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AC axioms.

1. Introduction

Equational problems are first-order formulas involving only one predicate:
equality. Checking the validity of equational problems is a fundamental
issue in automatic deduction. In this paper we focus on a particular class of
equational problems: universally quantified conjunctions of equations. We aim
at checking their validity modulo equational theories such as α-equivalence,
commutativity, associativity, idempotence, etc. More generally, we consider
nominal syntax instead of first-order syntax (to take into account binding
operators) and assume that some function symbols obey equational axioms.

The notions of binding and α-equivalence play a fundamental role in
programming languages and computation models. For example, in the λ-
calculus [1], α-equivalence captures the notion of irrelevance of the names
used as bound variables. At a first glance it seems to be an abstract problem
but concrete examples can be provided in different syntactic computational
frameworks, where a simple renaming of variables results in syntactically
different but α-equivalent expressions. The simplest example in the λ-calculus
is given by α-equivalent terms for the identity: λx.x ≈α λy.y; also, in
computational languages it is enough to rename the names of the parameters
of a function definition to obtain α-equivalent definitions.

Adequate manipulation of bound variables was a main motivation for the
development of Nominal Logic [2] and it was taken as the basis of a series
of formal developments including, nominal unification [3, 4, 5, 6, 7], that is,
unification modulo ≈α, nominal rewriting [8, 9, 10], deduction systems [11],
programming languages [12, 13, 14] and reasoning frameworks [15, 16].

In nominal syntax, instead of variables one uses atoms that are distin-
guished by their names and used to build abstractions. Additionally, the
notion of freshness is made explicit through inference rules that define whether
atoms are free or not in a nominal term. Renaming of variables is defined
through swappings of atoms that are essential components of permutations
acting over terms. Finally, the notion of α-equivalence is axiomatised through
inference rules that specify whether, under some freshness constraints, terms
are α-equivalent or not. This differs from the usual treatment in frameworks
such as the λ-calculus, where α-equivalence is implicitly abstracted through
assumptions such as Barendregt’s variable convention [1].
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The best known and most complete formal development of nominal syntax
was specified in Isabelle/HOL by Urban et al. ([6, 7]): firstly, a relation ≈α
is specified and proved to be sound, that is, proved to be an equivalence
relation; secondly, a nominal unification algorithm is specified, which uses
α-equivalence, and verified to be correct and complete. In particular, in [6],
Urban describes in detail how to prove that the nominal ≈α relation is in
fact an equivalence relation using an intermediate weak α-relation denoted
as ∼ω. This technique was introduced by Kumar and Norrish [4] in a HOL4
formalisation of nominal unification, and was also applied in a previous version
of our formalisation as reported in [17]. In this paper, we present an even
simpler proof, avoiding formalisations of properties of this weak intermediate
relation. This is obtained following the analytic scheme of proof shown in [8]
and first applied in the PVS formalisation of nominal unification in [5].
Contribution. This paper describes a formalisation in the Coq proof assis-
tant of the soundness of α-equivalence in nominal syntax. The distinguishing
feature of this development is that we advance further and also check nominal
α-equivalence with combinations of A, C and AC operators. The develop-
ment can be enlarged with other equational theories. The main steps of the
formalisation are described below.

• Initially, the notion of α-equivalence ≈α was specified and proved to
be sound. Although this property is usually taken for granted, its
formalisation is not straightforward, since it relies on a non trivial
induction on terms in which the induction hypothesis cannot be directly
established for convenient (α) renaming of proper sub-terms of the
term to which the induction is applied. Other crucial, but non-trivial
properties are necessary: preservation of freshness, equivariance of ≈α,
preservation of the action of permutations, etc.

• Then, α-equivalence with A, C and AC operators, denoted as ≈{A,C,AC},
was specified and proved sound. The soundness of α-equivalence modulo
A (≈α,A), C (≈α,C) and modulo AC (≈α,AC) are inferred from the sound-
ness of ≈{A,C,AC}. These relations are specified in a parameterised man-
ner, which will simplify the treatment and combination of α-equivalence
modulo other equational theories. More precisely, the set of countable
function symbols used to build terms in nominal syntax is annotated
using scripts: A superscript distinguishes the equational properties of
the operator, and a subscript gives the index of the function symbol
in the class of symbols with the same equational properties; thus, for
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instance, fACk denotes the kth AC function symbol in the signature. The
relation ≈{A,C,AC} is defined using the rules of α-equivalence and it is
proved that restricting it to α-equivalence corresponds to ≈α. Thus,
using correctness of ≈α, the relation ≈{A,C,AC} is checked by applying
the algebraic properties of A, C and AC operators and, in addition
properties of preservation of freshness and equivariance for ≈{A,C,AC}.

In addition, a naive decision algorithm for ≈{A,C,AC}, based on the Coq
specification, was implemented in OCaml and experiments were performed
over randomly generated equational problems. When checking equivalence,
the decision whether one should or should not apply nominal inference rules
specialised for A, C or AC symbols is done in a natural manner using the
superscript of the function symbols.

Regarding complexity, assuming a pre-computation of the flat form of
terms headed with A and AC function symbols, and efficient data structures
for manipulation of nominal terms and permutations, such as those used
for the implementation of nominal α-equivalence and matching in [18], the
following results are proved:

• Deciding α-equivalence modulo A only is log-linear in time on the size
of the problem (i.e., O(n log n));

• If there are only A operators and C operators, then the complexity is
O(n2 log n); and

• α-equivalence modulo (A, C and) AC can be decided by adapting the
algorithm presented by Benanav, Kapur and Narendran [19] for the
case of pure AC-equivalence in standard first-order syntax, obtaining
an O(n4 log n) upper bound.

Outline. Section 2 presents necessary background on nominal abstract syn-
tax. Sections 3 and 4 respectively present the formalisations of soundness of
α-equivalence and its version with A, C and AC operators. Section 5 discusses
experiments with an OCaml implementation extracted directly from the for-
malisation, and gives complexity bounds for the problem of deciding ≈{A,C,AC}.
Before concluding, Section 6 presents related work. The Coq specification is
available at http://ayala.mat.unb.br/publications.html.
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2. Nominal Syntax

This section presents necessary notions and notations of nominal syntax [8].
Given a signature Σ of function symbols and V and A countably infinite sets
of variables and atoms, the set T (Σ,A,V) of nominal terms is generated by
the following grammar:

s, t ::= 〈〉 | a | [a]t | 〈s, t〉 | fEk t | π.X
Atoms are the simplest structure, just object-level variables a ∈ A. Atoms

only differ in their names, so for atoms a and b the expression a 6= b is
redundant. A permutation is a bijection on A with a finite domain. A
swapping is defined as a pair of atoms (a b) and a permutation π is represented
by a finite list of swappings of the form (a1 b1) :: . . . :: (an bn) :: nil, where nil
denotes the identity permutation. The composition of permutations π and π′

is denoted as π′ ⊕ π. Unary permutations (a b) :: nil will be abbreviated as
(a b). A variable X ∈ V as a term object should always be decorated by some
permutation π suspended on X, π.X. For brevity, terms of the form nil.X
will be written as X.

Definition 1. The size of a term t, denoted as |t|, is recursively defined as:

|[a]t| := |t|+ 1, |〈u, v〉| := |u|+ |v|+ 1, |fEk s| := |s|+ 1, := 1.

Permutations act on nominal terms, but suspend over variables. The
empty tuple or unit is denoted as 〈〉 and non empty tuples are built using
pairs of terms of the form 〈s, t〉, where s and t might be also pairs. Notice
that this syntax does not allow construction of unary tuples. The notation a
represents the atom a as a term object. [a]t is an abstraction of an atom a in
a term t. The notation fEk t represents the application of fEk ∈ Σ to t. The
scripts E and k in the function symbol fEk are respectively used to distinguish
the equational properties of the function symbol and the indexation of the
function symbol between the class of operators with the same equational
properties. These scripts will be omitted when no confusion arises.

Inductive term : Set :=
| Ut : term
| At : Atom → term
| Ab : Atom → term → term
| Pr : term → term → term
| Fc : nat → nat → term → term
| Su : Perm → Var → term

Notation <<>> := (Ut).
Notation %a := (At a).
Notation [a]^t := (Ab a t).
Notation <|t1,t2|> := (Pr t1 t2 ).
Notation pi|.X := (Su pi X ).
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In the Coq specification the grammar is written as above. Operators Ut,

At, Ab, Pr, Fc and Su specify the unit, atoms as term objects, abstractions,
pairs, function applications and suspended variables, respectively. For the
Fc constructor, the first and second nat arguments represent the super and
subscripts of the applied function symbol. In the formalisation, the function
symbols fAj and fACk are represented respectively by Fc 0 j and Fc 1 k, both
having type term→ term. All other superscripts are representing the empty
equational theory.

