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ABSTRACT. In this paper we study spectral triples and non-commutative expectations associated to
expanding and weakly expanding maps. In order to do so, we generalize the Perron-Frobenius-Ruelle
theorem and obtain a polynomial decay of the operator, which allows to prove differentiability of a dy-
namically defined ζ-function at its critical parameter. We then generalize Sharp’s construction of spec-
tral triples to this setting and provide criteria when the associated spectral metric is non-degenerate
and when the non-commutative expectation of the spectral triple is colinear to the integration with re-
spect to the associated equilibrium state from thermodynamic formalism. Due to our general setting,
we are able to simultaneously analyse expanding maps on manifolds or connected fractals, subshifts of
finite type as well as the Dyson model from statistical physics,which underlines the unifying character
of noncommutative geometry. Furthermore, we derive an explicit representation of the ζ-function as-
sociated to a particular class of pathological continuous potentials, giving rise to examples where the
representation as a non-commutative expectation via the associated zeta function holds, and others
where it does not hold.

1. INTRODUCTION

This paper aims to provide a further contribution to the relation between theormodynamic for-
malism and ideias from noncommutative geometry. More specifically, we are interested in a non-
commutative representation of Gibbs measures and the underlying mechanisms from thermody-
namic formalism.

The starting point of our investigations are the works by Richard Sharp [Sha12, Sha16]. In there,
Sharp shows, among other things, that Gibbs Measures, appearing in the context of Thermody-
namic Formalism and conformal graph directed Markov systems, can be recovered from suitable
spectral triples and Dixmier traces. These are important mathematical objects in noncommuta-
tive geometry, where certain geometric spaces are analyzed by using operator and C∗-algebras (see
[Con85, Con94]. Although this theory has a geometric origin, there has been considerable interest
in finding examples where the C∗-algebra is the space of continuous functions on suitable sub-
spaces of infinite cartesian products, sometimes called Cantor sets. The first examples were given
by Connes in [Con85, Con89, Con94] and in the last decades, this subject has attracted some atten-
tion, see for example, [CI06, JKS15, JP16, KLS13, KS13, PB09, Sha12, Sha16, Whi13] and references
therein. These works concern not just Cantor sets, but also hyperbolic dynamics, directed Markov
systems, IFSs and symbolic dynamics.

Connes showed that spectral triples can be used to define a pseudo-metric on the state space of
the associated C∗-algebra. The way this pseudo-metric is defined is analogous to the Wasserstein
distance (or Monge-Kantorovitch metric) and some general conditions ensuring that this pseudo-
metric is indeed a metric were obtained independently by Pavlović and Rieffel (see [Pav98, Rie98]).
Kesseböhmer and Samuel studied metric aspects of this theory in [KS13], following [CI06], but in
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the context of Gibbs measures. They proved that Connes’ pseudo-metric is actually a metric that
induces the weak-∗-topology on the space of Borel probability measures on certain subshifts of
finite type. Several other geometric aspects of the spectral triples associated to Gibbs measure of
Hölder potentials are studied in [KS13]. For example, they compute the dimension of their spectral
triples, and show that the noncommutative volume constant is given by the inverse of Kolmogorov-
Sinai entropy of the Gibbs measure. This fact was established by showing that the Gibbs measure
associated to a Hölder potential admits a Dixmier trace representation, which leads to an identity
similar to (1), but without the factor two. One important ingredient in their proof is the existence of
a Haar basis for the L2 space of a Gibbs measure.

In here, we focus one these questions associated to a class of weakly expanding maps, which al-
lows to simultaneously study subshifts of finite type, expanding local diffeomorphisms, some con-
nected fractal sets like the Sierpinski gasket or weakly expanding maps like the Manneville-Pomeau
family at the same time. This class is defined as follows and is a weakly expansive version of the class
of expanding maps defined in [Rue89].

Definition 1.1 (Ruelle expansive). Assume that (Ω,d) is a compact metric space of diameter 1, that
r > 0 and that (cn : [0,1] → [0,∞)) is a sequence of functions such that cn(0) = 0, t 7→ cn(t ) is strictly
increasing for all n ∈N, n 7→ cn(t ) is decreasing and limn→∞ cn(t ) = 0 for all t ∈ [0,1]. We then refer
to T : X → X as (c,r )-Ruelle expansive if for all n ∈N, x, y, x̃ ∈Ωwith d(x, y) < r and T (x̃)n = x, there
exists a unique ỹ ∈Ωwith T n(ỹ) = y and

d(T k (x̃),T k (ỹ)) ≤ cn−k (d(x, y)) ∀k = 0,1, . . . ,n.

A standard example for elements in this class are open maps which uniformly expand distances
by λ ∈ (0,1) as the unicity of the preimage is a consequence of the openness whereas the uniform
expansion guarantees that cn(t ) ≪ tλ−n . A further example is the class of Manneville-Pomeau maps
as introduced in [LSV99]. In this case, it is shown in Example 2.3 below that cn(t ) ≪ (n + t−δ)−1/δ.

