
Polynomial Identities of Banach Algebras

L. Cioletti, J. A. Freitas and D. J. Gonçalves
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Abstract

In this paper we consider PI-algebras A over the real and complex
numbers and address the question of whether it is possible to find a
normed PI-algebra B with the same polynomial identities as A, and
moreover, whether there is some Banach PI-algebra with this property.
Our main theorem provides an affirmative answer for this question
and moreover we also show the existence of a Banach Algebra with
the same polynomial identities as A. As a byproduct we prove that if
A is a normed PI-algebra and its completion is nil, then A is nilpotent.

1 Introduction

Polynomial identities algebras or simply PI-algebras has some of its origins in
the work of M. Dehn [3] in 1922, motivated by Projective Geometry problems.
Later, in 1936, W. Wagner [17] considered some identities for the quaternion
algebras, and some authors actually regard this as the first real paper in PI-
algebra. As a theory PI-algebras has its starting point in the seminal works
of N. Jacobson and I. Kaplansky in the forties ([7], [10]). Comprehensive
reviews can be found in the works of Drensky [4], Jacobson [8] and Koshlukov
[12].

Nowadays PI-algebra is a classical subject in algebra and a lot of work
has been done by exploring some connections with representation theory,
graded algebras, Lie algebras and Hopf algebras, see [13, 16, 18]. A PI-
algebra which is also a Banach algebra is called Banach PI-algebra. They
appeared frequently in some applications and important problems on the area
and were recently used to obtain rigorous mathematical results in Quantum
information Theory, see [9], where the author used the standard polynomials
and the Amitsur-Levitzki theorem and other ideas of polynomial identities
to present some effective algorithms for analyzing mathematical properties
of quantum channels.
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The aim of this short note is to continue the study initiated in [6], about
nilpotency of Banach nil algebras, towards similar results to PI-algebras.
The main result of this paper give sufficient conditions for a normed PI-
algebra to have the same set of polynomial identities that its completion.
As an application of this paper main result’s we prove by using the concept
of multihomogeneous norm (Definition 1) that if F 〈X〉 is multihomogeneous
normed algebra and A is a PI-algebra such that the completion of the quo-
tient space F 〈X〉/Id(A) is nil, then A is nilpotent. Here F 〈X〉 denotes the
free non-unitary associative algebra, freely generated over F (R or C) by the
infinite set of noncommutative variables X = {x1, x2, . . .}.

We should remark that existence of normed algebra structure on a PI-
algebra is a subtle question and it was showed by Dales in [2] the existence
of PI-algebras over R or C not admitting the structure of a normed algebra.
In fact, Dale result’s is much more strong as it shows that there exists a
nilpotent commutative algebra which is not a normed algebra. To circumvent
this obstacle we shown here for any PI-algebra A over R or C that there exists
a normed PI-algebra B having the same polynomial identities as A. So the
requirement of the normed algebra structure on PI-algebras treated here does
not restrict the applicability of our results.

2 Preliminaries

Throughout this paper all the algebras considered will be non-unitary, asso-
ciative and over the field F . Thus for convenience we will only use the term
algebra. The key example to keep in mind is the algebra F 〈X〉. The elements
of F 〈X〉 are called polynomials and a polynomial of the type xi1xi2 . . . xin is
called monomial.

A polynomial f(x1, . . . , xm) ∈ F 〈X〉 is called a polynomial identity for
an algebra A if f(a1, . . . , am) = 0, for all a1, . . . , am ∈ A. We denote by
Id(A) the set of all polynomial identities of A. If Id(A) 6= {0} then we
say that A is a PI-algebra. The set Id(A) is an ideal of F 〈X〉 and has
the property that f(g1, . . . , gm) ∈ Id(A) whenever g1, . . . , gm ∈ F 〈X〉 and
f(x1, . . . , xm) ∈ Id(A). This is what is called a T-ideal, for details see [4, 5].

Let F 〈X〉(d1,...,dm) be the vector subspace of F 〈X〉 spanned by all mono-
mials u = xj1 . . . xjt , where the variable xi appears di times in u for all i =
1, . . . ,m. If f(x1, . . . , xm) ∈ F 〈X〉(d1,...,dm) then we say that f is multihomoge-
nous of multidegree (d1, . . . , dm). Note that if f = f(x1, . . . , xm) ∈ F 〈X〉, we
can always write

f =
∑

d1≥0,...,dm≥0

f (d1,...,dm)
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where f (d1,...,dm) ∈ F 〈X〉(d1,...,dm). The polynomials f (d1,...,dm) are called the
multihomogenous components of f .