Notice that in Coq, an atom as an object term a, is written (At a).
Notice also that although in nominal syntax two atoms a and d are different
by definition, (At a) and (At d) could be the same atom, since in the Coq
specification a and d are used as meta-variables ranging over atoms.

Definition 2. The action of a permutation over terms is specified as the
homeomorphic extension of the action of lists of swappings over single atoms:

π · 〈〉 := 〈〉 π · 〈u, v〉 := 〈π · u, π · v〉 π · fEk t := fEk (π · t)
π · a := π · a π · ([a]t) := [π · a](π · t) π · (π′ . X) := (π′ ⊕ π) . X

The action of a permutation over an atomic term object a, e.g., π ·a, gives
as result a term π · a. This is specified as π · (At a), which gives as result
At (π · a), and not the atom π · a.

The action of the permutation π over the suspended variable π′.X gives as
result the term π · (π′.X) = (π′⊕ π).X. Notice that permutation composition
works in the opposite direction.

Example 1. The permutation (a b) :: π acting over the term [a]〈b, π′.X〉 will
have as result [π · b]〈π · a, (π′ ⊕ ((a b) :: π)).X〉.

2.1. Freshness and α-equivalence

The native notion of equality on nominal terms is α-equivalence, which is
defined using swappings and a notion of freshness. A freshness constraint is a
pair a# t of an atom and a nominal term t. Intuitively, a# t means that a is
fresh in t, that is, if a occurs in t then it must do so under an abstractor [a].
An α-equality constraint is a pair s ≈α t of two terms s and t. A freshness
context, is a set of freshness constraints whose elements are restricted to pairs
a#X ∈ A× V . ∇ will range over freshness contexts. A freshness judgement
is a tuple of the form ∇ ` a# t, whereas an α-equivalence judgement is a
tuple of the form ∇ ` s ≈α t.
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(#〈〉)
∇ ` a# 〈〉

(#atom)
∇ ` a# b

∇ ` a# t
(#app)

∇ ` a# fEk t
(#a[a])

∇ ` a# [a]t

∇ ` a# t
(#a[b])

∇ ` a# [b]t

(π−1 · a#X) ∈ ∇
(#var)

∇ ` a#π.X

∇ ` a# s ∇ ` a# t
(#pair)

∇ ` a# 〈s, t〉

Figure 1: Rules for the freshness relation

The derivable freshness and α-equivalence judgements are defined by
the rules in Figures 1 and 2. We write ds(π, π′)#X as an abbreviation of
{a#X | a ∈ ds(π, π′)}, where ds(π, π′) = {a |π ·a 6= π′ ·a} is the set of atoms
where π and π′ differ (the difference set). A set P of constraints is called a
problem. We write ∇ ` P when proofs of the judgment ∇ ` P exist for each
P ∈ P , using rules of Figures 1 and 2.

(≈α 〈〉)
∇ ` 〈〉 ≈α 〈〉

(≈α atom)
∇ ` a ≈α a

∇ ` s ≈α t
(≈α app)

∇ ` fEk s ≈α fEk t

∇ ` s ≈α t
(≈α [aa])

∇ ` [a]s ≈α [a]t

∇ ` s ≈α (a b) · t ∇ ` a# t
(≈α [ab])

∇ ` [a]s ≈α [b]t

ds(π, π′)#X ⊆ ∇
(≈α var)

∇ ` π.X ≈α π′.X

∇ ` s0 ≈α t0 ∇ ` s1 ≈α t1
(≈α pair)

∇ ` 〈s0, s1〉 ≈α 〈t0, t1〉

Figure 2: Rules for the relation ≈α

The interesting rules for freshness are those for abstractions and suspen-
sions. For example, ∇ ` a# 〈[a](〈a, b〉), π.X〉 can be derived only if the pair
π−1 · a#X is in the context ∇, where π−1 is the reverse list of π.

The interesting inference rules for α-equivalence are those for abstractions
and suspended variables. For abstraction we have two possible cases: (≈α [aa])
and (≈α [ab]). In the former case, one needs to check whether the abstracted
terms are α-equivalent under the same context, and in the latter case, when
the abstraction is built with different atoms, one needs to check whether
renaming one of the abstracted terms by swapping these different atoms, the
α-equivalence with the other abstracted term holds, in addition, the new atom
has to be fresh in the abstracted term that is renamed. From the nominal
syntax specified in Coq, the proof that alpha equiv (that is, ≈α of Figure 2)
is in fact an equivalence relation was formalised.
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3. Formalisation of soundness of the ≈α relation

This section shortly describes the proofs formalised in Coq about the fact
that the relation ≈α given in Figure 2 is indeed an equivalence relation.

Lemma 1 (Equivariance of Freshness). ∇ ` a# s iff ∇ ` π · a#π · s.

Lemma 2 (Freshness preservation under ≈α). ∇ ` a# s and ∇ ` s ≈α t
imply ∇ ` a# t.

Lemma 3 (Inversion of permutations over ≈α). ∇ ` π · s ≈α t implies
∇ ` s ≈α π−1 · t

Lemma 4 (Equivariance of ≈α). ∇ ` s ≈α t iff ∇ ` π · s ≈α π · t.

Lemma 5 (Invariance of ≈α under the action of permutations). (∀a ∈
ds(π, π′), ∇ ` a# t) iff ∇ ` π · t ≈α π′ · t.

Lemmas 1 and 3 to 5 are proved by induction on the structure of s. Lemma
2 is proved by induction on the derivation cases of ≈α. For Lemma 3, Lemma
2 is also applied.

Lemma 6 (Reflexivity of ≈α). ∇ ` t ≈α t

Reflexivity of ≈α is proved by induction on the structure of t.

Lemma 7 (Symmetry of ≈α). If ∇ ` s ≈α t then ∇ ` t ≈α s.

Symmetry of ≈α is verified through an inductive proof over ∇ ` s ≈α t
on the derivation rules of ≈α. The interesting case is given by rule (≈α [ab]).
In this case, ∇ ` [a]u ≈α [b]v whenever ∇ ` u ≈α (a b) v and ∇ ` a# v. By
equivariance of freshness (Lemma 1), we obtain ∇ ` b# (a b) v. By induction
hypothesis (for short, IH), ∇ ` (a b) v ≈α u and then ∇ ` b#u, by Lemma 2.
Finally, by inversion of permutations over ≈α (Lemma 3), ∇ ` v ≈α (a b)u.
This and ∇ ` b#u prove ∇ ` [b]v ≈α [a]u.

The proof of transitivity of ≈α (Lemma 8) is shown in detail, since the
formalisation given in [6] uses a weak equivalence relation to deal with the
case of abstraction. In this paper, we achieved the transitivity of ≈α in a
direct manner as done in [5], where this equivalence is used as part of a PVS
formalisation of nominal unification and the technique is fully described.

Lemma 8 (Transitivity of ≈α). The relation ≈α is transitive under a given
context ∇, i.e., ∇ ` t1 ≈α t2 and ∇ ` t2 ≈α t3 imply ∇ ` t1 ≈α t3.
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Proof. The proof is by induction on the size of t1 and case analysis over
∇ ` t1 ≈α t2 and ∇ ` t2 ≈α t3. The subsequent steps show the abstraction
case, which is the most interesting one due to the asymmetry of rule (≈α [ab])
(see Figure 2). Consider t1 = [a]u, t2 = [b]v and t3 = [c]w. So one must
analyse the following situations:

• a = b = c: thus the result follows by IH;

• a = b 6= c: by definition, ∇ ` u ≈α v and ∇ ` v ≈α (b c)w and
∇ ` b#w. By IH, ∇ ` u ≈α (b c)w. As a = b, then freshness condition
to a is satisfied as well;

• a 6= b = c: we have that ∇ ` a# v, ∇ ` u ≈α (a c) v and ∇ ` v ≈α w.
By Lemma 4, ∇ ` (a c) v ≈α (a c)w and, by IH, ∇ ` u ≈α (a c)w. By
Lemma 1, ∇ ` c# (a c) v and ∇ ` c# (a c)w by Lemma 2. Finally,
again by Lemma 1, ∇ ` a#w;

• b 6= a = c: it is known that ∇ ` u ≈α (b c) v and ∇ ` v ≈α (b c)w.
Then ∇ ` (b c) v ≈α w by Lemma 3. By IH ∇ ` u ≈α w;

• a 6= b 6= c 6= a: it is necessary to prove that ∇ ` u ≈α (a c)w and
∇ ` a#w. Let us prove first the freshness condition. by definition of
≈α, ∇ ` a# v and ∇ ` v ≈α (b c)w. By Lemma 2, ∇ ` a# (b c)w
and, by Lemma 1, ∇ ` a#w. Now let us prove ≈α: By Lemma 4,
∇ ` (a b) v ≈α [(b c), (a b)] · w. As ds([(b c), (a b)], (a c)) = {a, b} and
both atoms are fresh in w, then∇ ` [(b c), (a b)]·w ≈α (a c)w by Lemma
5. Now, applying IH twice, one obtains ∇ ` u ≈α (a c)w.

