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Abstract. We shown that the validity of the DLR equations for bounded local

functions can extended for any bounded measurable functions (with respect
to the σ-algebra generated by the cylinder sets) for Gibbs measures specified

by Quasilocal Specifications with parameter set Zd and finite state space E.

This is an expository article and we remark that non content here is new.

1. Introduction

The aim of this short note is to present, in details, a particular case of the
Theorem 4.17 and Remark 4.21 of the reference [1]. Here we work on compact
configuration spaces, more precisely, those given by an infinite cartesian product
of a fixed finite set. Such spaces are chosen in order to simplify the argument and
avoid the use of topological nets in the proof.

The paper has three sections and the main result is presented in the last one.
In the next section we introduce the basic definitions about specifications and then
we present a classical characterization of the so callled DLR Gibbs Measures. In
the third section, after a brief discussion about quasilocality for functions and
specifications we prove the Theorem 3.4, which is the main result of this work.

We refer the reader to [1] for a comprehensive exposition of the Theory of Gibbs
Measures.

2. Specifications and DLR Gibbs Measures

Let E ⊂ R be a finite set and Ω = EZd ≡ {(ωi)i∈Zd : ωi ∈ E ∀i ∈ Zd}. For
a subset Λ ⊂ Zd we use the notation |Λ| to denote its cardinality. In order to
lightening the notation, from now on, we use the Greek letters Λ and Γ exclusively
to denote finite subsets of Zd. For a fixed i ∈ Zd consider the coordinate function
Xi : Ω → E given by Xi(ω) = ωi and for any non-empty set Λ let FΛ = σ(Xi :
i ∈ Λ) the σ-algebra generated by the collection {Xi}i∈Λ. We define FΛc being
σ(∪ΓFΓ : Γ ⊂ Λc) and finally we define F = σ(∪ΛFΛ).

A function γΛ : F ×Ω→ [0, 1] is called a proper probability kernel from FΛc

to F , if the following conditions are satisfied:

• γΛ(·|ω) is a measure on (Ω,F) for any fixed ω ∈ Ω;
• γΛ(A|·) is FΛc-measurable for any fixed A ∈ F .
• γΛ(A ∩B|ω) = 1B(ω)γΛ(A|ω), for any A ∈ F , B ∈ FΛc and ω ∈ Ω.
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We say that a family γ = (γ)Λ⊂Zd is consistent if for all A ∈ F and ω ∈ Ω, we
have ∫

Ω

γΛ(A|·)dγΓ(·|ω) = γΓ(A|ω), whenever ∅ ( Λ ⊂ Γ.

The lhs above is denoted in [1] simply by γΓγΛ(A|ω). In this notation the consis-
tency defined above reads γΓγΛ = γΛ, for any pair of non-empty sets Λ ⊂ Γ.

Definition 2.1. A specification with parameter set Zd and state space E is a
family γ = (γ)Λ⊂Zd of proper probability kernels γΛ from FΛc to F which satisfy
the consistence condition γΓγΛ = γΓ, when ∅ ( Λ ⊂ Γ.

We denote the set of all probability measures defined on (Ω,F) by P(Ω,F).
Now we are ready to define the set of the Gibbs Measures.

Definition 2.2 (Gibbs Measures). Given a specification γ with parameter set Zd
and state space E. The set of all probability measures defined by

G (γ) :=

{
µ ∈P(Ω,F) :

µ(A|FΛc)(ω) = γΛ(A|ω) µ− a.s.
for all A ∈ F and Λ ⊂ Zd.

}
is called the set of the Gibbs Measures determined by the specification γ. Each
element µ ∈ G (γ) is called a Gibbs measure.

Theorem 2.3. Suppose that γ = (γΛ)Λ⊂Zd is a specification with parameter set Zd
and state space E and µ ∈P(Ω,F). Then the following statements are equivalent:

(1) µ ∈ G (γ);
(2) for all A ∈ F and Λ ⊂ Zd, we have µ(A) =

∫
Ω
γΛ(A|ω) dµ(ω) := µγΛ(A);

(3) There is a cofinal collection 1 {Γα : |Γα| < +∞, ∀ α ∈ I}, (i.e., directed by
inclusion and for any finite Λ ⊂ Zd there is an index α ∈ I so that Λ ⊂ Γα)
satisfying:

µ(A) =

∫
Ω

γΓα(A|ω) dµ(ω) := µγΓα(A).

Proof. 1) implies 2). If µ ∈ G (γ) then follows from the definition of G (γ) and the
basic property of the conditional expectation that

µ(A) =

∫
Ω

µ(A|FΛc)(ω) dµ(ω) =

∫
Ω

γΛ(A|ω) dµ(ω) := µγΛ(A),

for any A ∈ F . Now we prove that 2) implies 1). Let A ∈ F and B ∈ FΛc . Using
the hypothesis and that γΛ is a proper probability kernel we get that

µ(A ∩B) =

∫
Ω

πΛ(A ∩B|ω) dµ(ω) =

∫
Ω

1B(ω)πΛ(A|ω) dµ(ω).

From the basic properties of the conditional probability and the previous equality
we get ∫

Ω

1B(ω)µ(A|FΛc)(ω) dµ(ω) = µ(A ∩B) =

∫
Ω

1B(ω)πΛ(A|ω) dµ(ω).

From the above equation we have for any B ∈ FΛc that∫
Ω

1B(ω)
[
µ(A|FΛc)(ω)− πΛ(A|ω)

]
dµ(ω) = 0.

