriate functional unit, including
the memory system (then “execution” is completed). This mechanism is very
similar to the execution mechanism in data flow architectures. Such an ar-
chitecture may execute instructions out-of-order, especially if functional units
have different latencies or there are data dependencies between instructions.
Additionally, speculative execution of instruction is allowed. The speculative
mechanisms predicts the address of the next instruction to be issued based on
the past behavior of the programs. The address of the speculative instruction
is determined by consulting a table known as the branch target buffer - BTB,
which can be indexed by the current content of the program counter. If the
prediction turns out to be wrong, the speculative instruction and all the in-
structions issued thereafter are abandoned and their effect on the processor
state nullified. The BTB is updated according to some prediction scheme after
each execution branch resolutions.

As for the basic processor the system Sys is described by its memory m
and processor Proc: Sys(m,Proc). But in contrast, the processor consists of
the ia of the program counter, the register file rf, the program prog as well
as of the ITB (itb) and the BTB (btb): Proc(ia,rf,itb,btb,prog).

In the sequel we present the ELAN implementation of the rules of the
speculative processor and after that we explain the operational semantics of
some of these rules. The rules are divided into four classes: arithmetic and
value propagation rules; instruction issue rules; branch completion rules and
memory access rules. These sets of rewriting rules are presented in the Tables
2, 3, 4 and 5, respectively. Instead of the symbol “:=", that is reserved in
ELAN, setting in the issued rules at the I'TB is denoted by “|-".

Arithmetic operation and value propagation rules (Table 2) deal with the
computation of arithmetic operations (PsOp), the propagation of its results
through the ITB (PsValueForward) and the exclusion of the instruction template
from the I'TB when the result had already been solved and committed to the
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register file (this means the renaming tag it addresses does not occur in the
buffer anymore, what is decided by TagExists(t(k),itbs)). A value is only
committed to the register file when the instruction referencing it is on the
head of the ITB, this approach is conservative since it avoids the need to
reconstruct the state of the register file in the event of wrong speculations.

Issue rules (Table 3) are those used for the issuing of the instructions which
generate templates stored in the ITB. Branch completion rules (Table 4) are
those which deal with the resolution of speculations. When a branch instruc-
tion is issued the processor has to know which will be the next instruction to
be fetched. The next predicted instruction is indicated by the BTB that is an
indexed table. Suppose that the program instruction at position ia is being
issued, the next value of the program counter, called pia, is looked up in the
BTB using as index the current program counter (pia :=() getbtb(ia,pia))
and then the execution resumes at the pia value. When the ITB element con-
taining the branch instruction reaches the head of the I'TB it is the time to
check if the speculation was done correctly or if the processor needs to fix the
mistake and restart the execution at the correct program counter value. In
the last case, the remaining instructions already in the I'TB should be ignored.
The rules in the Table 4 deal with this issue. Exemplifying, suppose that the
head of the I'TB is of the form 1TB(ia,k,Jz(v,nia),wf,Spec(pia)), the branch
completion rule has to check whether the value v is zero or not and then,
respectively, check whether either the speculated address pia coincides with
nia or with ia+1. In this event the prediction has been proved correct and the
execution resumes. Otherwise the program counter must be set, respectively,
either to the value of ia+1 or to the correct value of the branch represented by
nia, depending on whether the wrong speculation was a no jump or a jump,
and the I'TB must be completely emptied because the remaining instructions
should not be executed. These rules also control the updating of the BTB for
dynamic speculation (through the rules which define changebtb).

The memory access rules (Table 5) PsLoad and PsStore deal with the ROB
and the data memory communication. These rules are applied after the pro-
cessor has resolved all values of the tags of the instruction templates stored in
the I'TB by the PsLoadIssue and PsStorelIssue issue rules, respectively.

2.4 Proving correctness of processors

One useful feature of this rewrite based specification of processors is the pos-
sibility of proving the correctness of the implementation of some instruction
set describing a processor. This is done by showing that one implementation
simulates another in regard of some observation function [12,13,1]. The main
idea is to design a function that can extract all the programmer visible states;
i.e., the program counter, the register file and the memory from the system.
The proof of the correctness of our specification of the speculative processor,
here given for completeness of the presentation, follows the lines in [12].

