Formalization of Security Proofs Using PVS in
the Dolev-Yao Model*

Rodrigo B. Nogueira??, Anderson C. do Nascimento?3, Flavio L.C. de
Moura!2, and Mauricio Ayala-Rincén!-2**

! Grupo de Teoria da Computacio, Departamentos de Matematica,
% Ciéncia da Computacio and
% Engenharia Elétrica, Universidade de Brasilia, Brasilia D.F., Brasil

rodrigo.nogueira@dprf.gov.br,{andclay@ene,flavioQcic,ayala@}unb.br

Abstract. The security analysis of cryptographic protocols is a difficult
issue. We can find many examples in the literature of protocols once be-
lieved to be secure and later proven to be flawed. The Dolev-Yao model
came as a simple and useful framework to study the security of crypto-
graphic protocols. In this study we report on a mechanical verification
of the security characterization of a class of protocols in the Dolev-Yao
model (two-party cascade protocols) following an algebraic specification
approach with the Prototype Verification System PVS.

1 Introduction

Motivation. Even assuming perfectly secure cryptographic primitives, the se-
curity analysis of cryptographic protocols is a tricky issue. Proofs of security
are rather difficult to check and there are many cases reported in the literature
of protocols and security proofs which were later proven to be wrong [Mea03].
Automated reasoning and formal methods came up to the scene as a possible
way to turn the security analysis of protocols more reliable and less error prone.
Arguably, the most popular example of this success is the discovery of a pos-
sible attack upon the Needham-Schroeder protocol [NS78]. With the help of
formal methods, Gavin Lowe discovered a gap in the Needham-Schroeder proto-
col after seventeen years of its introduction, a period during which the protocol
was assumed correct [Low95]. The protocol was then modified and mechanically
proved correct [Low96]. For a survey in the area see [Mea03] and for recent
results [ABCT06].

Our Contribution. We show how the proof techniques available in the proof
assistant PVS [ORS92, OS97] can be applied to the security analysis of pro-
tocols by following an algebraic approach in which instances of applications
of steps of the protocols are represented over the monoid freely generated by
the cryptographic operators. We illustrate our approach by verifying the secu-
rity of two-party cascade protocols in the well-known original Dolev-Yao (DY)

* Work supported by the District Federal Research Foundation - FAP-DF 8-004/2007.
** Corresponding author partially supported by the Brazilian Research Council - CNPq.

2 R.B. Nogueira, A.C. do Nascimento, F.L.C. de Moura and M. Ayala-Rincén

model [DY83]. The main advantage of the proposed approach is the simplicity
of the specification that is close to the original model because it is based on the
representation of operators as generators of a monoid and the use of elaborated
types and higher-order logic that are available in PVS.

Related Work. There are not so many works applying PVS to the security
analysis of cryptographic protocols. In [DS97, ES00] PVS was used to analyze
the security of authentication protocols. Our analysis, on the other hand, is re-
stricted to guarantee the property of security of two-party protocols. Even con-
cerning PVS, in [MROO] it is presented a dedicated strategy in order to perform
proofs of security protocols, which is based on protocol representation theories
on a state-transition model. This contrasts with the simple representation of
protocols as sequences of words used in our algebraic approach that we consider
more adequate for the treatment of the original DY model. The paper [LHT07]
provided a specification and verification in PVS of the intrusion-tolerant proto-
col enclaves [DCS02]. The problem treated in [DCS02] is of a rather different
nature than the ones we address here. [DCS02] deals with a distributed protocol
where the protocol goal has to be fulfilled even when a subset of the players are
corrupted by a malicious party and can arbitrarily deviate from the protocol
specifications (the so-called Byzantine faults). Moreover, [LHT07] is not fully
analyzed by using PVS. Its authenticity was treated using the model checker
Murphi. Also, [BJ03] reports the use of PVS for formally verifying a system for
ordered secure message transmission, but it does not provide the corresponding
PVS specification code.