For a given function J : Ω→ (0,1), we are now interested in establishing a differential calculus
onΩ with respect to the potential log J by following ideias from noncommutative geometry. This is
of special relevance as, among other things, the theory of noncommutative geometry aims to unify
the differential calculus for smooth and fractal spaces in terms of their C∗-algebras. This unifying
object, referred to as spectral triple, is defined as follows.

Definition 1.2. A spectral triple is an ordered triple (A, H ,D), where

(1) H is a Hilbert space;
(2) A is a C∗-algebra and there exists a faithful representation a → La from A to the bounded

operators of H ;
(3) D is an essentially self-adjoint unbounded linear operator on H with compact resolvent

such that {a ∈ A : ∥[D,La]∥ < +∞} is dense in A. In here, [D,La] refers to the commutator
operator and D is called Dirac operator.

Observe that a spectral triple a priori is not of dynamical nature as D is a differential operator and
[D,La] might be seen as a noncommutative version of the derivative of a (for a list of examples, see
[Sam10] and Remark 3.2 below). Furthermore, each spectral triple gives rise to a pseudo-metric on
the set of states of A, known as spectral metric or Connes’ metric (cf. Section 3.2).

On the other hand, the relation of the Dirac operator to thermodynamical formalism is revealed
by the representation of the Dixmier trace of La |D|−1 as the integral with respect to the equilibrium
state of log J . Recall that the Dixmier trace of a compact operator B is given by, provided that the
limit exists,

Trω(B) = lim
n→∞

1

log(n)

n∑
k=1

βk ,

where βk are the eigenvalues of the compact operator |B | = p
B∗ B in descending order. Note that

operators with this property are referred to as measurable and that Trω(B) is also known as the non-
commutative expectation of B .



SPECTRAL TRIPLES AND DIXMIER TRACE REPRESENTATIONS 3

We now present our main results and relate them to the state of art. In Section 2, we provide the
necessary results on the asymptotic behaviour of the action of the Ruelle operator, defined by

La( f )(x) = ∑
y∈T −1(x)

ea(y) f (y),

on a suitable function space. Namely, we obtain polynomial contraction rates of L n
a towards a

limiting distribution if either cn(t ) ≪λ−n(t ) and a is of weak regularity or cn(t ) decays polynomially
and a is Hölder. As these results are new, without doubt of independent interest and refine recent
results by Kloeckner in [Klo], we now state a simplified version of the main result of this first part.

In order to do so, we have to introduce a version of weak, but uniform regularity. That is, we refer
to f :Ω→R as ωα,βlog-Hölder continuous if there is Hölωα,βlog ( f ) > 0 with

| f (x)− f (y)| ≤ Hölωα,βlog ( f )
C (d(x, y))α

(log t0 − logd(x, y))β

for some fixed t0 ≥ 1. In particular, ωα,0log-Hölder continuity coincides with the classical α-Hölder
continuity, whereas ω0,βlog-Hölder continuous functions are less regular.

Now assume that T either is Ruelle expanding and a isω0,βlog-Hölder continuous for some β> 1,

or that T is Ruelle expansive with contraction rate (t−1/β +n)−β for some β > 1 and a is ωα,0log-
Hölder continuous. In the first case, set γ := β−1, and in the second γ := αβ−1. In this situation,
we obtain the following result (see Corollary 2.10).

Theorem. Assume that T is topologically mixing, that γ > 0 and that La(1) = 1. Then there exists a
probability measure µ such that for any Lipschitz continuous function f :Ω→R and n ∈N, ∥L n

a ( f )−
µ( f )∥∞ ≤C Lip( f )nγ.

It is worth noting here that the proof is not based on spectral methods. A hint to this observation
is the simple fact that La( f ) in our setting is not necessarily Lipschitz continuous. Namely, the
method of proof is based on ideas from optimal transport (cf. Theorem 2.5) and allows to obtain
a complete description on the asymptotic behaviour of L n

a . That is, if La(1) = 1 not necessarily is
satisfied, we obtain polynomial convergence to the conformal measure (Corollary 2.12) and Hölder
continuity of equilibrium states, conformal measures, eigenfunctions and leading eigenvalues with
respect a (Theorem 2.13). Moreover, we also would like to point out that the method of proof is
different than the one in [Klo] and does not make use of half-times.

In Section 3, we then adapt the approach by Sharp in [Sha12] and construct a spectral triple for
Ruelle expanding maps and a given continuous function J (see Proposition 3.1). By regarding a spe-
cific example on the torus, it then becomes obvious that this spectral triple is a classical directional
derivative and that its spectral metric is degenerated (see Remark 3.2). However, by considering a
direct sum of these spectral triples and provided that the potential J reflects the metric structure of
Ω, we then obtain in Theorems 3.4 and 3.6 that the spectral metric associated to this new spectral
triple in fact is Lipschitz equivalent to the Wasserstein metric on probability measures onΩ. Finally,
we then show how to apply this result to the Sierpinski gasket (see Subsection 3.4).