7
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[PsLoadclssue]Sys (m,Proc(ia,rf,itbs,btb,prog)) => Sys(m,
Proc(ia+1l,rf,insEndITBs(ITB(ia,k,t(k) |-v,Wreg(r) ,NoSpec) ,itbs) ,btb,prog))
where instIa :=() selectinst(prog,ia) if isinstLoadc(instIa)
where r:=() nameofLoadc(instIa)
where v:=() valueofLoadc(instIa)
where k:=() lengthof (itbs)+1 end

[PsLoadpclIssue]Sys(m,Proc(ia,rf,itbs,btb,prog)) => Sys(m,
Proc(ia+1,rf,insEndITBs(ITB(ia,k,t(k) |-ia,Wreg(r) ,NoSpec) ,itbs) ,btb,prog))
where instIla :=() selectinst(prog,ia) if isinstLoadpc(instIa)
where r :=() nameofLoadpc(instIa)
where k :=() lengthof (itbs)+1 end

[PsOplssue]Sys (m,Proc(ia,rf, itbs,btb,prog)) => Sys(m,Proc(ia+1l,rf,
insEndITBs (ITB(ia,k,t (k) |-0p(k1,k2) ,Wreg(r) ,NoSpec),itbs) ,btb,prog))
where instIa :=() selectinst(prog,ia) if isinstOp(instIa)
where r1 :=() reglofOp(instIa) where r2 :=() reg2ofOp(instIa)
where r :=() nameofOp(instlIa) where k :=() lengthof (itbs)+1
where k1 :=() searchforLastTag(rl,rf,itbs)
where k2 :=() searchforLastTag(r2,rf,itbs) end

[PsJzIssue|Sys (m,Proc(ia,rf,itbs,btb,prog)) => Sys(m,Proc(pia,rf,
insEndITBs (ITB(ia,k,Jz(k0,k1) ,NoWreg,Spec(pia)) ,itbs) ,btb,prog))
where instIa :=() selectinst(prog,ia) if isinstJz(instIa)
where r1 :=() reglofJz(instIa)
where r2 :=() reg2ofJz(instla)
where k :=() lengthof (itbs)+1
where kO :=() searchforLastTag(rl,rf,itbs)
where kl:=()searchforLastTag(r2,rf,itbs)
where pia:=()getbtb(ia,btb) end

[PsLoadIssue]Sys(m,Proc(ia,rf,itbs,btb,prog)) => Sys(m,Proc(ia+1,rf,
insEndITBs (ITB(ia,k,t (k) |-Load (k1) ,Wreg(r) ,NoSpec) ,itbs) ,btb,prog))
where instIa :=() selectinst(prog,ia) if isinstLoad(instIa)

where r:=()nameoflLoad(instIa)

where rO0:=()reglofLoad(instIa)

where k:=()lengthof (itbs)+1

where k1:=() searchforLastTag(rO,rf,itbs) end

[PsStorelssue]Sys (m,Proc(ia,rf,itbs,btb,prog)) => Sys(m,Proc(ia+l,rf,
insEndITBs (ITB(ia,k,Store(k0,k1) ,NoWreg,NoSpec) ,itbs) ,btb,prog))
where instIa:=()selectinst(prog,ia) if isinstStore(instIa)
where r0 :=() nameofStoreR1(instIa)
where r1:=()nameofStoreR2(instIa)
where k:=()lengthof (itbs)+1
where k0:=()searchforLastTag(r0,rf,itbs)
where kl:=()searchforLastTag(rl,rf,itbs) end