This approach that does not use weak equivalence, reduces considerably
the effort necessary to formalise the transitivity of ≈α. The new strategy
results in a reduction of 161 proof lines in the formalisation as discussed
below.

On one hand, a few auxiliary lemmas were necessary about properties of
difference sets and the relations # and ≈α. Among them there are some lem-
mas that were easily proved in the former formalisation using ≈α-transitivity
such as inversion of permutations over ≈α (Lemma 3). Notice that this lemma
is now necessary for proving symmetry and transitivity of ≈α (see Lemmas 7,
8). Other new auxiliary lemmas specify very simple properties that are now
used for the inductive analysis in the proofs of symmetry and transitivity of
≈α, such as:

ds(π, π′) = ∅ implies
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1. ∇ ` π · s ≈α t iff ∇ ` π′ · s ≈α t;
2. ∇ ` s ≈α π · t iff ∇ ` s ≈α π′ · t; and

3. ∇ ` a#π · s iff ∇ ` a#π′ · s.

These lemmas are proved by induction on terms. The same technique is used
in the formalisation of Lemma 3. All these results added only 177 proof lines.

On the other hand, all definitions and results about ∼ω are no longer
needed in the new approach. Statements similar to Lemmas 2 and 4 (freshness
preservation and equivariance, respectively) that were proved for the weak
equivalence ∼ω are not necessary. Also, two auxiliary lemmas that were crucial
in the former approach for the proof of transitivity of ≈α are eliminated,
namely: ∇ ` t1 ≈α t2 and t2 ∼ω t3 implies ∇ ` t1 ≈α t3; and ∇ ` t1 ≈α t2
and ∇ ` t2 ≈α π · t2 implies ∇ ` t1 ≈α π · t2. The former property establishes
an intermediate transitivity combining ≈α and ∼ω. This lemma was used in
the proof of the latter auxiliary lemma, as well as in the proof of equivariance,
transitivity and symmetry; in all cases used for proving the case of application
of the rule (≈α [ab]). The latter property had a non trivial formalisation
which required as much effort as the former proof of transitivity for ≈α. This
lemma was used only in the proof of transitivity, also for proving the case of
application of the rule (≈α [ab]). Both these auxiliary lemmas were proved
by induction on the derivation rules of ∇ ` t1 ≈α t2. Counting all these
lemmas, a total of 338 proof lines were eliminated.

As well as been shorter than the specification using weak equivalence, the
current approach has the advantage that the proof of symmetry (Lemma 7)
is now independent of the proof of transitivity (Lemma 8). In the previous
approach, symmetry was obtained as consequence of transitivity. Despite this,
it is important to stress that in both approaches the proofs of symmetry were
done by induction on the derivation rules, while the proofs of transitivity by
induction on the size of terms. The number of proof lines in the formalisations
of the lemmas of symmetry and transitivity are almost the same in both
approaches.

To check α-equivalence modulo A, C and AC, denoted ≈{A,C,AC}, one uses
soundness of ≈α. Thus, one could adopt any approach for checking ≈α and
adapt it to check ≈{A,C,AC}. More specifically, we specify an inductive relation
equiv(S), where S is a set of indices, each one associated with a different
equational theory. In particular, the relation equiv(∅) excludes from the
specification of equiv, all specialised inference rules for any equational theory.
The relation equiv(∅) is formally proved to be equivalent to the relation ≈α:
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∇ ` t ≈α t′ ⇔ equiv(∅)(∇, t, t′).

4. Formalising soundness of ≈{A,C,AC}, ≈α,A, ≈α,C and ≈α,AC

The generic relation equiv(S) mentioned at the end of Sec. 3, will con-
sider A, C and AC function symbols if 0, 1 or 2 ∈ S, respectively. Namely,
equiv({0}), equiv({1}),equiv({2}) and equiv({0, 1, 2}) choose the spe-
cialised inductive rules in the definition of equiv for the relation ≈α modulo
A, AC and A combined with AC function symbols, respectively. In this
way one builds the relations ≈α,A, ≈α,C, ≈α,AC and ≈{A,C,AC}. For simplicity,
instead 0, 1 and 2 we will use A, C and AC in the sequel.

4.1. Operations over tuples

The inductive rules for A and AC operators in the definition of the relation
≈{A,C,AC} use three auxiliary operators that deal with arguments of function
symbols. Arguments of a function symbol f are terms or tuples built using
the constructor for pairs and the arguments of terms headed by the same
function symbol f . These operators, specified as in Fig. 3, extract the relevant
information of the arguments to which a(n A or AC) symbol fEn is applied and
specify the length or number of arguments, ‖t‖fEn := TPlength t E n, and the
selection and deletion of the ith argument, respectively, t(i)

fEn
:= TPith i t E n

and t[?i]
fEn

:= TPithdel i t E n.

To simplify notation, the scripts of f will be omitted in these operators
when clear from the context. The behaviour of these operators is illustrated
below.

Example 2. For the number of arguments.

1. ‖f〈 〉‖f = ‖〈 〉‖f = 1;

2. ‖f 〈a, b〉‖f = ‖〈a, b〉‖f = 2, but ‖g 〈a, b〉‖f = 1;

3. ‖f 〈[a](π ·X), f 〈b, g 〈a, f 〈a, b〉〉〉〉‖f =
‖[a](π ·X)‖f + ‖b‖f + ‖g 〈a, f 〈a, b〉〉‖f = 3 .

Example 3. For the selection of the ith argument.

1. t(0)f = t(1)f and, if i > ‖t‖f then t(i)f = t(‖t‖f )f ;

2. If ‖t‖f = 1 and t is not headed by f then t(1)f = t, but also (f f t)(1)f = t;

3. (f 〈[a](π ·X), f 〈b, g 〈a, f 〈a, b〉〉〉〉)(3)f = (f 〈b, g 〈a, f 〈a, b〉〉〉)(2)f =

(g 〈a, f 〈a, b〉〉)(1)f = g 〈a, f 〈a, b〉〉.
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Fixpoint TPlength (t : term) (E n: nat) : nat :=
match t with

| (<|t1,t2|>) ⇒ (TPlength t1 E n)
+ (TPlength t2 E n)

| (Fc E0 n0 t0 ) ⇒ if (E,n) = (E0,n0)
then (TPlength t0 E n)
else 1

| ⇒ 1
end.

Fixpoint TPith (i : nat) (t : term) (E n: nat) :
term :=
match t with

| (<|t1,t2|>) ⇒ let l1 := TPlength t1 E n in

if i ≤ l1
then TPith i t1 E n
else TPith (i-l1 ) t2 E n

| (Fc E0 n0 t0 ) ⇒ if (E,n) = (E0,n0)
then TPith i t0 E n
else t

| ⇒ t
end.

Fixpoint TPithdel (i : nat) (t : term) (E n: nat) : term :=
match t with

| (<|t1,t2|>) ⇒ let l1 := (TPlength t1 E n) in
let l2 := (TPlength t2 E n) in

if i ≤ l1
then

if l1 = 1
then t2
else <|(TPithdel i t1 E n),t2|>

else

let ii := i-l1 in

if l2 = 1
then t1
else <|t1,(TPithdel ii t2 E n)|>

| (Fc E0 n0 t0 ) ⇒ if (TPlength (Fc E0 n0 t) E n) = 1
then <<>>

else Fc E0 n0 (TPithdel i t0 E n)

| ⇒ <<>>

end.

Figure 3: Specification of operators for the length of the tuple or arguments, selection and
deletion of the ith argument regarding the function symbol f
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Example 4. For the deletion of the ith argument.

1. t[?0]f = t[?1]f and if i > ‖t‖f then t[?i]f = t[?‖t‖f ]f ;

2. If ‖t‖f = 1 then t[?1]f = 〈 〉;
3. (f 〈[a](π ·X), f 〈b, g 〈a, f 〈a, b〉〉〉〉)[?2]f =

f 〈[a](π ·X), (f 〈b, g 〈a, f 〈a, b〉〉〉)[?1]f 〉 = f 〈[a](π ·X), f (g 〈a, f 〈a, b〉〉)〉.

It should be clear to the reader that the specification follows the lines of
nominal syntax in which function symbols have no fixed arity. Thus for any A
or AC symbol it should be interpreted apart what means its application to the
unit (〈〉) and to a single argument, for instance, with the usual interpretation
for operator symbols, ∧〈〉, ∨〈〉, +〈〉 and ×〈〉 might be specified as “false”,
“true”, 0 and 1, respectively.