Many work on formalization of security of protocols has been done in other
proof assistants [ABC™06], this includes, among others, the remarkable inductive
approach by L. Paulson in Isabelle [Pau99] and more recently the Coq develop-
ment CertiCrypt which includes probability, complexity and game theoretical
techniques in order to verify security [BGZB09]. Recently Benaissa presented
a verification of security of the DY model in event B [Ben08]. Although the
existence of these works, we believe the current PVS development is of great
interest because it improves the scenario of available public libraries for the
analysis of security and because it chooses an algebraic straightforward speci-
fication of the DY framework, framework that has been widely used to model
cryptographic protocols and is known, in some cases, to provide security against
all possible adversaries even when we do not consider perfect cryptography (i.e.
taking into account complexity theoretical assumptions, asymptotic and proba-
bilities) [Her05]. Thus, we hope to provide security people with a useful set of
libraries to simplify the task of obtaining a PVS verification of cryptographic
protocols.

Organization of the paper. In section 2 the necessary notions on the Dolev-
Yao model and PVS are presented. Sections 3 and 4 illustrate the algebraic ap-
proach of specification and formal verification of the characterization of security.
Section 5 concludes and presents future work. The complete PVS development
is available at ayala.mat.unb.br/publications.html.

Formalization of Security Proofs Using PVS in the Dolev-Yao Model 3
2 Background and Methodology

2.1 The Dolev-Yao protocol

The DY intruder model (as introduced in [DY83]) is based on the so-called DY
rules for public-key encryption. The attacker obtains new information from pre-
vious knowledge he/she obtained by passive observation of the communication
network and by active participation (sending new messages according to the pro-
tocol rules). The model uses the perfect cryptography assumption, which states
that the only way to obtain information on a plaintext (that is the information
which the sender wishes to transmit to the receiver) is by knowing the decryption
key, and that it is impossible to obtain this key from the ciphertexts.

In a public-key cryptosystem, every user u (including the attacker) over an
enumerable set of users U has both an encryption and a decryption key, E, and
D,, respectively. A secure public directory contains all the encryption functions
E ={FE, | u € U} which are known by all users, while the decryption function
D, is known by its own user u only, for all user v in U. D denotes the set
{D, | u € U}. Encryption and decryption functions are inverse operators for all
users u and plaintexts M: E,(D,(M)) = D, (E,(M)) = M. It is assumed that
knowing E, (M) and the public directory E does not reveal anything about M.

We consider two-party protocols in which only the two users who wish to
communicate are involved in the transmition process without any assistance of a
third party. In addition, all users should follow the same communication rules in
which the only possible operators are the encryption and decryption functions
under the previous restrictions of use.

Let X = FUD and X* the set of finite words over symbols in X' where A
denotes the empty word, as usual. For simplicity, instead of working over the
algebra of these operators we will work over the monoid freely generated by the
symbols in X’ modulo the set of congruences

EyDy=DyE, = \VYuecU (1)

In this monoid, for all words § € X* there exists a unique canonical form & such
that 6 = § and there are neither subwords in § of the form E, D,, nor D, E, for
any v € U. ¢ is called the reduced form of § and whenever § = 6, § is said to be
in reduced form.

For all § € X*, |0| denotes its length and for all 0 < j < m, where |§| = m € N,
0, denotes the (5 + 1)*" symbol in 6 and for 0 < j < k < m, ;1 denotes the
subword from the (j +1)*" symbol until the (k+1)*" symbol of §. For all u € U,
E¢ and D¢ denote respectively D,, and E,,. For all § € X*, §¢ denotes its com-
plement defined inductively as: A = X\ and (G¢')¢ = §°G°,VG € X, 48" € X*.