1most used cofinal collection in this context is {[−n, n]d ∩ Zd : n ≥ 1}.
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Since the two functions in the brackets are FΛc-measurable their difference is also
FΛc-measurable so we can take B in the above equation as being B = {ω ∈ Ω :
µ(A|FΛc)(ω) − πΛ(A|ω) > 0}. With this choice of B it follows from the above
equation that µ(B) = 0. Analogously the set where this difference is negative has
also µ measure zero. Therefore µ(A|FΛc)(ω) = πΛ(A|ω) µ− a.s..

The statement 2) implies 3) is obvious. We proceed to 3) implies 2). Since
{Γα : |Γα| < +∞, ∀ α ∈ I} is a cofinal sequence, for any given Λ there is an
index α ∈ I such that Λ ⊂ Γα := Γ. From the hypothesis we have µ = µγΓ.
By integrating the kernel γΛ with respect to this measure we obtain the measure
µγΛ = (µγΓ)γΛ. We claim that (µγΓ)γΛ = µγΓ. Let A ∈ F . By definition

(2.1) (µγΓ)γΛ(A) =

∫
Ω

γΛ(A|ω) d(µγΓ)(ω).

By standard arguments of the Measure Theory, we know that there exist a sequence
of FΛc-measurable simple functions ϕn such that ϕn(ω) ↑ γΛ(A|ω) for all ω ∈ Ω.
By using several times the Monotone Convergence Theorem in the equation (2.1)
and the consistency of the specification γ we obtain

(µγΓ)γΛ(A) =

∫
Ω

γΛ(A|ω) d(µγΓ)(ω) = lim
n→∞

∫
Ω

ϕn(ω) d(µγΓ)(ω)

= lim
n→∞

µγΓ(ϕn)

= lim
n→∞

∫
Ω

γΓ(ϕn|ω) dµ(ω)

=

∫
Ω

γΓ(γΛ(A|·)|ω) dµ(ω)

=

∫
Ω

γΓ(A|η) dµ(ω)

= µγΓ(A).

Piecing together the equations obtained above and use the hypothesis we arrive
at µγΛ = (µγΓ)γΛ = µγΓ = µ. �

3. Quasilocality and the Main Result

Definition 3.1. A real function f : Ω → R is called a local function if f is
FΛ-measurable for some finite Λ. For each Λ we denote by LΛ the space of all
bounded FΛ-measurable local functions. Let L = ∪ΛLΛ denote the set of all
bounded local functions.

Definition 3.2. A function f : Ω → R is said to be quasilocal if there is a
sequence (fn)n∈N in L such that ‖f − fn‖∞ → 0, when n→∞. Here ‖ · ‖∞ is the

sup-norm. We write L for the space of all bounded quasilocal functions.

Definition 3.3. We say that a given specification γ = (γΛ)Λ⊂Zd is quasilocal if,

for each finite Λ ⊂ Zd and f ∈ L the mapping

ω 7→
∫

Ω

f(η) dγΛ(η|ω),

is quasilocal. This mapping will be denoted simply by γΛf .
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Theorem 3.4. Suppose that γ is a quasilocal specification with parameter set Zd
and state space E. Then µ ∈ G (γ) if and only if

µ(A) =

∫
Ω

γΛ(A|ω) dµ(ω), ∀ A ∈ FΛ and all Λ ⊂ Zd with |Λ| < +∞.

Proof. We first assume that µ ∈ G (γ). Then it follows from the elementary prop-
erties of the conditional expectation that

µ(A) =

∫
Ω

γΛ(A|ω) dµ(ω), ∀ A ∈ FΛ and all Λ ⊂ Zd with |Λ| < +∞.

Conversely, suppose that the above equality holds true. Let Λn = {[−n, n] ∩
Zd : n ≥ 1}. We first prove that, when n → ∞, we have µγΛn ⇀ µ, where
the convergence is in the weak sense. To prove this weak convergence we fix a
continuous function f : Ω→ R. Since the state space E is finite we can assure that
any local function is continuous and therefore any function in L is continuous. A
stronger result holds C(Ω) = L . Therefore there is a sequence (fk)k∈N in L so
that ‖fk − f‖∞ → 0. Let nk ∈ N the smaller integer for which fk ∈ LΛnk

. Given

ε > 0, there is k0 ∈ N so that for any k ≥ k0 we have ‖fk − f‖∞ < ε. On the other
hand, for any n ∈ N we get from the triangular inequality that

|µγΛn(f)− µ(f)| ≤ µγΛn(|f − fk|) + |µγΛn(fk)− µ(f)|.
The first term on rhs is bounded by ε for any n ∈ N and k = k0. If n ≥ nk0 then
follows from the hypothesis that µγΛn(fk) = µ(fk). So the second term in rhs in
the above inequality is also smaller than ε as long as n ≥ nk0 . Since ε is arbitrary
we have that µγΛn(f)→ µ(f), ∀f ∈ C(Ω).

The next step is to prove that DLR equations are satisfied, i.e., µ(A) = µγΛ(A)
for all Λ and A ∈ F . First let us fix Λ and f ∈ L . Using the quasilocality of the
specification γ we can assure that the function γΛ(f) is quasilocal and therefore
continuous, so it follows from the weak convergence established above that

|µγΛ(f)− µ(f)| = lim
n→∞

|(µγΛn)γΛ(f)− (µγΛn)(f)|.

The consistency of the specification, implies that the second term on rhs above
(for large enough n, so that Λ ⊂ Λn) satisfies the following equality (µγΛn)(f) =
(µγΛn)γΛ(f) which in turn implies that |µγΛ(f)− µ(f)| = 0.

By taking f = 1C , where C ⊂ Ω is a cylinder event, we have from the previous
result that µγΛ(C) = µ(C). In other words, the restriction of both measures µγΛ

and µ to the algebra of the cylinder sets coincide. By the Carathéodry Extension
Theorem both measures have an unique extension to the σ-algebra generated by
the cylinder sets and this conclude the proof.
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