Using these operators one obtains two advantages that allow to specify
properties directly over the nominal syntax: first, it is neither necessary an
additional data structure to express associativity (e.g. lists, sequences, arrays)
nor an operator for flattening terms; second, the grammar adopted, and
the behaviour of the rules allow manipulation of arbitrary combinations of
different function symbols with different equational properties, in a natural
way. Thus, function symbols with different equational properties might occur
in a term being only necessary the application of specialised inference rules
that deal with their equational properties. This simplifies the treatment of
α-equivalence modulo A, C and AC, and other equational theories.

In Table 1 a few formalised results are listed, from a much longer list
of formalised lemmas related with these operators. These results will be
referenced in the description of the lemmas related with E-equivalence and
for brevity they are presented free of universal quantifiers.

Table 1: Basic properties of the operators over terms: ‖ ‖f , ( )f and [? ]f

‖t‖ ≥ 1, t(0) = t(1), t[?0] = t[?1] i ≥ ‖t‖ ⇒ t(i) = t(‖t‖), t[?i] = t[?‖t‖]

‖t‖ = 1⇒ t[?i] = 〈〉 ‖t‖ 6= 1⇒ ‖t[?i]‖ = ‖t‖ − 1

0 < i < j or 0 < i < ‖t‖ ⇒ (t[?j])(i) = t(i) 0 < i < j ≤ ‖t‖ ⇒ (t[?j])[?i] = (t[?i])[?(j−1)]

0 < i < ‖t‖, i ≥ j ⇒ (t[?j])(i) = t(i+1), (t[?j])[?i] = (t[?(i+1)])[?j]
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4.2. Extension of the ≈α-rules

New rules (≈α A), (≈α C), and (≈α AC) for associativity, commutativity
and associativity-commutativity are introduced. These rules will be combined
with those from Fig. 2 for ≈α, with the following modification: (≈α app)
will be replaced by (≈α app) and applies whenever the function symbol
fEk applied to s is such that E /∈ S or E = C ∈ S and s is not a pair.
Otherwise, when E = A,C or AC and E ∈ S, rules (≈α A), (≈α C) or
(≈α AC) apply. Therefore, in the case f is not an A, C or AC function
symbol or A,C,AC /∈ S, the behaviour of (≈α app) and (≈α app) would
be exactly the same. These rules define an extended calculus for general
α-equivalence modulo A, C and AC ([20]), denoted by the relation ≈{A,C,AC}

(specified as equiv({0, 1, 2})). Other equational theories might be included
similarly. Below, ∇ ` s ≈{A,C,AC} t denotes that s and t are α-equivalent
modulo A, C and AC under the context ∇.

∇ ` s ≈{A,C,AC} t E /∈ S or

E = C and s is not a pair
(≈α app)

∇ ` fEk s ≈{A,C,AC} f
E
k t

Figure 4: (≈α app)-rule for ≈{A,C,AC}

∇ ` (fAk s)(1)fA
k

≈{A,C,AC} (fAk t)(1)fA
k

,

∇ ` (fAk s)[?1]fA
k

≈{A,C,AC} (fAk t)[?1]fA
k (≈α A)

∇ ` fAk s ≈{A,C,AC} f
A
k t

Figure 5: (≈α A)-rule for A function symbols

Rule (≈α A) applies when the terms compared are headed by the same
A function symbol and A ∈ S. It verifies recursively if the first arguments
on the left (lhs) and right-hand sides (rhs) are related by ≈{A,C,AC} as well
as the result of applying the root function symbol to the respective tuples
without the first argument.

Rule (≈α C) has two possibilities of application: for i = 0 (resp. i = 1) one
must have ∇ ` s0 ≈{A,C,AC} t0 and ∇ ` s1 ≈{A,C,AC} t1 (resp. ∇ ` s0 ≈{A,C,AC}

t1 and ∇ ` s1 ≈{A,C,AC} t0). The case where fCK is applied to a term different
of a pair is considered in the (≈α app)-rule.
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∇ ` s0 ≈{A,C,AC} ti, ∇ ` s1 ≈{A,C,AC} t(i+1)mod 2
i = 0, 1 (≈α C)

∇ ` fCk 〈s0, s1〉 ≈{A,C,AC} f
C
k 〈t0, t1〉

Figure 6: (≈α C)-rule for C function symbols

∇ ` (fACk s)(1)
fAC
k

≈{A,C,AC} (fACk t)(i)
fAC
k

,

∇ ` (fACk s)[?1]
fAC
k

≈{A,C,AC} (fACk t)[?i]
fAC
k AC ∈ S (≈α AC)

∇ ` fACk s ≈{A,C,AC} f
AC
k t

Figure 7: (≈α AC)-rule for AC function symbols

Rule (≈α AC) behaves similarly to rule (≈α A): the fundamental differ-
ence is that the first argument on the lhs can be compared modulo ≈{A,C,AC}

with any arbitrary argument on the rhs. If there exists such argument, say
the ith, it remains to check that the terms obtained applying the function
symbol to the tuples deleting the first and the ith arguments to the right and
to the left are related by ≈{A,C,AC}.

Example 5. ∇ ` f 〈t1, gAC 〈t2, gAC〈t3, t4〉〉〉 ≈{A,C,AC} f 〈t1, gAC 〈〈t4, t3〉, t2〉〉,
where g is AC, f is a function symbol that allows only α-equivalence and
AC ∈ S.

4.3. Checking ≈{A,C,AC}, ≈α,A, ≈α,C and ≈α,AC

The following steps were performed in order to check that ≈{A,C,AC} is
indeed an equivalence relation. After proving an intermediate transitivity
lemma for ≈{A,C,AC} (Lemma 9), one proves freshness preservation and equiv-
ariance (Lemmas 10, 11) of ≈{A,C,AC} and then, transitivity before symmetry
(Lemmas 14 and 15). By using the parameter set S on the equiv(S) relation
and renaming superscripts of function symbols, one obtains as corollary of
the soundness ≈{A,C,AC} the soundness of ≈α,A, ≈α,C and ≈α,AC.

In addition to preservation of freshness and equivariance, the intermediate
transitivity lemma (Lemma 9) is relevant to guarantee some key properties
on swappings and permutations acting over ≈{A,C,AC}-related terms as for
instance, ∇ ` t ≈{A,C,AC} (a a′) t′ ⇒ ∇ ` (a′ a) t ≈{A,C,AC} t

′.

Lemma 9 (Intermediate transitivity for≈{A,C,AC} with≈α). If ∇ ` s ≈{A,C,AC}

t and ∇ ` t ≈α u then ∇ ` s ≈{A,C,AC} u.
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The formalisation is obtained as follows: after generalisation of u, induction
is applied on deduction rules of ≈{A,C,AC} for ∇ ` s ≈{A,C,AC} t. In some cases
it is required inversion of ∇ ` t ≈{A,C,AC} u; for instance, in the case in which
one has t = 〈t1, t2〉, inversion is applied to obtain that u = 〈u1, u2〉 with
∇ ` t1 ≈{A,C,AC} u1 and ∇ ` t2 ≈{A,C,AC} u2, according to the inference rule
(≈α pair).

Lemma 10 (Freshness preservation under ≈{A,C,AC}). If ∇ ` a# s and
∇ ` s ≈{A,C,AC} t then ∇ ` a# t.

The proof is by induction on ≈{A,C,AC}, using some technical results about
the freshness relation for dealing with cases related with rules (≈α [aa]) and
(≈α [ab]) for the case in which s and t are abstractions.

Lemma 11 (Equivariance of ≈{A,C,AC}). If ∇ ` s ≈{A,C,AC} t then ∇ ` π ·
s≈{A,C,AC}π · t.

Equivariance follows by induction in the inference rules of ≈{A,C,AC}. For
the case of abstractions, specifically for the case of the rule (≈α [ab]), Lemma
9 is required; indeed, when one has ∇ ` [a]s′ ≈{A,C,AC} [b]t′, initially it
is necessary to prove that ∇ ` π · s′ ≈{A,C,AC} π · ((a b) · t′) and ∇ `
π · ((a b) · t′) ≈α (π · a π · b) · (π · t′) and then apply that lemma to obtain
∇ ` π · s′ ≈{A,C,AC} (π · a π · b) · (π · t′).

Lemma 12 (Reflexivity of ≈{A,C,AC}). ∇ ` t ≈{A,C,AC} t .

Reflexivity is easily proved by induction on t. The next lemma generalises
the way in which arguments used in the rule (≈α AC) are combined.

Lemma 13 (Combination of AC arguments). If ∇ ` t ≈{A,C,AC} t
′ then

∀(0<i≤‖t‖f )∃(0<j≤‖t‖f )∇ ` t(i)f ≈{A,C,AC} t
′
(j)f

and ∇ ` t[?i]f ≈{A,C,AC} t
′
[?j]f

.