Definition 1 (Two-party cascade protocol). A two-party cascade protocol,
which states how pairs of users should communicate in the communication net-
work, is defined by a nonempty finite sequence a = «v, . .., 0,1, wheren > 1, of
functions from pairs of users to words in X*, that is, a; : U x U — X* V0 <

4 R.B. Nogueira, A.C. do Nascimento, F.L.C. de Moura and M. Ayala-Rincén

1 < n. In addition, it should satisfy the following conditions:
1. «ai(z,y) # X and is in reduced form

2.1. a;(z,y) € {Dy, Ey, By}, whenever i is even
2.2. a;(z,y) € {Dy, Ey, Ey}*, whenever i is odd

Y0 <i<n, 3. ai(@,y)| = Jei(u,v)|
Vr,y,u,v e U

4. V0 <j <loi(z,y)|:

A protocol « is applied in the communication between x and y € U as follows:

1. x sends y the message ag(x,y)M;

2. y answers x the reduced form of ay(x,y) applied to ag(x,y)M, that is,
ay (Z’, y)ao(x, y)Mv

3. x sends y the reduced form of as(z,y) applied to a1 (x, y)ao(x,y) M, that is,

az(z, y)au (z, y)ao(z, y) M; ...

The conditions in definition of cascade protocols are explained as follows:

— 2.1 and 2.2 guarantee that when users x and y exchange messages both apply
only the allowed deciphering operators: x may apply D, and y D,,.

— 3 and 4 establish that all pairs of users exchange messages following the same
policy; in fact, these necessary conditions guarantee that the images «;(x,y)
and «;(u,v) are identical except for renamings of user’s variables.

Ezample 1. Consider the protocol « := ag, a1, where for all z,y € U: ap(z,y) —
E, and a;(z,y) — E,;D,. Following this protocol, when a would like to send
to b the plaintext M, in the first step, a sends b the message EyM and then,
in the second step, b answers a E,Dy,EyM = E,M. Notice that b can find the
plaintext M by decoding EyM and a is able to verify that b actually received
the message, because after the second step he/she can decode E,M.

Given a two-party cascade protocol «, a potential saboteur z € U may use
the language of words over I'? := Xy(z) U X, where Xy(z) := {D,} U E and
2= A{ai(u,v) [u#v e U,0<i<|al}.

2o (z) is the language allowed to z. The motivation for including X is that for
any z and u # v

— z may obtain «;(u,v), for 1 <i < |a| odd, starting a communication with v,
claiming itself to be . In the i** step of the communication, z sends v any
message M obtaining as answer «;(u,v) M, which allows 2z to apply «;(u,v)
to any chosen M, for i odd.

Formalization of Security Proofs Using PVS in the Dolev-Yao Model 5

— z may obtain «;(u,v), for 2 < i < |a| even, attending the communication
network until u establishes a communication with v. In the i** step of the
communication, z supplants v (intercepting the answer v gives to u) and
sends u any message M. Then u answers to z «;(u,v)M. This allows z to
apply a;(u,v) to any chosen M, for i even, greater than 0.

Ezxample 2. Consider again the protocol a given in the example 1. A sabo-
teur z € U can break this protocol easily. In fact, consider z would like to
know the plaintext M that a user a sent to b. z will proceed in the following
way: firstly, z intercepts ag(a,b)M = E,M; afterwards, z starts communica-
tion with b and sends to b EpM; finally, following the protocol, b answers to
z ai(z,b)EyM = E,M. Notice that after intercepting the message F,M and
sending it to b, the saboteur z is applying the admissible language of words over
I'e: firstly, oy (z,b) = E, D, € X and, secondly, to decode E, M, z uses D, that
belongs to Xy(z).

Given a protocol a, for 0 <14 <1 < |af, a;; denotes the reverse subsequence
of functions «y, . .., o; and, by abuse of notation, Va,y € U, «; (z,y) will denote
the word ay(z,y) -+ a;(x,y).

Definition 2 (Security). A protocol is said to be insecure whenever for three
different users x,y,z € U, there exists v € (I'®)* such that for some 0 < i < |a],
~yag_i(x,y) = A. Otherwise the protocol is said to be secure.