Thereafter, in Section 4, we then discuss the relation of these operators to thermodynamic for-
malism through the Diximer trace Trω of La |D|−1. Here , we want to point out that there are several
constructions of spectral triples in the literature associated to iterated functions systems based upon
the prior definition of a C∗-algebra ([CI06, CIL08, Sam10, KS13]) as well as the direct construction
by Sharp ([Sha12]) for subshifts of finite type. Moreover, independent of the construction of the
spectral triple, it was shown by several authors (see [CIL08, Sam10, Sha12, KS13]) that the noncom-
mutative expectation satisfies

Trω(La |D|−1) = 1

h(µ)

∫
Ω

a dµ, (1)

where µ refers to the equilibrium state associated to the Hölder continuous potential log J and h(µ)
to its the Kolmogorov-Sinai entropy. In here, our results in Section 2 allow us to push these results
to spectral triples associated to Ruelle expansive maps and potentials of lower regularity. That is,
we show in Theorem 4.1 that, up to a factor the identity in (1) holds for either Ruelle expanding
maps and potentials of lower regularity or Ruelle expansive maps and Hölder potentials. In fact, we
show more. Namely, we only require that γ > 0 and, in particular, that the underlying potential is
not necessarily normalized. However, this requires to add additional terms (see Theorem 1.2). The
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mechanism behind the proof of this identity is an application of a version of the Hardy-Littlewood
Tauberian theorem (cf. Th. 4.4). Namely, Theorem 4.1 becomes a corollary of the differentiability of
a dynamically defined ζ-function at a critical parameter ρ (see Lemma 4.5). In other words, one has
to show that

lim
s→ρ+

(s −ρ)
∞∑

k=0
L k

sa( f )(x) = hρa(x)

h(µρa)

∫
Ω

f dmρa ,

which is equivalent in showing that the conformal measure ms associated to J s varies continuously
at s = ρ. Among other things, the lack of results in this generality in the literature lead us to inves-
tigate the asymptotical behaviour of L n

a in Section 2 as the iterates of its dual provide access to the
regularity of µs as a function of s.

In the subsequent section, we then present applications, examples and counterexamples. We
begin with a brief discussion of the relation between the Dixmier trace representation, the con-
struction of spectral triples and the topological dimension ofΩ. In particular, it turns out that in the
totally disconnected case, it is possible to construct spectral triples, whose spectral metric is a metric
and which comes with a Dixmier trace representation with respect to the same exponent. However,
in case of a connected space, this seems to be impossible. After that, we consider a specific poten-
tial function Φ associated with the Dyson model of ferromagnetism (cf. [Dys69, Dys71]). It turns
out that Φ is a natural example for an application of the above contraction result, but also shows a
very different behaviour than the one known from conformal dynamics as its pressure function is
strictly positive and increasing (cf. Lemma 5.1). In particular, in order to obtain a spectral triple with
a thermodynamic representation of the Dixmier trace, it is necessary to consider potentials of the
formΦ−t , for t > maxΦ (cf. Proposition 5.3). After that, we present in Section 5 examples within the
Walters family of potentials defined on Ω (see [Wal07]) whose dynamical ζ-functions are differen-
tiable or non-differentiable at the critical parameter. We are also able to present explicit expressions
for the associated zeta functions.

In Sections 6 and 7 we then show how to transfer these results to topological Markov chains and
Hölder continuous potentials and give some remarks on the difficulty in the context of uncountable
alphabets. In the Appendices, we present explicit computations for the zeta function of potentials
in Walters’ family (Appendix A) as well as a short discussion of the construction of a spectral triple in
[KS13] in Appendix B and an explicit representation for the equilibrium states (Appendix B.1). The
latter is of interest as this allows to obtain an explicit representations of the Dirac operator defined
in [KS13].

2. ASYMPTOTICS OF RUELLE’S OPERATOR

In this section we describe the asymptotic behaviour of Ruelle’s operator and derive a stability
result which will turn out to be essential for the representation of the Dixmier trace as an integral.
The main tool for revealing the asymptotics of the Ruelle operator is the construction of a coupling
which depends on the interplay between the contraction properties of T with the regularity of the
potential function. As mentioned above, we are also interested in Ruelle expansive maps, which
have weaker contraction properties and whose definition is repeated for convenience.