Table 3
Instruction Issue Rules
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[PsJumpCorrectSpec]
Sys(m,Proc(ia,rf,ITB(ial,k,Jz(0,nia) ,wf,Spec(pia)) .itbs,btb,prog)) =>
Sys (m,Proc(ia,rf,itbs,btb,prog)) if pia==nia end
[PsJumpWrongSpec]
Sys (m,Proc(ia,rf,ITB(ial,k,Jz(0,nia) ,wf,Spec(pia)) .itbs,btb,prog)) =>
Sys (m,Proc(nia,rf,nilitb,btbl,prog))
if pia!=nia where btbl:=()changebtb(ial,nia,btb) end
[PsNoJumpCorrectSpec]
Sys (m,Proc(ia,rf,ITB(ial,k,Jz(v,nia) ,wf,Spec(pia)) .itbs,btb,prog)) =>
Sys(m,Proc(ia,rf,itbs,btb,prog)) if v != 0 and pia == ial+l end
[PsNoJumpWrongSpec]
Sys (m,Proc(ia,rf,ITB(ial,k,Jz(v,nia) ,wf,Spec(pia)) .itbs,btb,prog)) =>
Sys(m,Proc(ial+l,rf,nilitb,btbl,prog))
if v '= 0 and pia != ial+l
where btbl :=() changebtb(ial,ial+1l,btb) end

Table 4
Branch Completion Rules

[PsLoad]Sys(m,Proc(ia,rf,ITB(ial,k,t(k) |-Load(v),wf,sf).itbs,btb,prog))
=> Sys(m, Proc(ia,rf,ITB(ial,k,t(k)|-v0,wf,sf).itbs,btb,prog))
where v0 :=() valueofMem(v,m) end
[PsStore]Sys(m,Proc(ia,rf,ITB(ial,k,Store(a,v) ,wf,sf).itbs,btb,prog))
=> Sys(insertMEM(m,a,v), Proc(ia,rf,itbs,btb,prog)) end

Table 5
Memory Access Rules

It is easy to show that the speculative processor simulates the basic one.
One basic processor term can be “upgraded” to one of the speculative proces-
sor simply by adding an empty I'TB and an arbitrary BTB to the processor.

Definition 1 (ITBL) The Instruction Template Buffer Lift of a basic pro-
cessor term is defined by

ITBL(Sys (m,Proc(ia,rf,prog) )) = Sys(m,Proc(ia,rf,nilitb,btb,prog))
where btb is an arbitrary BTB and nilitb and empty ITB.

Theorem 1 Let s and t be system terms of the basic processor. If s —* t in
the basic processor, then ITBL(s) —* ITBL(t) in the speculative processor.

Proof. Sequences of rules of the speculative processor can simulate each
basic processor rule. For example, the Op rule in the basic processor can be
simulated by consecutively applying the PsOpIssue, PsOp and PsValueCommit
rules in the speculative processor; the Load rule in the basic processor can
be simulated by consecutively applying the PsLoadIssue,PsValueForward,
PsLoad and PsValueCommit rules in the speculative processor; etc. O

Now we need to define a projection function from the speculative processor
to the basic processor. This is not simple because of the partially executed
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instructions. The approach in [12] is based on flushing instructions in the ITB.
The key observation is that during some time of execution over an speculative
processor, if no instruction is issued then the I'TB will soon become empty.
Only instruction issue rules can further expand the ITB. So, we can define
another rewriting system which uses the same grammar as the speculative
processor and include all its rules except the instruction issue ones.

Definition 2 The rewriting system Ryrgr over terms of the speculative pro-
cessor is given by the set of rewriting rules {Ps0Op, PsValueForward, PsValueCommit,
PsJumpCorrectSpec, PsJumpWrongSpec, PsNoJumpCorrectSpec, PsNoJumpWrongSpec,
PsLoad, PsStore}.

One can prove that the rewriting system R;rpp is strongly terminating
and confluent and that its normal forms have always empty ITBs.
Definition 3 (ITBF) Let Sys(m,Proc(ia,rf,nilitb,btb,prog)) be the Rirpr
normal form of a given term of the speculative processor s. The instruction

template buffer flush of s, denoted by ITBF(s), is the result of deleting from
this Ryrgr normal form its empty ITB and its BTB: Sys(m,Proc(ia,rf,prog)).

Theorem 2 Let s andt be system terms of the speculative processor. If s —*
t, then ITBF(s) —* ITBF(t) in the basic processor.