Notice that since conditions 3 and 4 in the definition of two-party cascade
protocols guarantee that the behavior of the protocol is the same for each user,
the definition of security is independent of the triplet of users.

Before presenting the DY characterization of secure protocols, two additional
notions are necessary.

1. (Initial condition) A protocol « satisfies the initial condition whenever the
word «ag(z,y) has symbols in E;

2. (Balancing property) it satisfies the balancing property whenever for all
0<i<|al,ue{z,y}, D, occurs in a;(x,y) implies E, occurs as well.

The main property to be verified characterizes security.
Characterization of Security. A two-party cascade protocol is secure if,
and only if it satisfies the initial condition and the balancing property.

2.2 PVS

The PVS prover used in the verification of the security characterization of two-
party cascade protocols is briefly described. PVS consists of a specification lan-
guage with support tools and a proof assistant, that provides an integrated
environment for the development and analysis of formal specifications.

The specification language of PVS is built on higher-order logic, which sup-
ports modularity by means of parameterized theories, with a rich type-system,

6 R.B. Nogueira, A.C. do Nascimento, F.L.C. de Moura and M. Ayala-Rincén

including the notions of subtypes and dependent types. It provides a large set
of built-in constructs for expressing a variety of notions. The PVS specifica-
tions are organized as a collection of theories, from which the most relevants
are collectively referred as the prelude. Each theory is composed essentially of
declarations, which are used to introduce names for types, constants, variables,
axioms and formulas, and IMPORTINGs, that allow to import another theories.
Parameterized theories are very convenient since the use of parameters allows
more generic specifications, as we can see with the finite_sequences_extras
theory below which imports the PVS theory for manipulation of finite sequences
over which the theory of monoids over D U E is built.

finite_sequences_extras[T: TYPE]: THEORY
IMPORTING finite_sequences[T]

T is treated as a fixed uninterpreted type. Consequently, when the PVS theory
finite_sequences_extras is invoked by another theory, T must be instantiated.
For example, the theory of finite sequences of cryptographic operators op is just
finite_sequences_extras[op]. The verification uses mainly the PVS theories
set and finite_sequences.

An important step in PVS specifications is type-checking the theory, which
checks for semantic errors, such as undeclared names and ambiguous types. Type-
checking may build new files or internal structures such as TCCs (type-correctness
conditions). These TCCs represent proof obligations that must be discharged be-
fore the theory can be considered type-checked, and its proofs may be postponed
indefinitely. Although, the theory is considered complete when all TCCs and for-
mulas upon which the proof is dependent have been completed.

The PVS Prover provides a variety of commands to construct proofs of the
different theorems. It is used interactively in a sequent-style proof representation
to display the current proof goal for the proof in progress. The prover maintains
a proof tree for the current theorem being proved. The user aims at constructing
a complete proof tree, in the sense that all the leaves are recognized as true.
Each node of the tree is a proof goal that results from the application of a prover
command (rule or strategy) to its parent node. Each proof goal is a sequent con-
sisting of two sequences of formulas called the antecedents and the consequents
(logically connected by conjunctions/disjunctions and numbered with negative/-
positive integers, respectively).

3 Methodology of specification

The PVS development follows an algebraic approach in which instances of two-
party cascade protocols are words specified as finite sequences of operators over
the alphabet 3. The complete development runs in PVS 4.1 and consists of 215
lemmas specified in 1211 lines (55K) and 22876 lines (1.4M) of proofs. PVS build
105 TCCs (type-correctness conditions) whose proofs are included in the latter
number. The formalization of the characterization of security per se consists of
110 of these lemmas, from which the remaining are TCCs.

Formalization of Security Proofs Using PVS in the Dolev-Yao Model 7

The hierarchy of theories of the PVS development is presented in Fig. 1.