Definition 2.1 (Ruelle expansive). Assume that (Ω,d) is a compact metric space of diameter 1, that
r > 0 and that (cn : [0,1] → [0,∞)) is a sequence if functions such that cn(0) = 0, t 7→ cn(t ) is strictly
increasing for all n ∈N, n 7→ cn(t ) is decreasing and limn→∞ cn(t ) = 0 for all t ∈ [0,1]. We then refer
the map T : X → X as (c,r )-Ruelle expansive if for all n ∈N, x, y, x̃ ∈Ωwith d(x, y) < r and T (x̃)n = x,
there exists a unique ỹ ∈Ωwith T n(ỹ) = y and

d(T k (x̃),T k (ỹ)) ≤ cn−k (d(x, y)) ∀k = 0,1, . . . ,n.

As a first consequence of the definition, observe that T n is a local homeomorphism with inverse

τx̃ : B(x,r ) → X , y 7→ ỹ ,

where T n(x̃) = x, ỹ is given by expansiveness and B(x,r ) is the open ball of radius r with center x.
Furthermore, d(τx̃ (y),τx̃ (y ′)) ≤ cn(d(y, y ′)).
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We now introduce some notation. We will write a ≍ b and a ≪ b whenever there exists C ≤ 1 such
that C−1b ≤ a ≤C b and a ≤C b, respectively. Moreover, we will refer to C as the implicit constant in
the estimate.

Example 2.2. We now recall the definition of expanding maps from [Rue89]. That is, for a compact
metric space (Ω,d), the map T :Ω→Ω is (λ,r )-Ruelle-expanding if for any x, y, x̃ ∈Ωwith d(x, y) < r
and T (x̃) = x, there exists a unique ỹ ∈ Ω with T (ỹ) = y and d(x̃, ỹ) < a. Furthermore, d(x̃, ỹ) ≤
λd(x, y).

We now remark that it easily can be shown that T n is Ruelle-expanding with parameters (λn ,r ).
Or in other words, T is Ruelle expansive with contraction rate cn(t ) = tλn . The relevance of this
definition stems from the simple fact that subshifts of finite type as well as expanding, local diffeo-
morphisms on closed manifolds are in this class, and that the preimage structure allows, in general,
allows to avoid the construction of Markov partitions. For an example defined on the Sierpinski
gasket, see section 3.4.

Example 2.3. On the other hand, the family of Pomeau-Manneville maps as defined in [LSV99]
provides examples of Ruelle expansive maps which are not Ruelle expanding. Recall that this family
is defined by, for 0 < δ< 1,

T : [0,1] → [0,1], x 7→
{

x(1+ (2x)δ) : x ∈ [0,1/2]

2x −1 : x ∈ (1/2,1]

In order to show that T is Ruelle expanding, note that for x ∈ [1/2,1], the n-th inverse branch towards
the neutral fixed point in 0 satisfies xn ≍ n−1/δ (see, e.g. [Sar02]). Therefore, if x ∈ (0,1/2) is of
distance of order k−1/δ, then its n-th inverse branch towards 0 is of order (n +k)−1/δ. By identifying
0 and 1, one then obtains a continuous map on the circle which is expansive with respect to cn(t ) ≍
(n + t−δ)−1/δ.

The next ingredient is a control of the regularity of the potential through its modulus of continuity
as defined in [Klo]. A function ω : [0,1] → [0,∞) is referred to as a modulus of continuity if ω is a
continuous, increasing and concave function such that ω(0) = 0. One then refers to f : Ω→ R as
ω-Hölder if there is C f > 0 with

| f (x)− f (y)| ≤C f ω(d(x, y)) ∀x, y ∈Ω.

For example, if ω(t ) := tα for α ∈ (0,1], then the ω-Hölder property corresponds to the classical α-
Hölder property. However, as we are also interested in potentials of lower regularity, we will consider
functions with a modulus of continuity of the form, as introduced in [Klo],

ωα,βlog(t ) = C tα

(log t0 − log t )β
,

for C ,α,β > 0 and t0 sufficiently large such that ωα,βlog is concave on [0,1]. We now analyse the
interplay between the contraction and ωα,βlog with respect to the Birkhoff sum

an := a +a ◦T +·· ·+a ◦T n−1

for a :Ω→ R and n ∈ N. As we have to show that the thermodynamical quantities are continuous
with respect to perturbations of a, we now take special care of constants which depend on a. If T is
Ruelle expanding (that is, cn(t ) ≤ Dsn t for some s ∈ (0,1)) and a is ω0,βlog-Hölder with β > 1, then,
for x, y with d(x, y) < r and x̃ ∈ T −n({x}) and ỹ := τx̃ (y),

|an(x̃)−an(ỹ)| ≤Ca

n∑
j=1

ω0,βlog(c j (d(x, y))) (2)