Now we recall an important result that will be used in the next section,
its proof can be found in [5], Theorem 1.3.2.

Theorem 1. If f = f(x1, . . . , xm) is a polynomial identity for an algebra A,
then every multihomogeneous component of f is a polynomial identity for A.

We remark that the above result holds for every infinite field F , but it is
not always true for finite fields.

An algebra A is said to be normed if it satisfies the followings properties:
A has a norm ‖ · ‖ and ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A. It is called Banach
algebra if (A, ‖·‖) is a complete normed space. Normed algebras have natural
structure of metric space, where the distance between a, b ∈ A is given by
d(a, b) := ‖a − b‖. By considering A as metric space, we can construct
another metric space C(A), which contains A as dense subspace and having
the following universal property: if B is any complete metric space and
φ : A→ B is any uniformly continuous function, then there exist an unique
uniformly continuous function ψ : C(A)→ B which extends φ.

A C(A)

B

φ
ψ

The metric space C(A) is called completion of A and is determined up to
isometry by this property, see [11] for more details. In fact, the following
strong result holds. Every normed algebra A is contained in some Banach
algebra C(A) such that A is dense in C(A).

3 Main Results

In this section we state and prove the main result of this paper which is the
Theorem 2.

Proposition 1. If A is a normed PI-algebra, then Id(A) = Id(C(A)).

Proof. By considering that A ⊆ C(A) we get that Id(C(A)) ⊆ Id(A). Con-
versely, let f(x1, . . . , xm) ∈ Id(A) and a1, . . . , am ∈ C(A). From the con-
struction of C(A) it is easy to see that f(a1, . . . , am) = 0. The last identity
implies that f ∈ Id(C(A)). Therefore Id(A) ⊆ Id(C(A)).
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In other words this proposition tell us that every normed PI-algebra A
has the same polynomial identities as some Banach PI-algebra. Since not all
PI-algebras are normed PI-algebras, see for example [2], a natural question
to ask is: given a PI-algebra A, is there some Banach PI-algebra B with the
same polynomial identities of A? As commented early we give an affirmative
answer for this question and we also show how to construct such Banach PI-
algebra B. To explain the construction we need to introduce some definitions.

Let f = f(x1, . . . , xn) ∈ F 〈X〉 be a polynomial, which will be written as

f =
∑

d1≥0,...,dn≥0

f (d1,...,dn) ,

where f (d1,...,dn) = f (d1,...,dn)(x1, . . . , xn) is the multihomogeneous component
of f with multidegree (d1, . . . , dn).

Definition 1. A norm ‖·‖ in F 〈X〉 is called multihomogenous if (F 〈X〉, ‖·‖)
is a normed algebra and for all f ∈ F 〈X〉 we have ‖f (d1,...,dn)‖ ≤ ‖f‖ for all
multidegree d = (d1, . . . , dn). If F 〈X〉 is a normed algebra endowed with
a multihomegeneous norm, then we say that F 〈X〉 is a multihomogeneous
normed algebra or simply MN-algebra.

Example 1. A multihomogeneous norm can be contructed in F 〈X〉 in the
following way. Given an element f ∈ F 〈X〉 consider its standard decompo-
sition f =

∑
m αmm, where αm ∈ F and m is a monomial, and then define

‖f‖ =
∑

m |αm|.

We should remark that the requirement that (F 〈X〉, ‖ · ‖) is a normed
algebra is crucial here and also impose strong restrictions on how to construct
multihomogeneous norms. For instance, let f =

∑
m αmm ∈ F 〈X〉 and ‖ · ‖

given by ‖f‖ =
∑

m(1 − 2−1δx1(m))|αm|, where δx1(m) is equals to one if
x1 = m and zero otherwise. It is easy to see that ‖ · ‖ is indeed a norm
on the space F 〈X〉 but (F 〈X〉, ‖ · ‖) is not an normed algebra since 1/4 =
‖x1‖‖x1‖ < ‖x21‖ = 1. Notice that this norm is just a single modification of
the standard sum norm, where the “direction” x1 has its scale multiplied by
1/2.