The specification is built over the prelude theories for finite_sequences
and sets. The former was enlarged with some necessary extra properties in the
theory finite_sequences_extras over which the monoid freely generated by
the operators in X' is specified in the theory MonoidCryptOps.

CascadeProtocolsSecurity |

SecuritySufficiency |

. |
SecurityNecessity | UserBalancingProperty

SecurityDefinitions

I

CascadeProtocols

MonoidCryptOps |

finite_sequences_extras |

Fig. 1. Hierarchy of the CascadeProtocolsSecurity theory

The theory MonoidCryptOps. Words in X* are specified by the type seqQps :
TYPE = finite_sequencel[op], where op is given as the type of pairs of crypt
type operators (either encrypt or decrypt) and user over the type U of sets of
users: op : TYPE = [# crTyp : cryptType, user : U #].

The theory MonoidCrypt0Ops specifies the recursive function normalizeseq
that build the canonical forms in X* detecting and eliminating pairs of adjacent
opposite operators from left to right. This function uses elements from the theory
finite_sequence such as o, operator for concatenation of words, and seq(1,m),
that extracts the subsequence from positions 1 to m of the sequence seq. The
boolean normalseq? detects whether a sequence of operators has adjacent op-
posite operators and the function firstCancPos that returns the first position,
from left to right, of adjunct opposite operators in a reducible sequence seq.

8 R.B. Nogueira, A.C. do Nascimento, F.L.C. de Moura and M. Ayala-Rincén

normalizeseq(seq : seqOps) : RECURSIVE seqQOps =
IF normalseq?(seq) THEN seq
ELSE LET firstCancPos = first_cancelable(seq) IN
IF firstCancPos=0 THEN normalizeseq(seq(2, |seql|-1))
ELSE normalizeseq(seq(0,firstCancPos - 1) o
seq(firstCancPos + 2,|seq|-1))

This specific construction of canonical forms implies the necessity of prov-
ing lemmas such as idempotence of the normalization: normalizeseq(seq) =
normalizeseq(normalizeseq(seq)) (in standard notation, V6 € X*,§ = §) and
normalizeseq(dl o normalizeseq(d2) o d3) = normalizeseq(dl o d2 o d3),
given in Section 2 as the formula V(Sl, 52, 03 € P 51@53 = 010903.

Other necessary notions of the theory of monoids modulo the congruences (1),
such as complement (6, for 6 € X*) are specified in the theory MonoidCryptOps.

The theory cascadeProtocols specifies the type welldefined protocol of
well-defined two-party cascade protocols as finite sequences of functions from
pairs of users to sequences of operators that satisfy all conditions of Definition
1. extract_eN(prot, i, x, y) builds the application of the ¢ + 1 first steps of
the protocol prot for the pair of users x and y, that was denoted in Section 2 as

aO,i(x, y)

The theory SecurityDefinitions defines the function gamma welldef? that
specifies the language of a potential saboteur for a given protocol, that is written
as v € (I'*)* in Section 2: gamma welldef?(prot,gamma,z). Having the admis-
sible language of the saboteur, it is possible to specify the notion of insecurity
as the boolean function insecure_protocol?:

insecure_protocol?(prot, x, y, z | x /= y) : bool =
EXISTS (gamma | gamma_welldef?(prot,gamma,z),
i : nat | i < |protl)
normalizeseq(extract_gamma(gamma) o extract_eN(prot,i,x,y)) =
empty_seq

In this function empty_seq represents the empty sequence A (cf. Def. 2).
Additionally, the properties that characterize security, i.e., initial condition
and balancing property, are specified, The latter is given as the boolean function

balanced_cascade_protocol?(prot) : bool =
FORALL(x, y | x /=y, 1 | 0 <1 < |protl)
IF even?(i) THEN balanced_wrt?(prot(i),x,y,x)
ELSE balanced_wrt?(prot(i),y,x,y)

In this function, balanced _wrt? is a boolean function that checks for quadru-
plets a;, z,y, z, where z is either equal to x or to y, and whenever the operator
D, occurs in «;(z,y), E, occurs as well.