≤Ca

n∑
j=1

C

(log(t0/D)+| logd(x, y))|+ j | log s|)β

≤ Ca

β| log s|
C

(log(t0/D)+| log s|− logd(x, y)))β−1

≪Caω0,(β−1)log(d(x, y)),
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where the implicit constant in ≪ only depends on D and s. On the other hand, if cn(t ) ≤ Dt (1+
nt 1/β)−β and a is ωα,0log-Hölder for some α,β> 0 with α> 1/β, then

|an(x̃)−an(ỹ)| ≤
n∑

j=1
CaDαd(x, y)α(1+ j (d(x, y))1/β)−αβ

≤ CaDα

αβ−1
d(x, y)α−1/β≪Caωα−1/β,0log(d(x, y)), (3)

where the implicit constant in ≪ only depends on D , α and β. In particular, it follows under both
hypotheses that, for x, y ∈Ωwith d(x, y) < r ,∣∣∣∣L n

a (1)(x)

L n
a (1)(y)

−1

∣∣∣∣≤ 1

L n
a (1)(y)

∑
T n (x̃)=x

∣∣ean (x̃) −ean (τx̃ (y))∣∣
≤ sup

T n (x̃)=x

∣∣ean (x̃)−an (τx̃)(y)) −1
∣∣

≪ (
eCa −1

){ω0,(β−1)log(d(x, y)) : T expanding

ωα−1/β,0log(d(x, y)) : T expansive.

In particular, L n
a (1)(x) ≍L n

a (1)(y), provided that d(x, y) < r . In order to extend this estimate to any
x, y ∈Ω, we recall that T is called topologically mixing if for all open sets U ,V ⊂Ω there exists k ∈N
such that T −n(U )∩V ̸= ; for all n > k. In particular, as the inverse branches of T contract with rate
cn , it follows that there exists p ∈N such that for each pair x, y , there exists at least one element in
T −p ({x}) which has at most distance r to y . Hence, it follows for n ≥ 0 andmk := maxx card(T −p ({x}))
that

ep min aL n
a (1)(y) ≤ eCa L

n+p
a (1)(x) ≤ eCa∥L p

a (1)∥∞L n
a (1)(x)

≤ eCa ek0 max ampL n
a (1)(x)

As a is ω-Hölder and the ω-diameter ofΩ is smaller than 1, we obtain that

L n
a (1)(x) ≤ e(k0+1)Camk0L

n
a (1)(y)

for all x, y ∈Ω and n ∈N. Observe that this implies that the limit

ρa := lim
n→∞

n
√

L n
a (1)(x)

exists by almost submultiplicativity and is independent of x.
A first corollary of these estimates is the following result. As the proof of Proposition 3.1 in [KLS15]

applies in verbatim, we do not give the proof in here.

Proposition 2.4. Assume that T is a topological mixing and Ruelle expansive map.

(1) If cn(t ) ≪ sn t for some s ∈ (0,1) and a is ω0,βlog-Hölder continuous for some β > 1, then
there exists a ω0,(β−1)log-Hölder continuous, strictly positive function ha : Ω→ R such that
La(ha) = ρaha .

(2) If cn(t ) ≪ t (1+nt 1/β)−β and a is ωα,0log-Hölder continuous for some α,β > 0 with α > 1/β,
then there exists a ωα−1/β,0log-Hölder continuous, strictly positive function ha : Ω→ R such
that La(ha) = ρaha .

Moreover, if Ca refers to the ω-Hölder coefficient of a, we have in both cases with respect to implicit
constants only depending on T that ha(x)/ha(y) ≪ epCa for all x, y ∈ Ω. Moreover, if d(x, y) < r ,
then |ha(x)/ha(y)−1|≪ eCaω†(d(x, y)), where ω† =ω0,(β−1)log in the first and ω† =ωα−1/β,0log in the
second case.

As an immediate application of Proposition 2.4, one obtains that L n
a (1) behaves asymptotically

like ρn
a as L n

a (1) ≍ e±pCa L n
a (ha) = e±pCaρn

a h. Moreover, for ρa and ha as above, it follows for a :=
a + logh − logh ◦T − logρa that

L n
a ( f ) = ρ−nL n

a ( f h/h ◦T n) = L n
a ( f h)

ρn
a h

for any f : ω → [0,∞) and n ∈ N. In particular, La(1) = 1. Or in other words, a is a normalized
potential.
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We now employ a in order to define a sequence of probabilities onΩ by

mn
x := ∑

T n (z)=x
eanδz = (L n

a )∗(δx ),

where δz refers to the Dirac measure support on z ∈Ω and (L n
a

)∗ to the dual of the action of L n
a

on
the space of continuous functions. Note that mn

x (Ω) = 1 as a is normalized. In order to determine the
asymptotics and the dependence on x ∈Ω we now make use of couplings. Recall that a probability
measure P onΩ×Ω is referred to as a coupling of the probabilities m1,m2 onΩ if mi =π∗

i (P ) where
πi is the canonical projection on the i -th coordinate and π∗

i the corresponding action on measures.
Furthermore, for a ω-Hölder continuous function f , we write ∥ f ∥ω := ∥ f ∥∞+Hölω( f ), for

Hölω( f ) = sup{| f (x)− f (y)|/ω(d(x, y)) : 0 < d(x, y) < r }.