The proof is by induction on ‖t‖f using simple auxiliary lemmas and
properties of the operators ‖t‖f , t(i)f and t[?i]f . We explain how the proof
is obtained for the particular case for i = 1: ∇ ` t ≈{A,C,AC} t′ ⇒
∃(0<j≤‖t′‖f ),∇ ` t(1)f ≈{A,C,AC} t

′
(j)f
∧ ∇ ` t[?1]f ≈{A,C,AC} t

′
[?j]. The com-

plicated case happens when ‖t‖f > 2: after applying the auxiliary lemma for
terms f t and f t′ one obtains for some valid i0, ∇ ` t(1)f ≈{A,C,AC} t

′
(i0)f

and ∇ ` f t[?1]f ≈{A,C,AC} f t′[?i0]f . Notice that if i = 1, the result fol-
lows trivially. For i > 1, induction applies for the terms t0 = f t[?1]f
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and t′0 = f t′[?i0]f with argument i1 = i − 1. Notice that the IH is
given as ∀(‖t0‖f < ‖t‖f , t′0, 0<i1≤‖t0‖f )∃j1,∇ ` t0(i1)f ≈{A,C,AC} t′0(j1)fand ∇ `
t0[?i1]f ≈{A,C,AC} t

′
0[?j1]f

. Then, applying IH, a witness j is obtained such that,

with the pre-conditions: ‖f t[?1]f‖f < ‖t‖f and ∇ ` f t[?1]f ≈{A,C,AC} f t
′
[?i0]f ,

one obtains ∇ ` f t(i)f ≈{A,C,AC} f t
′
(j)f

and ∇ ` f t[?(i)]f ≈{A,C,AC} f t
′
[?j]f

.
The first pre-condition is solved by an application of the definition of ‖ ‖ and
an auxiliary lemma for the operators ‖t‖f and t[?i]f . The second is exactly
the assumption. Then one just needs to consider two cases: i0 ≤ j1 or i0 > j1.
One instantiates j respectively as j1 + 1 or j1 and concludes using properties
of the operators ‖t‖f , t(i)f and t[?i]f .

Lemma 14 (Transitivity of ≈{A,C,AC}). If ∇ ` t1 ≈{A,C,AC} t2 and ∇ `
t2 ≈{A,C,AC} t3 then ∇ ` t1 ≈{A,C,AC} t3 .

The formalisation is by induction on the size of the term t1. The terms
t2 and t3 are generalised, and inversions from the equational inference rules
are applied to both ∇ ` t1 ≈{A,C,AC} t2 and ∇ ` t2 ≈{A,C,AC} t3. The difficult
cases are those of rules (≈α [ab]) and (≈α A) or (≈α AC). For (≈α [ab]), an
interesting subcase is when a 6= a′ 6= a′0 6= a: the premisses are ∇ ` t ≈{A,C,AC}

(a a′) t′ ∧ ∇ ` a# t′ and ∇ ` t′ ≈{A,C,AC} (a′ a′0) t
′
0 ∧ ∇ ` a′0 # t′0, the IH is

given as ∀(s1,s2,s3), |s1| < |t| ∧ (∇ ` s1 ≈{A,C,AC} s2 ∧ ∇ ` s2 ≈{A,C,AC} s3) ⇒
∇ ` s1 ≈{A,C,AC} s3, and one should conclude that ∇ ` [a]t ≈{A,C,AC} [a′0]t

′
0.

Applying (≈α [ab]) it remains to prove that ∇ ` a# t′0 and ∇ ` t ≈{A,C,AC}

(a a′0) t
′
0. The former is obtained by freshness preservation, and the latter by

IH with application of Lemma 9, equivariance and freshness preservation.
In the case of rules (≈α A) or (≈α AC), the following proof context is

reached at some point of the formalisation, where for the case of (≈α A), the
indices i and i0 are equal to 1: the premisses are ∇ ` t(1)

fE
k

≈{A,C,AC} t
′
(i)
fE
k

∧

∇ ` fEk t[?1]fE
k

≈{A,C,AC} f
E
k t
′
[?i]

fE
k

, and ∇ ` t′(1)
fE
k

≈{A,C,AC} t
′
0(i0)fE

k

∧ ∇ `

fEk t
′
[?1]

fE
k

≈{A,C,AC} f
E
k t
′
0[?i0]fE

k

, the IH is given by ∀(s1,s2,s3), |s1| < |fEk t|∧(∇ `
s1 ≈{A,C,AC} s2 ∧ ∇ ` s2 ≈{A,C,AC} s3) ⇒ ∇ ` s1 ≈{A,C,AC} s3, and one
should conclude that ∇ ` fEk t ≈{A,C,AC} f

E
k t
′
0. Applying (≈α A) and the

IH one concludes easily for the case in which E = A. When E = AC
one uses the Lemma 13 and the second premise above, obtaining a third
premise: ∃i1,∇ ` t′(i)

fE
k

≈{A,C,AC} t
′
0(i1)fE

k

∧∇ ` t′[?i]
fE
k

≈{A,C,AC} t
′
0[?i1]fE

k

. Then,

applying the (≈α AC) rule instantiated with i1. The resulting subgoals are
∇ ` t(1)

fE
k

≈{A,C,AC} t
′
0(i1)fE

k

and ∇ ` fEk t[?1]fE
k

≈{A,C,AC} f
E
k t
′
0[?i1]fE

k

, and from
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the first and third premises above, both subgoals are solved by application of
IH.

Lemma 15 (Symmetry of ≈{A,C,AC}). If ∇ ` t ≈{A,C,AC} t′ then ∇ `
t′ ≈{A,C,AC} t .

Symmetry is easily formalised by induction on ≈{A,C,AC} applying lemmas
9, 12 and 14, freshness preservation and equivariance.

In particular, the use of the Lemma 14 is crucial: in the (≈α [ab]) case one
should poof that ∇ ` [b]t′ ≈{A,C,AC} [a]t having as hypotheses ∇ ` t ≈{A,C,AC}

(a b) t′ and ∇ ` a# t′, with IH ∇ ` (a b) t′ ≈{A,C,AC} t. Then, Lemma 14 is
applied twice instantiating t2 as (a, b) t and as (a b) (a b) t′, that allows the
use of Lemmas 9 (with properties of ≈α) and equivariance to conclude.

To check ≈α,A, ≈α,C and ≈α,AC one uses the following corollary. Remember
that ≈α,A, ≈α,C, ≈α,AC and ≈{A,C,AC} are specified as equiv({0}), equiv({1}),
equiv({2}) and equiv({0, 1, 2}.
Corollary 1. For S ⊆ {0, 1, 2}, equiv(S) is also an equivalence relation.

The formalisation is obtained by the manipulation of the superscritps in
S−1 = {0, 1, 2} − S. For a general equivalence problem equiv(S)(∇, t1, t2),
one replaces all superscripts of the operators in the terms t1 and t2 inside the
set S−1 for new ones that neither belong to {0, 1, 2} nor occur in t1 and t2
obtaining respectivelly t′1 and t′2. Then, by induction on the inference rules
for equiv, one easily proves that equiv(S)(∇, t1, t2)⇔ equiv(S)(∇, t′1, t′2)⇔
equiv({0, 1, 2})(∇, t′1, t′2). Thus, using that equiv({0, 1, 2}) is an equivalence
relation one concludes.

5. Upper bounds for general ≈α,A, ≈α,C, ≈α,AC, ≈{A,C,AC} problems

This section is concerned with the problem of checking the validity of
α-equivalence constraints in the presence of A, C and AC function symbols,
by applying simplification rules.

For example, using the simplification rules given in [7], a constraint of the
form [a]X ≈α [b]X reduces to the set of constraints a#X, b#X; therefore,
a#X, b#X ` [a]X ≈α [b]X. Similarly, assuming + is an AC function symbol,
the equality ∇ ` +〈s,+〈t, [a]X〉〉 ≈α,AC +〈+〈[b]X, s〉, t〉 holds whenever the
freshness constraints a#X, b#X belong to ∇. Equational problems will
be written as pairs 〈∇, P 〉, where ∇ is a set of freshness constraints and P
a set of equations. For simplicity, when no confusion arises brackets will be
omitted.
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5.1. A naive implementation

An algorithm for checking a problem 〈∇, P 〉 modulo A/C/AC is defined
by the mutually recursive functions Check and CheckAC given in Algorithms 1
and 2. This algorithm simply distinguishes the cases that should be considered
to deal with A/C/AC function symbols. The algorithm was implemented
(in OCaml) with the sole objective of computationally deciding equational
queries. To obtain efficient algorithms, the techniques described in the next
subsection should be used (see the complexity analysis given in next section,
Theorem 1).