Speculative processor issue rules basic processor rules
PsLoadcIssue Loadc
PsLoadpcIssue Loadpc

PsOpIssue Op
PsJzIssue Jz
PsLoadIssue Load
PsStorelssue Store
Table 6

Correspondence between speculative issue rules and basic processor rules

Proof. The proof is by induction on the number of rewrite steps n on the
derivation s —" ¢t. For n = 0 this is obvious. For the inductive step, assume
s — t by applying the rule a. If @ € Ryrpp, then ITBF(s) and ITBF(t)
coincide. If o € R;rpr, that is « is an instruction issue rule, then we will
prove that either ITBF(s) and ITBF(t) coincide or ITBF(s) can be rewritten
into ITBF(t) by applying an appropriate basic processor rule.
Suppose s — s; by applying a rule § € R;rgr. We have two cases:

Case 1. [ is a mis-prediction-recover rule: PsJumpWrongSpec or PsNoJump-
WrongSpec. By applying 3 to ¢ we have ¢ — s1, since the instruction issuing
will be canceled by the mis-prediction-recover rule.

Case 2. [ is not a mis-prediction-recover rule. In this case we can notice
that « can also be applied to s;. Suppose that s; — ¢; by applying a.
If o is PsValueCommit and the register to which the value is committed is

10
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referenced as an operand register in the instruction issued by «, then t —* ¢;
by first applying once or twice PsValueForward, and then applying the rule
B. Otherwise ¢ — t; by applying £.

Let s,, be the R;rgr normal form of s. We have two cases to consider:
Case 1. If this normalization from s into s, invokes one mis-prediction-recover
rule, then there are terms s;,t¢; and s;.; such that s; — ¢;, by applying «,
s; — 841 and t; — s;41 by applying the mis-prediction-recover rule. This
implies that s and ¢ have identical R;7pr normal forms.

Case 2. In the other case, by induction, we have that o can be applied to s,
to yield ¢, such that ¢t —* ¢, by applying just R;rpr rules.

Let t,,1 be the Ryrpr normal form of ¢,. Since s, and t,,.; both have an
empty I'TB, we can easily show that ITBF(s,) — ITBF(t,.1) by applying the
corresponding basic processor rule according to the Table 6. O

3 Benefits of the separation between logic and rewrit-
ing in simulating processors

The natural separation in ELAN between rewriting and logic enables the con-
trolled application of rules (i.e., processor instructions) and the adequate sim-
ulation of many interesting elements of hardware. For instance, the size of
ROBs is one of the basic hardware ingredients of the speculative processor that
is controlled by ELAN strategies. In fact, ROBs are controlled by specifying
strategies which restrict the number of applications of issue rules. Suppose
you want to simulate a ROB of size n, that should completely be filled and
emptied alternately. Then the following simple ELAN strategy is used:

first one(issue_rules);

first one(issue_rules U id);
repeat x : n-1
first one(issue_rules U id);

normalise(first one(non_issue_rules))

Other strategies for handling the ROBs can similarly be specified. For
example, for maintaining a ROB of size n filled during the whole execution,
one can start as before, but in the subsequent normalization with all non issue
rules (R;rpr normalization) these rules should be treated individually. This
treatment depends on whether the given non issue rule maintains or decreases
the number of instruction templates in the ROB. For instance, since after a
wrong branch speculation (rule PsJumpWrongSpec) the ROB is emptied the
strategy should immediately fill the ROB by applying n issue rules. Below we
sketch this strategy showing the case of the rule PsJumpWrongSpec.