We now construct couplings of mn
x and mn

x which show a polynomial contraction. Moreover, we
take special care on the continuity of the involved constants with respect to ∥a∥ω.

Theorem 2.5. Assume that T is a Ruelle expansive and topologically mixing map of the compact
metric space (Ω,d) of diameter 1 and that a is ω-Hölder continuous.

(1) Assume that cn(t ) ≪ sn t for some s ∈ (0,1) and that ω = ω0,βlog for some β > 1. Then there
exists κa ≥ 1 depending on a and T such that for any n > 0 there exists a a coupling P n

x,y of
mn

x and mn
y such that ∫

d(z, z̃)dP n
x,y (z, z̃) ≤ κan1−β

If β> 2 then there exist ∆0,n0 ≥ 1 depending on a, and κ depending on T and β such that for
all x, y ∈Ω, t ≥ d(x, y), ∆t := ∆0 + log t/log s, the following holds. There exists a coupling of
P n

x,y of mn
x and mn

y with∫
d(x̃, ỹ)dP n

x,y (x̃, ỹ) ≤ κ
(
∆t + n

2

)1−β
,

provided that n ≥ n0 and n is sufficiently large such that sn(∆t +n/2)β−1 ≤ 1. Moreover, for
n ≥ n0, ∫

ω0,β−1log(d(x̃, ỹ))dP n
x,y (x̃, ỹ) ≤ κ

(
logd(x, y)

log s
+ ∆0 +n

2

)1−β
.

(2) Assume that cn(t ) ≪ t (1+nt 1/β)−β and ω=ωα,0log for some α,β> 0 with αβ> 1 and β> 1.
Then there exists κa ≥ 1 depending on a and T such that for any n > 0 there exists a a coupling
P n

x,y of mn
x and mn

y such that∫
d(z, z̃)dP n

x,y (z, z̃) ≤ κan1−αβ.

If, in addition, αβ > 2 then there exist ∆0,n0 ≥ 1 depending on a and κ ≥ 1 depending on T
and α,β such that for all x, y ∈Ω, there exists a coupling P n

x,y of mn
x and mn

y such that for all
n ≥ n0, ∫

d(x̃, ỹ)dP n
x,y (x̃, ỹ) ≤ κ

(
d(x, y)−1/β+ ∆0 +n

2

)1−αβ
.

Moreover, for n ≥ n0,∫
ωα−1/β,0log(d(x̃, ỹ))dP n

x,y (x̃, ỹ) ≤ κ
(
d(x, y)−1/β+ ∆0 +n

2

)1−αβ
.

(3) In both cases, the constants κa ,∆0 and n0 might be chosen in such way that they vary contin-
uously in ∥a∥ω.

Before giving the proof, we would add some remarks and observations to this theorem.

Remark 2.6. We did not include the case of an expanding map and Hölder continuous potentials,
as this is Ruelle’s Perron-Frobenius theorem as given, e.g., in [Rue89]. Recall that in this setting, the
above decay is exponential. However, we would like to note that the method of proof given below
also is applicable. In fact, it suffices to replace the term (∆t +n)−γ by tλn and apply basic estimates
for the geometric series.
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Remark 2.7. We also would like to include a comment on the different contraction results of Theo-
rem 2.5. Firstly, if 1 < β ≤ 2 in the expanding case or 1 < αβ ≤ 2 in the expansive case, respectively,
then we were only able to obtain a decay rate of

∫
d(x̃, ỹ)dP n

x,y (x̃, ỹ) which is independent of d(x, y).
Secondly, if β > 2 or αβ > 2, respectively, then the decay rate with respect to the modified distance
ω·· ◦d , that is of

∫
ω·· ◦d(x̃, ỹ)dP n

x,y (x̃, ỹ) is a function of n and d(x, y). However, in case of an ex-
panding map and weak regularity, the decay with respect to d , that is of

∫
d(x̃, ỹ)dP n

x,y (x̃, ỹ), only
becomes effective after a certain waiting time, which also depends on n and d(x, y).

Note that these different types of decay have several interpretations in terms of the action of
La on Lipschitz and ω··-Hölder functions or in terms of the Wasserstein distance as defined below
(Def. 2.9). For example, the asymptotics of La given in Corollaries 2.10 and 2.11 are immediate
consequences of these two types of decay. In terms of Wasserstein distances, the first case provides
us with a uniform decay of Wd ((L n

a )∗(µ1), (L n
a )∗(µ2)) for arbitrary probability measures µi . The

second case then refines this result by providing decay and a modulus of continuity of the map
µ 7→ (L n

a )∗(µ) with respect to Wω··◦d .
Unfortunately, the authors were not able to verify if it is possible to extend the stronger version

of decay to all parameters. In this case, the transition at 2 only would be a consequence of our
method of proof. However, a transition at this parameter is plausible as it corresponds to the known
transition in the Manneville-Pomeau family for the parameter δ = 1/2. For the transition, we refer
to [Gou04] whereas it follows from Remark 2.14 below, that δ< 1/2 corresponds to αβ> 2.