The former is straightforwardly specified as the boolean function

Formalization of Security Proofs Using PVS in the Dolev-Yao Model 9

alphaOContainsE?(prot, x, y) : bool =
EXISTS(i | 0<= i < |prot(0)(x,y)1):
member (prot (0) (x,y) (i) ,{encrypt(x), encrypt(y)})

4 Methodology of verification

Induction is exhaustively applied to prove auxiliary lemmas in the theories dis-
cussed in the previous section, namely, MonoidCriptOps, CascadeProtocols
and SecurityDefinitions. For instance the fact that V8, 6y, 05 € X%, 610205 =
010203 is proved by induction on the length of J5.

The formalization of the characterization of security of two-party cascade
protocols is given by proving necessity in the theory SecurityNecessity and
sufficiency in the theory SecuritySufficiency (see Fig. 1).

The theory SecurityNecessity formalizes the fact that any secure protocol
satisfies the initial condition and the balancing property.

secProt_imp_alphaOContainsE : LEMMA
FORALL (prot, x, y, z | x /= y)
secure_protocol?(prot, x, y, z)
=>
alphaOContainsE? (prot, x, y)

secure_impl_balanced : COROLLARY
FORALL (prot, x, y, z | x /=y AND z /= x AND z /= y)
secure_protocol?(prot, x, y, z)
=>
balanced_cascade_protocol? (prot)

The former is proved by contraposition showing that any well-defined proto-
col a for which the initial condition does not hold, satisfies ag(z,y) = D¥, for
some k > 0. The complement of D¥, (Dk)¢ = EF € Xy(2)* C (I'®)*; that is, it
belongs to the admissible language of the saboteur.

The latter is also formalized by contraposition, proving that for an unbal-
anced protocol « there exists v € (I'%)* such that yag(z,y) = A. Essentially,
the saboteur z uses an unbalanced step of the protocol for cancelling encrypt
operators £, and F, (lemma extractable_decUser formalized in this theory).
This formalization is done by a series of auxiliary lemmas which express this can-
cellation. Suppose «; is an unbalanced step. Then, for any user w, case i is even,
Dy € ai(w, 2), but Ey, € a;(w, z) and case i is odd, D, € a;(z,w), but E, &
a;(z,w). In both cases, a;(w, z) and «;(z,w) belong to the language {D,,, E,}*
and consequently the saboteur can use words 71 (w) and 72(w) in the admissible
language (specifically, in (Xo(2))*), such that either 7 (w)a;(z, w)m(w) = D,
or 7 (w)ay(w, 2)m2(w) = D,,. The proof is formalized considering all possible
cases by an elaborated induction on the length of the unbalanced step. To

10 R.B. Nogueira, A.C. do Nascimento, F.L.C. de Moura and M. Ayala-Rincén

conclude, since ag(z,y) € {Ey, Dy, By}, for some word « either in ({D,} U
[(@)as(, 2)m2(2) UL () (3,) (m) D or in ({D. }U {7 (2)xa(z, 2)7a(2) FU
{1 (y)ai(z,y)=2(y)})*, which in both cases belong to (I'%)*, the admissible lan-
guage of z, one has yag(z,y) = A.

The theory SecuritySufficiency formalizes the fact that any protocol that
satisfies the initial condition and the balancing property is secure.

alphaO_and_bal_secure : LEMMA
FORALL (prot, x, y, z | x /=y AND z /= x AND z /= y)
alphaOContainsE? (prot, x, y) AND
balanced_cascade_protocol? (prot)
=>
secure_protocol?(prot, x, y, z)