Example 6. Assuming ∇ = {a#X, b#X} and using the algorithm, it
follows that

∇, {[a]g〈a,X〉 ≈ [b]g〈b,X〉} =⇒Line 12 ∇, {g〈a,X〉 ≈ (a b) · g〈b,X〉}
= ∇, {g〈a,X〉 ≈ g〈a, (a b).X〉} =⇒Line 34 ∇, {〈a,X〉 ≈ 〈a, (a b)X〉}
=⇒Line 8 ∇, {a ≈ a,X ≈ (a b).X} =⇒Line 6,16,2 ∇, ∅ =⇒ >

Example 7. Consider the problem 〈∅, {fAk 〈ā, 〈b̄, [a]ā〉〉 ≈ fAk 〈〈ā, b̄〉, [b]b̄〉}〉.

∅, {fAk 〈ā, 〈b̄, [a]ā〉〉 ≈ fAk 〈〈ā, b̄〉, [b]b̄〉}
=⇒Line 19,24 ∅, {fAk 〈b̄, [a]ā〉 ≈ fAk 〈b̄, [b]b̄〉}, since Check(∅, ā ≈ ā) (Line 23)

=⇒Line 19,24 ∅, {fAk [a]ā ≈ fAk [b]b̄}, since Check(∅, b̄ ≈ b̄) (Line 23)

=⇒Line 19,24 ∅, ∅, since Check([a]ā ≈ [b]b̄) (Line 23)

=⇒Line 2 >

Example 8. Consider the problem 〈∅, {fCk 〈b̄, [a]ā〉 ≈ fCk 〈[b]b̄, b̄〉}〉.

∅, {fCk 〈b̄, [a]ā〉 ≈ fCk 〈[b]b̄, b̄〉}
=⇒Line 33 ∅, {b̄ ≈ b̄, [a]ā ≈ [b]b̄},

since Check(∅, {b̄ ≈ [b]b̄, [a]ā ≈ b̄}) = ⊥ (L. 31)

=⇒Line 6 ∅, {[a]ā ≈ [b]b̄} =⇒Line 10,12,2 >

Algorithm 2 deals with the case of equations headed by AC-function
symbols. The call CheckAC(∇, fACk s′ ≈ fACk t′, 1) (in line 38 of Algorithm 1)
will start to check equality of the first argument on the lhs of the equation
with the first, second, third, etc of the rhs until this check succeeds and will
then recursively check equality of the whole term obtained by eliminating
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Algorithm 1 Checking α-equivalence modulo A, C and AC
1: function Check(∇, P )

2: if P = ∅ then>
3: else let s ≈ t ∈ P and P ′ = P \ {s ≈ t} in
4: case s ≈ t of

5: 〈〉 ≈ 〈〉 : Check(∇, P ′) // rule (≈α 〈〉)

6: ā ≈ ā : Check(∇, P ′) // rule (≈α atom)

7: 〈s1, s2〉 ≈ 〈t1, t2〉 :
8: Check(∇, {s1 ≈ t1, s2 ≈ t2} ∪ P ′) // rule (≈α pair)

9: [a]s′ ≈ [a]t′ : Check(∇, {s′ ≈ t′} ∪ P ′) // rule (≈α [aa])

10: [a]s′ ≈ [b]t′ : // rule (≈α [ab])
11: if ∇ ` a# t′ then // Remark 1
12: Check(∇, {s′ ≈ (a b) · t′} ∪ P ′)
13: else ⊥
14: end if

15: π.X ≈ π′.X : // rule (≈α var)
16: if For all a ∈ ds(π, π′), a#X ∈ ∇ then Check(∇, P ′)
17: else ⊥
18: end if

19: fA
k s

′ ≈ fA
k t

′ : // rule (≈α A)
20: let ns = ||s′||fA

k
and nt = ||t′||fA

k
in

21: if ns 6= nt then ⊥
22: else
23: if Check(∇, {(fAk s

′)(1)
fA
k

≈(fAk t
′)(1)

fA
k

}) then

24: if ns = 1 or Check(∇, {(fAk s)[?1]
fA
k

≈ (fAk t)[?1]
fA
k

}) then Check(∇, P ′)

25: else ⊥
26: end if
27: else ⊥
28: end if
29: end if

30: fC
k 〈s0, s1〉 ≈ f

C
k 〈t0, t1〉 : // rule (≈α C)

31: if Check(∇, {s0 ≈ t0, s1 ≈ t1}) then Check(∇, P ′)
32: else
33: if Check(∇, {s0 ≈ t1, s1 ≈ t0}) then Check(∇, P ′)
34: else ⊥
35: end if
36: end if

37: fAC
k s′ ≈ fAC

k t′ : // rule (≈α AC)

38: if CheckAC(∇, fACk s′ ≈ fACk t′, 1) then Check(∇, P ′)
39: else ⊥
40: end if

41: fE
k s

′ ≈ fE
k t

′ : Check(∇, {s′ ≈ t′} ∪ P ′) // rule (≈α app)

42: : ⊥ // otherwise
43: end if
44: end function
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the first argument on the lhs and the successful ith argument on the rhs;
otherwise, the search continues recursively increasing ith until one exceeds
the number of arguments of the heading function symbol in fACk s′, and the
check fails.

Algorithm 2 Checking α-equivalence modulo - AC-function symbol case
1: function CheckAC(∇, fACk s ≈ fACk t, i)
2: if ||s||fAC

k
6= ||t||fAC

k
or ||s||fAC

k
< i then ⊥ // Check the length of the tuples

3: else if Check(∇, {(fACk s)(1)
fAC
k

≈ (fACk t)(i)
fAC
k

}) then

Check(∇, {(fACk s)[?1]
fAC
k

) ≈ (fACk t)[?i]
fAC
k

)})

4: else CheckAC(∇, fACk s ≈ fACk t, i+ 1)
5: end if
6: end function

Example 9. Consider the problem 〈∇, {fACk ([a]a, π.X) ≈ fACk (π′.X, [b]b)}〉
and assume that ds(π, π′)#X ⊆ ∇. The algorithm Check will call CheckAC
proceeding as follows:

∇, {fACk ([a]a, π.X) ≈ fACk (π′.X, [b]b)}
=⇒Line 37, 38, Alg.1 CheckAC(∇, fACk 〈[a]a, π.X〉 ≈ fACk 〈π′.X, [b]b〉, 1)

=⇒Line 3, 4, Alg.2 CheckAC(∇, fACk 〈[a]a, π.X〉 ≈ fACk 〈π′.X, [b]b〉, 2),

since Check(∇, {[a]a ≈ π′.X}) = ⊥ (Line 3, Alg.2)

=⇒Line 3, Alg.2 ∇, {fACk π.X ≈ fACk π′.X},
since Check(∇, {[a]a ≈ [b]b}) (Line 3, Alg.2)

=⇒Line 37, 38, Alg.1 CheckAC(∇, fACk π.X ≈ fACk π′.X, 1)

=⇒Line 3, Alg.2 ∇, {〈〉 ≈ 〈〉} since Check(∇, {π.X ≈ π′.X}) (Line 3, Alg.2)

=⇒Line 5, 2, Alg.1 >

Note that the proposed algorithm can check validity of α-equivalence con-
straints modulo A and/or C and/or AC (≈{A,C,AC}) with multiple occurrences
of function symbols, some that might be A and some C and some other AC,
all at once. This is due to the fact that there are no interactions between A,
C, and AC symbols since distributive properties are not considered.

Experiments were performed with this algorithm, over an iMAC server with
16GB of RAM and with a processor Intel Xeon CPU, model W3530 2.80GHz,
providing randomly recursively generated ground equational problems as
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inputs. Terms were generated using only tuples with arguments associated to
the right as arguments for A and AC function symbols. Also, subterms headed
by an associative function symbol, say either fAk or fACk , do not have arguments
headed by the same function symbol. For example, fA0 〈ā, 〈b̄, 〈c̄, 〈d̄, ē〉〉〉〉 and
fAC0 〈fA0 〈ā, b̄〉, fA4 〈c̄, fAC0 〈d̄, ē〉〉〉 are in this class of terms.

Although terms generated in this manner mitigate the manipulation of
arguments of associative operators, it should be stressed that in order to
have an efficient solution to deal with associative operators, data structures
with random access, such as arrays, should be used to flatten the nominal
terms. Also, having only ground terms mitigates the negative effects of
inefficient procedures for dealing with permutation operations, such as queries
about their support, inversion and composition, which are used in the naive
algorithm for application of rule (≈α var).

The number of different syntactic, A, C and AC symbols were restricted to
ten (each class), and atoms were chosen among a set of ten thousand. In the
recursive generation of an equational problem, when abstractions are created
as subterms for the left and right-hand sides of an equation different atoms
are used, but collisions might arise if the same atom is used in later stages
of the generation. In this case, to guarantee that the problem has positive
answer, the body of the abstraction is generated without occurrences of the
colliding atom(s).