Remark 2.8. Due to the similarity of the statements, we discuss the differences to results be Kloeck-
ner in [Klo]. First of all, we point out that Kloeckner always requires that the potential a is flat,
that is the estimates (2) and (3) hold without the restriction that d(x, y) < r . However, it appears
that this condition implies that a is either constant or the map T has full branches. Kloeckner then
shows for example in Theorem E in there, that a for a flat, normalized and ω0,βlog-Hölder potential

with β > 1 and a uniformly expanding map T , ∥L n
a ( f )− ∫

f dµ∥∞ ≪ n1−β, where µ is the unique
(La)∗-invariant measure.

In particular, Part (1) of Theorem 2.5 above is partially stronger as we only require a local version
of flatness. That is, our result allows to include maps without full branches, like topologically mixing
subshifts of finite type or the map defined in Section 3.4. Moreover, the method in here allows to
obtain an estimate for the decay of

∫
d(x, y)dP n

x1,x2
depending on d(x1, x2) for β> 2.

Furthermore, Theorem 2.5 also has analogies and applications to Theorem 4.1 in [Klo]. As we
already discussed the expanding case above, we will focus on the expansive, polynomially decaying
case. In there, for a given sequence of couplings M n

x1,x2
of probability measures mn

xi
supported on

T −n({xi }) and a flat and normalized potential a, Kloeckner constructs couplings P n
x1,x2

of (T n
a )∗(δxi ),

for Ta( f )(x) := ∫
f dmn

x with the following property. If
∫

d(x, y)d M n
x1,x2

≪ (n +d(x1, x2)−1/α)−α for
some α > 0, then P n

x1,x2
shows the same decay. However, as Ta = La , Theorem 2.5 also can be

applied and gives the same result for αβ> 2.
Finally, we also would like to remark that there is a problem with the proof of the main con-

traction result in [Klo] as Lemma 2.14 in there does not hold. After pointing out this problem to
Kloeckner, he provided a partial solution by imposing a stronger but still sufficiently weak hypothe-
sis. However, due to global flatness, his results are not applicable in our setting.

Proof. In order to present the main argument for the contraction, we introduce the following ob-
jects and notations. First of all, observe that it follows from topological mixing and the uniform
contraction of the inverse branches that there exists p ∈ N such that for any pair U ,V ∈ U , there
exist u, v ∈Ωwith T p (u) ∈U , T p (v) ∈V such that diam(τu(U )∪τv (V )) < r , where τp

u ,τp
v refer to the

inverse branches of T p given by the orbits of u, v . For x ∈U and y ∈ V , we now define ux,y := τu(x)
and vx,y := τv (y). As d(ux,y , vx,y ) < r it follows that for each z with T n(z) = ux,y , vx,y is in the domain
of τn

z .
Moreover, we refer to a finite measure Q onΩ2 as a subcoupling of two Borel probability measures

m1,m2 onΩ ifπ∗
i (Q)(A) ≤ mi (A) for all Borel sets A and i = 1,2. Finally, in order to keep the notation

simple, we will use κ for a constant which does not depend on a, andω† forω0,(β−1)log orωα−1/β,0log,
depending on the application of (2) or (3), respectively.
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STEP 1. We begin with the construction of the underlying subcouplings. For x, y ∈Ω and k ≥ p, set

ϕk
z1,z2

:= min
{

eak (zi ) : i = 1,2
}

and

Qk,l
x,y :=


∑

T k (z)=x ϕ
k
z,τk

z (y)
δz ⊗δτk

z (y) : d(x, y) < r,∑
T k−p (z)=ux,y

ϕk

z,τ
k−p
z (vx.y )

δz ⊗δτk−p
z (vx.y )

: d(x, y) ≥ r.

Note that z = τk
z (x) in the first case and that z = τk−p

z (ux.y ) in the second case. In particular, there is
a symmetry in the above definition by choosing preimages with respect to choosing the preimages
of x or y and ux.y or vx.y , respectively.

As T is expansive, it follows in the first case, for Qk
x,y -a.e. z1, z2, that d(z1, z2) ≤ ck (d(x, y)). By the

same argument, one obtains for the second case that

d(z1, z2) ≤ ck−p (d(ux,y , vx,y ) ≤ ck−p (r ) ≤ ck−p (d(x, y)) ≪ ck (d(x, y)),

where the implicit constant in the last estimate does not depend on k as p is fixed. That is, d(z1, z2) ≪
ck (d(x, y)) for Qk

x,y -a.e. z1, z2 and all x, y ∈Ω and k > p.