11
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first one(issue-rules);
first one(issue_rules U id); } i Initialization filling the ROB

first one(issué_mles U id);

- | treatment of all
other non issue rules
repeat * PsJumpWrongSpec;

first one(issue_rules);

li t : .
normalise | first one first one(issue_rules U id); }
: n-1

first one(issué-rules Uid);

- | treatment of all
other non issue rules

In contrast to the control of ROBs other interesting aspects of processors
as the method of branching prediction are directly controlled by the rewriting
rules. The advantages of having ROBs is that instruction templates may be
charged and these templates partially executed by the pipeline control. When
at a point of the computation, determined by the program counter ia, a branch
instruction template Jz(r1,r2) is charged into the ROB, it is undecided which
is the following instruction template to be charged into the ROB, since at this
point of the computation the values of the tags associated with the registers
r1 and r2 are not necessarily resolved. Thus in speculative processors one has
to decide which instruction template is the next to be charged according to
the contents for the ia in the BTB. Well-known dynamic branch prediction
schemes are specified by simple rewriting rules. We mention here the 1-bit
and 2-bit dynamic prediction methods [15]. Initially, any prediction is given
in the BTB. For instance, one can give pairs (1,2), ..., (j,7 + 1), ..., (n,n+ 1))
meaning that after execution of the j%* instruction the prediction is to jump
to the next instruction (j+ 1**) of the program. These predictions (i.e., pairs)
are only necessary for the addresses of branch instructions in the program.
Subsequently, the predictions are modified according to the execution history.

In 1-bit dynamic prediction, the prediction for the n'* instruction is ac-
tualized according to the next instruction to be executed. Once a prediction
fails the corresponding value in the BTB is changed to the correct address of
the instruction to be executed.

In 2-bit dynamic prediction, there are four different states of the prediction:
strongly taken, weakly taken, weakly not taken, strongly not taken. If the state
is either strongly (not) taken or weakly (not) taken and the prediction is correct:
“jump” (“next instruction”), then the state is changed to strongly (not) taken.
If the state is strongly (not) taken and the prediction fails: “next instruction”
(“jump”), then the state is changed to weakly (not) taken. If the state is
weakly (not) taken and the prediction fails: “next instruction” (“jump”), then
the BTB is modified according to the correct address given by the contents
of the second register of the branch instruction and the state is changed to
weakly not taken (weakly taken).
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Size | 10 10 20 20 30 30 40 40 50 50
ran ord ran ord ran ord ran ord ran ord

1-bit correct | 30 60 109 225 185 490 278 855 401 1320
wrong | 34 34 72 74 114 114 159 154 196 194

2-bit correct | 28 73 120 258 194 543 286 928 407 1413
wrong | 36 21 61 41 105 61 151 81 200 101

Table 7
Elan statistics for quick-sort executed with 1-bit and 2-bit dynamic predictions

Both prediction strategies are specified and simulated by purely rewriting.
This is implemented by simple boolean conditions over the branch completion
rules: comparisons between pia (predicted instruction address), nia (next
correct instruction address) and ia+1 (next instruction address in the pro-
gram) for the four branch completion rules in the Table 4. Once a prediction
fails, the BTB is modified by the function changebtb, that is specified by
purely rewriting and adapted for the two prediction methods.

Furthermore, the performance of different ways to implement proposed
processors can be determined by analyzing the ELAN statistics. For instance,
one can estimate whether 1-bit performs better than 2-bit prediction for the
execution of an assembly description of quick-sort over the speculative pro-
cessor implemented with the strategy of alternatively filling and emptying the
ROB. The total number of wrong and correct predictions (i.e., number of
applications of branch completion rules in the Table 4) for ordered (the worst-
case of quick-sort) and (the average for) random lists are given in the Table 7.
The observation of the differences between the number of wrong predictions
for both methods gives an important insight about the advantages of 2-bit
over 1-bit prediction, since in the worst-case a wrong prediction flushes the
ROB which has been filled with instruction templates over which previous op-
erations have been executed. One can check on the table that the differences
between the number of wrong predictions for the two methods is much more
significant for ordered lists than for random lists. Consequently, the physi-
cal hardware implementation of a processor dedicated to this kind of sorting
for random inputs can be performed with the simplest (and cheaper) 1-bit
method.