The formalization is by contradiction supposing that for a protocol a both
the initial condition and the balancing property hold, but the protocol is in-
secure. The existence of 4" € (I')* such that 3i,7'ap(x,y) = A implies the
existence of v € (I'?)* (namely, either ' itself, when ¢ = 0 or v a;_(x,vy),
otherwise) such that yao(z,y) = A. As in the analytic proof in [DY83], in the
formalization two cases on the operators in ag(z,y) are considered: either E,
occurs in «ag(z,y) or not. In the former case, 7 will be unbalanced, because it
should contain some D,, but no E, in order to be able to cancel the occurrences
of E, in ag(z,y). Unbalancedness of 7 contradicts the key balancing property
on all words 7 over the admissible language (I"%)*, that is here formalized in the
theory UserBalancingProperty under specific verifiable assumptions: 7 should
be balanced for all users different from z. In the latter case, since ap(x,y) is
in reduced form it should be of the form E¥, for some k > 0. Again, 7 will be
unbalanced, because it should contain some D,, but no E,, in order to be able
to cancel E¥, which gives the contradicition. Consequently, the existence of such
~' is impossible, that implies that the protocol is secure.

5 Conclusions and Future Work

We formalized the characterization of security of two-party cascade protocols in
the original DY model following an algebraic methodology in which the steps of
a protocol are specified as functions from pairs of users in U into sequences of
operators representing words over the monoid freely generated by the symbols
in {Ey,Dy | v € U} modulo the congruences E, D, = D,E, = \,Vu € U.
Although the security characterization is a higher-order theorem, most of the
efforts in the verification were focused on proving simple properties over finite
sequences of these operators and once the necessary properties were proved the
formalization of the characterization was supported by proving techniques avail-
able in PVS such as propositional techniques (proofs by contradiction, contrapo-
sition, etc), first-order logical techniques (skolemization, instantiation, etc) and
induction over the structures involved in the specification.

Formalization of Security Proofs Using PVS in the Dolev-Yao Model 11

Although the DY model is not used as it was originally published, it is cap-
tured by most of nowadays protocol models and consequently straightforward
extensions of our higher-order algebraic verification approach over this founda-
tional model can be given in order to analyze in an adequate way extensions of
the DY model. Possible extensions include protocol models in which concatena-
tion can be used in several ways, and protocols that allow performing checks on
received messages, such as checking that an agent’s identity within the message
matches the recipient’s identity or the claimed sender’s identity, among others.

The distinguishing features of the current formalization approach include:

1. the simplicity of monoids in order to specify straightforwardly the algebraic
relations between encryption and decryption operators that in contrast with
functional approaches avoids inclusion of axioms such as Vo # y € U, E, #
E,&D, # D, (cf. [Ben08] in which the difference among encryption and
decryption keys is assured by the injectivity of the functions designing en-
cryption and decryption keys to users) and Vz,y € U, E, # D, (cf. [Ben08§]
in which and axiom specifying disjunctivity of the set of encryption and
decryption operators is necessary).

2. The use of dependent types available in the PVS specification language in
order to characterize security and insecurity in terms of universal quantified
different users of the system, in contrast to other approaches in which the
attacker is axiomatically fixed (cf. [Ben08]).

3. The use of the expressive power of the higher-order language of PVS in
order to formalize closely to the original DY analytical approach security
characterization properties. This flexibility allows universal quantification of
objects such as protocols, that are sequences of functions.

As future work, the logical correctness of more general protocols will be
formalized. We are particularly interested in secure two-party protocols and in
oblivious transfer [Kil88]. Oblivious transfer is a powerful secure two-party prim-
itive known to imply any other secure two-party functionality. We also aim at
extending our current model as to contain information theoretically secure cryp-
tographic protocols based on physical assumptions (such as the existence of noisy
channels) [NWO08].

References

[ABCT06] A. Armando, D. Basin, J. Cuellar, M. Rusinowitch, and L. Vigano, edi-
tors. Special Issue on Automated Reasoning for Security Protocol Analysis,
volume 36. J. of Automated Reasomning, 2006.