Four different sets of input problems were generated. The first only uses
syntactic function symbols; the second uses also A symbols; the third uses,
in addition, C symbols; and, the fourth permits all four kinds of symbols.
For each set, problems with positive answer of sizes from 100 to 5000, with
intervals of length 100, were generated; for each size fifty different problems
were generated. Time performance of the experiments are given respectively
in Figures 8, 9, 10 and 11. These figures include also the polynomial regression
computed using the linear least-square method generated using the Python
library NumPy.

As expected, from the required uniformity of known worst case inputs,
which even in the syntactic case will result in exponential running time, in
all cases it could be observed that only a few isolated cases present running
time much higher than the regression curve. The syntactic case (Figure
8) shows a linear behaviour; adding A- and C-function symbols (Figures 9
and 10) increases the running time, but the behaviour is very similar. This
could be explained since the bottleneck of the naive algorithm resides in the
inefficient manipulation of permutation operations as well as inefficient data
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Figure 8: Tests with only abstractions and syntactic function symbols

structure for the representation of terms mitigating in this way the effect of
commutativity analysis over problems randomly generated in the explained
manner. Substantial additional costs arise if AC-symbols are included (Figure
11), indeed one moves from hundredths of seconds to seconds. This might
be explained because of the required exhaustive application of the linear
running time implementations of the operators over terms: ‖ ‖f , ( )f and

[? ]f (see Figure 3). This happens since these operators were implemented
straightforwardly over tuples that are in fact built as combinations of nominal
pairs.

5.2. Upper bounds

Several techniques from [18], originally implemented to deal polynomially
with nominal α-equivalence as well as with nominal matching, should be
adopted in order to obtain efficient algorithms. Among these techniques, it is
necessary to use adequate data structures, such as trees for nominal terms
and random access structures for maintaining and answering in constant time
queries about the images of permutations and their inverses, as well as for
updating compositions of swappings and permutations (and their inverses).
The log-linear algorithm defined in [18] to check α-equivalence relies on the
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Figure 9: Tests with A function symbols

Figure 10: Tests with A and C function symbols
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Figure 11: Tests with A, C and AC function symbols

use of “lazy permutations”: permutations, their inverses and supports are
“suspended” over nominal terms and updated eagerly whenever swappings
have to be applied, but they are only pushed down one level in the tree
structure of the terms when a transformation rule is applied, and they are
applied to terms only when necessary.

Remark 1. To illustrate why such an approach is used, consider lines 10 to 14
in Algorithm 1, related with the application of the rule (≈α [ab]). Special care
has to be taken with (a b) · t′ (line 12, rule (≈α [ab])), since it is not a term in
our syntax, the permutation has to be propagated in t′ and this introduces an
aditional linear factor on the complexity of checking α-equivalence. However,
adopting the above-mentioned approach, where the syntax is extended with
“suspended” permutations over terms, which are propagated in a “lazy” way,
this linear factor is avoided. Also, notice that there is a secondary check
for freshness constraints in a# t′. This requires an algorithm for validating
freshness constraints based on simplification rules for freshness (Fig. 1 bottom
up) which is linear in 〈∇, a# t′〉. To avoid repeated computations (for instance,
the check for a# t′ may appear several times in the computation) one could
append valid freshness constraints in ∇, that is, line 12 becomes Check(∇∪
{a# t′}, {s′ ≈ (a b)t′} ∪ P ′).
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Theorem 1 (Running time bounds). Let n be the size of a problem 〈∇, P 〉,
given as |〈∇, P 〉| := |∇|+ |P |, where |∇| is the number of atoms and variables
occurring in ∇ and |P | the sum of the size of terms in equations in P . The
validity of 〈∇, P 〉 modulo A, C and AC can be checked in time

i) O(n log n), if the problem includes neither C nor AC-function symbols;

ii) O(n2 log n), if the problem does not contain AC function symbols; and

iii) O(n4 log n), otherwise.

Proof. (sketch)
To obtain these bounds we assume first, the use of suspended permutations

over terms and of lazy propagation of permutations (see Remark 1); second,
that terms in the problems are pre-computed providing a flat representation
of the aguments of A-function symbols. For the latter, all maximal subterms
that are headed by A-function symbols should be linearly pre-computed to
provide their arguments. This can be done for instance using sequences or
arrays of terms in which arguments of A-functions are flattened and might be
accessed randomly (in constant time).

i) Consider a problem of the form 〈∇, {s ≈ t}〉 where s and t contain
neither C- nor AC-function symbols. Since A-function symbols are
assumed to be flattened, the problem can be log-lineary solved through
a simple adaptation of the solution for α-equivalence checking given in
[18]. For the A case, the problem can be directly decomposed, according
to the number ns of flattened arguments, into a new problem with ns
new disjunct equational subproblems, that is, a problem of the form
〈∇, P ∪ {fAk s′ ≈ fAk t

′}〉 becomes directly a problem of the form 〈∇, P ∪
{s′(1)

fA
k

≈ t′(1)
fA
k

, . . . , s′(ns)fA
k

≈ t′(ns)fA
k

}〉.

ii) Let 〈∇, {s ≈ t}〉 be a problem without AC-function symbols. A regular
worst case happens when the problem has k nested C-function symbols.
Assume that n = m 2k, where m� n. In this case, if we consider terms
with the same commutative symbol at the root, and with arguments
of the same size, an upper bound for the running time is given by the
recurrence relation:

T (n) = 4T (n/2) +O(n log n) where T (m) = O(m logm).

In the first recurrence equation, the first summand has a factor 4 because
it is necessary to check four sub problems of half of the original size,
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and the second summand provides a bound, according to the previous
item, if the term does not have C-operators. Notice that both summands
are included since the objective is to give an upper bound. The initial
condition of the recurrence relation also assumes that subproblems of
size m have no occurrences of C-function symbols. Thus one has,

T (n) = 4T (n/2) +O(n log n)

= 4k T (m) +O(n)
∑k−1

i=0 2i(log n− i log 2)

= ( n
m

)2O(m logm) +O(n log n)
∑k−1

i=0 2i −O(n) log 2
∑k−1

i=0 2ii

= O(n2 logm
m

) +O(n log n)(2k − 1)−O(n) log 2(2k(k − 2) + 2)

= O(n2) +O(n2 log n)

= O(n2 log n)

Factors related with m can be omitted since we assume that m� n.

iii) First, notice that terms headed by C-function symbols can be considered
as a particular case of AC symbols whose tuples (arguments) have always
exactly two elements. Thus, the complexity analysis for C- and AC-
function symbols could be unified. Let 〈∇, {s ≈ t}〉 be a problem that
contains AC-function symbols. Assuming the flat representation of all
maximal subterms of s and t that are headed with A and AC-function
symbols is pre-computed, the relevant part of the analysis is related
with the verification of α-equivalence between subterms s′ and t′ of
s and t headed by an AC-function symbol, say fACk . This involves
checking whether the tuple of ns arguments in s′ contains arguments
that are related by α-equivalence modulo AC to arguments of the tuple
of arguments in t′. These arguments are not necessarily in the same
positions in the tuples of arguments of s′ and t′. In the worst case
scenario, for each argument of the tuple of arguments of fACk in s′, say
s′(i)

fAC
k

, one has to go over the whole tuple of arguments of fACk in t′,

checking 〈∇, {s′(i)
fAC
k

≈ t′(j)
fAC
k

}〉, for i, j ≤ ||s′||fACk . In case this is true,

α-equivalence eliminating these two arguments of the tuples should be
ckecked. By item i), one already knows that the procedure without C
and AC symbols is log-linear. The problem essentially boils down to
the problem of searching a perfect matching in the bipartite graph that
consists of vertices V labelled by the ns arguments of the lhs ’s and rhs ’s
and edges, E, between vertices labelled with terms that match, as proved
in [19] for solving AC-equivalence in the usual first-order syntax. This
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problem is known to have solutions of complexity O(|V | × |E|), that is
the same as O(|V |3) since in the worst case one has O(|V |2) edges [21].
One concludes that searching for a perfect matching is bounded cubically
on the size of the problem, since the number of arguments, ||s′||fACk , is
linearly bounded in the size of the problem. Thus, an upper bound for
the whole problem is O(n4 log n).

Remark 2. Regarding item i), notice that even without function symbols
(just atoms, abstractions and tuples) the α-equality check is log-linear for
non-ground terms.

6. Related work

Equational problems have been extensively explored since the early de-
velopment of modern abstract algebra (see, e.g., the E-unification survey
by Baader et al [20]). The treatment given to the problem of deciding AC
equality in usual first-order syntax reduces to the problem of searching for a
perfect matching in a bipartite graph, as shown in [19].