Important aspects like out-of-order execution are not easy to implement
in practical purely rewrite based programming environments. In fact, out-of-
order execution of instruction templates over a ROB can only be simulated
by allowing a truly non-deterministic application of the rewriting rules (i.e.,
processor instructions) over the ROB during any time of the computation.
For allowing out-of-order execution, instead of the usual CONS operator “.”
of instruction templates and ITBs (which appears as inst_temp.itbs in our
implementation) a new operator “#” is defined for concatenating I'TBs and/or
instruction templates. Thus I'TBs are represented as itbs1#inst_temp#itbs2
being itbsl and itbs2 lists of instruction templates and inst_temp a sole
instruction template. The rewriting rules are modified by replacing all their
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ITBs with this new representation as we illustrate for the [PsOp] rule below:

Sys(m,Proc(ia,rf,itbs1#ITB(ial,k,t(k) |-0p(v,vl),wf,sf)#itbs2,btb,prog)) =>

Sys(m,Proc(ia,rf,itbs1#ITB(ial,k,t(k) | -execOponval(v,vl) ,wf,sf)#itbs2,btb,
prog)) end

By matching the instruction template, ITB(ial,k,t(k)|-0p(v,v1),wf,sf),
the new [PsOp] rule can be applied not only at the first but at any posi-
tion of the current I'TB: itbs1#ITB(ial,k,t(k)|-0p(v,v1),wf,sf)#itbs2. In the
theory, the rewriting system obtained by modifying all the rules as suggested
above enables out-of-order execution, since rewriting rules are applied non-
deterministically. But in the practice, in purely rewrite based programming
environments, this solution does not work since the application of a rule is
decided by searching for either left-most or right-most (inner-most) redices
over the ITBs (according to the way the constructor “#” is defined) [9].

For rewriting based implementations of a real out-of-order execution mech-
anism, the availability of true non-deterministic strategies is necessary. With
some additional effort, in a rewriting-logic based system as ELAN strategy
constructors like don’t know choose (that gives all possible reducts) can be
adapted for simulating the needed non-determinism over the ROBs [17,10,11].

4 Conclusions and future work

We have shown how processors may be specified and their execution simu-
lated over rewriting(-logic) systems. Unlike Arvind’s group, who proposes the
simulation of the execution of these specifications over standard hardware de-
scription languages, we address the simulation of the execution of processors
directly over the rewriting specification avoiding the cost of program trans-
lation. Furthermore, we have illustrated why the rewriting part as well as
the logical part of ELAN are adequate for the simulation of simple hardware
components like the method of prediction in speculative processors (done in
our case by pure rewriting) and control of the size of ROBs (done in our case
by logic strategies). After having specified the rewriting rules for the instruc-
tion set of a processor, the intrinsic separation between logic and rewriting
in ELAN results in enough versatility for dealing with different conceptions
of manipulation of ROBs without additional effort in these rewrite specifica-
tions. Additionally, we illustrate how statistics of the application of rewriting
rules may be used for estimating and comparing the performance of differ-
ent processors. Although not done in our implementation, non-deterministic
strategies implemented in ELAN also may be shown to be adequate for simu-
lating essential hardware conceptions of these processors like the out-of-order
execution of instruction templates in ROBs.

Through rewriting-logic one can describe an architecture as precisely as
one wants. For example, rules of the speculative processor may be atomized
in order to reflect the behavior of lower-level hardware components such as
pipelines and functional units of processors like fetch, decode and execution
units. Also, the (higher-order) rewriting-logic based simulation of reconfig-
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urable processors [6], which are non-standard models of computing where two
layers of instructions are needed (the one for the instruction set and the other
for the processor reconfiguration) is of great interest, since no simulation is
possible over standard hardware description languages such as Verilog and
VHDL. One of our current goals is to analyze the possibilities of using rewrit-
ing for synthesizing (logic components for building) logical circuits for arith-
metic operators at their layout level [2]. One of the interesting aspects that
emerges from this study is the necessity of new hardware oriented notions of
normal forms, since the more adequate algebraic expressions to be transformed
into circuits are the ones with more reqularities. These are consequently the
ones that can be implemented with the smallest number of different classes of
atomic hardware components, and are not the simplest ones from the algebraic
point of view, which is the norm in rewriting.
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