[Ben08] N. Benaissa. Modelling Attacker’s Knowledge for Cascade Cryptographic
Protocols. In ABZ °08: Proc. of the 15 Int. Conf. on Abstract State Ma-
chines, B and Z, volume 5238 of Lecture Notes in Computer Science, pages
251-264. Springer, 2008.

[BGZB09] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certification of
code-based cryptographic proofs. In 36'* ACM SIGPLAN-SIGACT Sympo-
stum on Principles of Programming Languages POPL, pages 90-101, 2009.

12 R.B. Nogueira, A.C. do Nascimento, F.L.C. de Moura and M. Ayala-Rincén

[BJO3] M. Backes and C. Jacobi. Cryptographically Sound and Machine-Assisted
Verification of Security Protocols. In 20" Annual Symposium on Theoretical
Aspects of Computer Science (STACS), volume 2607 of Lecture Notes in
Computer Science, pages 675—686. Springer, 2003.

[DCS02] B. Dutertre, V. Crettaz, and V. Stavridou. Intrusion-tolerant enclaves. In
Proc. of the IEEE Int. Symposium on Security and Privacy, pages 216-224,
2002.

[DS97] B. Dutertre and S. Schneider. Using a PVS Embedding of CSP to Ver-
ify Authentication Protocols. In Theorem Proving in Higher Order Logics,
TPHOL’s 97, volume 1275 of Lecture Notes in Computer Science, pages
121-136. Springer, 1997.

[DY83] D. Dolev and A. C. Yao. On the Security of Public Key Protocols. IEEE.
Transactions on Information Theory, 29(2):198-208, 1983.

[ES00] N. Evans and S. Schneider. Analysing Time Dependent Security Properties
in CSP Using PVS. In 6" European Symposium on Research in Computer
Security ESORICS, volume 1895 of Lecture Notes in Computer Science,
pages 222-237. Springer, 2000.

[Her05] J. Herzog. A computational interpretation of Dolev-Yao adversaries. Theo-
retical Computer Science, 340:57-81, 2005.

[Kil88] J. Kilian. Founding Cryptography on Oblivious Transfer. In 20" Annual
ACM Symposium on Theory of Computing STOC, pages 20—31. ACM Press,
1988.

[LHT07] M. Layouni, J. Hoofman, and S. Tahar. Formal Specification and Verifica-
tion of the Intrusion-Tolerant Enclaves Protocol. Int. Journal of Network
Security, 5(3):288-298, 2007.

[Low95] G. Lowe. An Attack on the Needham-Schroeder Public-Key Authentication
Protocol. Information Processing Letters, 56(3):131-133, 1995.

[Low96] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol
Using FDR. Software - Concepts and Tools, 17(3):93-102, 1996.

[Mea03] C. Meadows. Methods for Cryptographic Protocol Analysis: Emerging Issues
and Trends. IEEE J. on Selected Areas in Communications, 21(1):44-54,
2003.

[MR00] J. K. Millen and H. Rue8. Protocol-independent secrecy. In IEEE Sympo-
stum on Security and Privacy, pages 110-209, 2000.

[NST78] R. Needham and M. Schroeder. Using encryption for authentication in large
networks of computers. Comm. of the ACM, 21:993-999, 1978.

[NW08] A. Nascimento and A. Winter. On the Oblivious Transfer Capacity of Noisy
Resources. IEEE Trans. on Information Theory, 54(6):2572-81, 2008.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification
System. In 11*"Int. Conf. on Automated Deduction CADE, volume 607 of
Lecture Notes in Artificial Intelligence, pages 748-752. Springer, 1992.

[0S97] S. Owre and N. Shankar. The formal semantics of PVS. Technical report,
SRI-CSL-97-2, Computer Science Laboratory, SRI Int., Menlo Park, CA,
August 1997. Available at http://pvs.csl.sri.com/.

[Pau99] L. C. Paulson. Proving Security Protocols Correct. In 14" Annual IEEE
Symposium on Logic in Computer Science LICS, pages 370-383, 1999.