Before we proceed to the statement of the main theorem of this paper
we present a very simple auxiliary lemma. On the statement of this lemma
we use the following convention: let g(x1, . . . , xt) a polynomial and g(d1,...,dt)

its multihomogeneous component of multidegree (d1, . . . , dt). If m < t and
dm+1 = dm+2 = . . . = dt = 0, then we write g(d1,...,dm,...,dt) = g(d1,...,dm). If
t < m, then we write g(d1,...,dt) = g(d1,...,dt,0,...,0), where the number of zeros is
m− t.
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Lemma 1. Let (F 〈X〉, ‖ · ‖) be a MN-algebra and let f = f(x1, . . . , xm) be
a polynomial. If {fn}n∈N is a sequence in F 〈X〉 such that fn → f , then

f
(d1,...,dm)
n → f (d1,...,dm) for all multidegree d = (d1, . . . , dm).

Proof. Since ‖·‖ is a multihomogeneous norm in F 〈X〉, we have from the defi-

nition the following inequality ‖f (d1,...,dm)
n −f (d1,...,dm)‖ ≤ ‖fn−f‖. So the con-

vergence of f
(d1,...,dm)
n → f (d1,...,dm) is an immediate consequence of the conver-

gence
fn → f .

The next is the main theorem of this work and it provides the construction
of the Banach PI-algebra B mentioned above.

Theorem 2. Let F 〈X〉 be a multihomogenous normed algebra. If A is a
PI-algebra, then Id(A) = Id(C(F 〈X〉/Id(A))).

Proof. Let A be a PI-algebra. We claim that if F 〈X〉 is a MN-algebra,
then Id(A) is a closed ideal. In fact, let {fn}n∈N in Id(A) be a sequence of
polynomials such that fn → f . We want to prove that f ∈ Id(A). Write

f =
∑

(d1,...,dm)

f (d1,...,dm).

By the Lemma 1, we have that f
(d1,...,dm)
n → f (d1,...,dm) for all multidegree

(d1, . . . , dm). Note that f
(d1,...,dm)
n ∈ F 〈X〉(d1,...,dm)∩ Id(A) by the Theorem 1.

Since F 〈X〉(d1,...,dm) is a finite-dimensional vector space follows that the in-
tersection F 〈X〉(d1,...,dm)∩ Id(A) has also finite dimension. Since every finite-
dimensional space is closed in the norm topology, we have immediately that
F 〈X〉(d1,...,dm) ∩ Id(A) is closed. Thus f (d1,...,dm) ∈ F 〈X〉(d1,...,dm) ∩ Id(A) and
therefore f ∈ Id(A). The multihomogeneous norm in F 〈X〉 induces a norm
in the quotient algebra F 〈X〉/Id(A) given by ‖f + Id(A)‖ = inf{‖f + g‖ :
g ∈ Id(A)}, where f ∈ F 〈X〉. It is simple to verify that the quotient
F 〈X〉/Id(A) endowed with this norm is also a normed algebra. From a clas-
sical result in PI-algebra we get that Id(A) = Id(F 〈X〉/Id(A)), see [5]. So
the proof of the theorem follows immediately from Proposition 1.

Remark 1. Some results from associative PI-algebras can be extended to
nonassociative algebras, see [1, 15]. For instance, if F 〈X〉 is a nonassociative
algebra, then Id(A) = Id(F 〈X〉/Id(A)). But in the definition of Banach
algebras one needs the associativity.
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4 Applications

As mentioned before, Grabiner proves in [6] for a Banach algebra A that
if A is nil then A is nilpotent. As an application of the Theorem 2 we
obtain similar results for PI-algebras. In Grabiner’s theorem, the algebra
A is required to be a Banach algebra, whilst here we investigate when the
nilpotency of an algebra A can be deduced from C(A). In this direction our
first result is

Corollary 1. Let A be a normed PI-algebra. If C(A) is nil, then A is
nilpotent.

Proof. If C(A) is nil, it follows from Grabiner’s theorem that C(A) is nilpo-
tent. Thus xn1 is a polynomial identity of C(A) for some n. From the Propo-
sition 1 we have Id(A) = Id(C(A)), so A is nilpotent.

In the next application we do not assume that A is normed algebra and
then we obtain the nilpotency of A from the properties of the completion of
a certain quotient space related to the polynomial identities of A.

Corollary 2. Let (F 〈X〉, ‖ · ‖) be a multihomogenous normed algebra and
let A be a PI-algebra. If C(F 〈X〉/Id(A)) is nil, then A is nilpotent.

Proof. By taking B = F 〈X〉/Id(A) we get from the Grabiner theorem that
C(B) is nilpotent since we are assuming that C(B) is nil. Thus xn1 is a
polynomial identity of C(B) for some n. By the Theorem 2 we have Id(A) =
Id(C(B)), therefore A is nilpotent.
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