Further, formalisations about syntactic equational reasoning modulo A,
C and AC were explored. Nipkow [22] proposed a set of rewriting tactics
in Isabelle/HOL to reasoning modulo A/C/AC. Contejean [23] developed a
sound and complete A/C/AC-matching algorithm, that was formalised in Coq
and implemented in CiME. Additionally, Braibrant and Pous [24] designed a
plugin for Coq to use the tactic rewrite modulo AC.

Checking validity of α-equivalence constraints has been studied in [18],
where an algorithm to test α-equivalence of nominal terms (both ground
or non-ground), derived from a core algorithm to solve matching problems
modulo α, was provided. The matching algorithm is linear in the size of the
problem for the ground case (i.e., when matching a term s against a ground
term t) and therefore α-equivalence is also linear in this case. If both terms
are non-ground, then α-equivalence is log-linear in the size of the problem,
whereas matching is log-linear if the pattern is linear and quadratic otherwise.

Beyond the nominal unification formalisation of Urban et al. [6, 7], there
are also other formal nominal developments in Isabelle/HOL, Coq, HOL4,
PVS and Agda. For example Aydemir, Bohannon and Weirich developed
nominal reasoning techniques in Coq [15]. Urban [16] proposed a framework in
Isabelle/HOL that also allows reasoning modulo nominal α-equivalence. This
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framework was later extended by Urban and Kaliszyk [16], to admit reasoning
in more general binding scopes. Kumar and Norrish [4] presented a nominal
unification algorithm that uses descent recursion and triangular substitutions,
with underlying formalisations in HOL4 of the correctness and termination
of the proposed algorithm. Ayala-Rincón, Fernández and Rocha-Oliveira [5]
formalised in PVS the soundness of the nominal ≈α-equivalence relation, and
soundness and completeness of a nominal unification algorithm. Copello et
al. [25] presented a nominal approach in a formalisation in Agda of principles
of α-structural induction and recursion. Finally, Ayala-Rincón et al. [26]
applied this development in order to formalise soundness and completeness of
a nominal unification algorithm modulo C.

Nominal narrowing was introduced by Ayala-Rincón, Fernández and
Nantes-Sobrinho in [27]. This work adapts Hullot’s seminal work on narrowing,
originally developed from the first-order rewriting perspective, to the nominal
approach in such a manner that nominal equational unification problems are
solvable by narrowing whenever the equational theories can be presented as a
class of convergent closed rewriting systems.

Another extension of nominal unification was proposed in Schmidt-Schauss
et al. [28]. This development proposed an algorithm to solve nominal unifica-
tion problems with recursive let operators. In this algorithm, the solutions of
a unification problem are expressed in terms of nominal fixed point equations.
Obtaining solutions for such equations is a recurrent problem; indeed, in [26]
it was shown that nominal C-unification problems are reduced to solving
finite families of fixed point equations. This work also proved that nominal
C-unification is infinitary, differing from syntactic C-unification that is well-
known to be finitary. Afterwards, in [29], Ayala-Rincón et al. proposed a
sound and complete combinatorial procedure to generate the set of solutions
of nominal fixed point problems.

A few distinguishing elements of nominal formalisation developments are
listed below.

• The current Coq formalisation, as the Isabelle/HOL formalisation of
nominal unification in [7, 6], inductively specifies equational procedures
as sets of inference rules. These sets are given through inductive
predicates, which allow the proof assistants to build inductive proof
schemes on the predicates in a straightforward manner. In our approach,
this resulted also convenient, since providing a sole inductive definition
in which all inference rules are included allows for a modular treatment
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of equational check modulo different equational properties (such as
A/C/AC) and their combinations.

• In contrast to the inductive approaches used in our Coq development
and the Isabelle/HOL referenced approach, the HOL4 and PVS for-
malisations of nominal unification in [4] and [5], respectively, use a
recursive style to specify unification algorithms. In these developments
inductive proofs are guided by smart termination measures provided
as part of the specification. In the PVS development a first-order func-
tional algorithm à la Robinson which has as parameter only nominal
terms is verified. Avoiding freshness constraints as parameters is one of
the disthinguishing features of this PVS formalisation, that is possible
due to the formalisation of properties on the independence of freshness
contexts regarding substitutions in solutions. The HOL4 formalisation
specifies triangular substitutions that are sets of singleton bindings for
different variables used to present unification in an accumulator-passing
style, in which in the execution of each recursive call a substitution is
taken as input returning an extension on success. Both of these recur-
sive specifications allow extraction of recursive unification functions,
but they do not allow the modularity of the inductive approaches in
which new inference rules can be added and fragments of the previous
correctness proofs (concerning the analysis of cases related with previous
existing inference rules) can be reused.

7. Conclusion and Future Work

The soundness of nominal α-equivalence and its extension to the equational
theories A, C, AC and their combinations were formalised in Coq.

Checking soundness of these relations required checking that they are
specified in such a manner that they are indeed equivalence relations. In
particular, the property of transitivity for ≈α was formalised in a direct
manner without using an auxiliary weak intermediate relation as done in [4],
[6] and [17]. The proof of transitivity follows the approach introduced in [5]
for formalising nominal unification in PVS. Here, the proof is based on
elementary lemmas about permutations, freshness and α-equivalence; such
lemmas are well-known in the context of nominal unification. In [6], the same
auxiliary lemmas to demonstrate transitivity were proved, including some
extra lemmas to deal with this weak-equivalence. The current formalisation
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of transitivity of ≈α is simpler in the sense that it only uses the essential
notions and results. Indeed, adopting the direct approach in [5] resulted
in a more compact formalisation with several improvements, among them
a formalisation of symmetry of ≈α that is independent from transitivity,
diverging from the approach that uses weak equivalence, where it is obtained
as a consequence of transitivity.

The grammar of nominal terms was specified in such a way that in addition
to A, C and AC rules one can easily add other inference rules to express
properties such as idempotency (I), neutral (U) and inverse elements (Group
theory), and their combinations A, AC, AI, ACI, ACU, ACUI, etc.

Enriching nominal α-equality with equational theories formally, will pro-
vide an effective framework for dealing not only with nominal α-equivalence,
but also with other related fundamental relations such as nominal match-
ing, unification and narrowing in concrete applications. Examples of such
applications can be found in several contexts, such as the one of integrity
of cryptographic protocols [27, 30, 31]. A further interesting analysis would
be the classification of the related problems of nominal α-matching and uni-
fication modulo theories, regarding their complexities.We have started this
investigation with the case of α-unification modulo C in [26, 29] and we
are currently implementing efficient versions of the α-equivalence decision
algorithm to use within a nominal matching algorithm modulo A, C and AC
theories.
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Appendix A. Explanation of the improvements with respect to the
papers [17] and [5]

The main improvements over the previous two papers from LSFA 2015
and 2016 are summarised here.

• The Coq formalisation of transitivity of the relation ≈α adopts now
the direct method introduced in the PVS formalisation of nominal α-
unification presented in our LSFA 2015 paper ([5]). This approach avoids
the use of an auxiliary weak equivalence ∼ω, as introduced in the HOL4
formalisation in [4] and adopted in the Isabelle/HOL formalisation in
[6] , which was the original method formalised in Coq in our LSFA 2016
paper ([17]). As detailed in Section 3, the more direct approach used in
the current paper gives the specific benefits listed below.

– A shorter formalisation, since a series of auxiliary lemmas on ∼ω
are no longer necessary.

– Also, intermediate transitivity lemmas relating ∼ω and ≈α are no
longer necessary.

– The direct approach required only a few new auxiliary lemmas on
≈α that are proved by simple induction on terms and the inductive
definition of the α-equality inference rules.

– It is also important to stress that despite the fact that the current
formalisation of the lemma of transitivity of ≈α is now based only
on nominal properties and basic properties of ≈α, this proof is not
more complex than the previous one, being the number of proof
lines almost the same.

– The current proof of symmetry of ≈α is independent of transitivity.
The former approach has the drawback of having a formalisation
of symmetry obtained as a consequence of transitivity.

• In this version separated treatment of C-operators was included as men-
tioned in Section 4.1. This required the addition of the commutative
case for dealing with the commutative operators and associated rules
in formalisations of lemmas on intermediate transitivity for ≈{A,C,AC},
freshness preservation under ≈{A,C,AC}, equivariance, reflexivity, sym-
metry and transitivity of ≈{A,C,AC} and combination of AC arguments
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(Lemmas 9 to 15, among others). This was essential for the specification
of a verified nominal C-unification procedure and the study of nominal
fixed point problems presented respectively in [29] and [26] referenced
in the subsection on related work in the introduction.

• An OCaml implementation of an algorithm extracted from the rules was
developed, and simple randomly generated equational problems were
used to test the algorithm. The analysis of upper bounds was extended in
order to include the case of checking nominal equivalence with syntactic,
A and AC-operators combined with C-operators (Theorem 1).
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