STEP 2. We now determine π∗
i Qk

x,y and obtain lower bounds for Qk
x,y (Ω2). If d(x, y) < r , then the

preimages of x and y come in pairs. Hence, it follows from (2), (3) and Proposition 2.4 for f :Ω→
[0,∞) that

0 ≤
∫

f dmk
x −

∫
f (x̃)dQk

x,y (x̃, ỹ) = ∑
T k (z)=x

f (z)
(
eak (z) −ϕk

z,τk
z (y)

)
= ∑

T k (z)=x

f (z)eak (z)

(
1− min

t=z,τk
z (y)

eak (t )−ak (z)

)

≤
∫

f dmk
x

(
1−e−κCaω

†(d(x,y))
(
1−κeCaω†(d(x, y))

)2
)

≤
∫

f dmk
x

(
1−e−κCaω

†(d(x,y)) +2κeCaω†(d(x, y))
)
≪ eκCaω†(d(x, y)).

It follows now from the symmetry in the construction of Qk
x,y that the same estimate holds with

respect to mk
x . Hence, Qk

x,y is a subcoupling of mk
x and mk

y . Furthermore, it follows from the above
that

0 ≤ 1−Qk
x,y (Ω2) = 1−

∫
1dQk

x,y ≪ eκCaω†(d(x, y)).

Note that these estimates only are effective for x, y close to each other. However, for x, y in arbitrary
position with d(x, y) < r , the estimates in (2), (3) imply that Qk

x,y (Ω2) ≫ e−κCa .

If d(x, y) ≥ r , then it follows from the same argument that Qk
x,y is a subcoupling of mk

x and mk
y .

Moreover, by (2), (3) and Proposition 2.4,

Qk
x,y (Ω2) ≥ emin{ap (ux,y ),ap (vx,y )}e−κCaω

†(r )L
k−p
a

(1)

≫ ρ
p
a ep minz a(z)e−2pCa .

Finally, it follows from L
p
a (ha) = ρ

p
a ha that ρp

a ≫ ep minz a(z)−2pCa . Hence, there exists κ ≥ 1, only
depending on T such that

Qk
x,y (Ω2) ≥

{
1
κeκ(minz∈Ω a(z)−Ca ) : d(x, y) ≥ r

max
{ 1
κe−κCa ,1−κeκCaω†(d(x, y))

}
: d(x, y) < r,

≥ max
{
θ−1

a ,1−θaω
†(d(x, y))

}
(4)

where θ−1
a := min

{
κ−1eκ(minz∈Ω a(z)−Ca ),κ−1e−κCa )

}
.

STEP 3. We now extend Qk
x,y and give the main estimate for the contraction statement of the theo-

rem. In order to do so, set A−1 = {(z1, z2) ∈Ω2 : d(z1, z2) ≥ r } and, for j ≥ 0,

A j :=
{

(z,τ j
z (z̃)),∈Ω2 : d(T j (z), z̃) < r,d(T j+1(z),T (z̃)) ≥ r

}
.
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Note that it follows from the construction that the support of Qk
x,y is contained in A j+k for (x, y) ∈ A j

for j ≥ 0, and in Ak−p for (x, y) ∈ A−1, respectively. Furthermore, as it easily can be verified, Z k
x,y =

Qk
x,y +Rk

x,y is a coupling of mk
x and mk

y , for

Rk
x,y := 1

1−Qk
x,y (Ω2)

(π∗
1 Qk

x,y −mk
x )⊗ (π∗

2 Qk
x,y −mk

y ).

Finally, it follows from the fact that T k is a local homeomorphism that the support of Rk
x,y is con-

tained in
⋃

i< j+k Ai for x, y ∈ A j , j ≥ 0, and in
⋃

i<k Ai for x, y ∈ A−1, respectively.
We are now in position to prove the main estimate. In order to do so, set t := d(x, y) and assume

that n ∈N, that B j ⊂ A j for j = 0, . . .n, B−1 ⊂Ω2, and that B∗ ⊂⋃
j≥n A j for t < r and B∗ =; for t ≥ r ,

respectively. We now construct k and B+
j for j =−1, . . . ,n +k and B+∗ with the these properties with

respect to n +k. That is, we consider

B+
−1 := ⋃

(z1,z2)∈B j +k: j=−1,...m,∗
supp(Rk

z1,z2
), B+

k−p := ⋃
(z1,z2)∈B−1

supp(Qk
z1,z2

),

B+
∗ := ⋃

(z1,z2)∈B∗
supp(Qk

z1,z2
), B+

j :=; for j = 0, . . .k −1, j ̸= k −p, .

B+
j := ⋃

(z1,z2)∈B j−k

supp(Qk
z1,z2

) for j = k, . . .n +k.

As a consequence of the construction of Qk , we have that B+
j ⊂ A j for j = 0, . . .n + k and B+∗ ⊂⋃

j≥n+k A j or B+∗=;, depending on the value of t .

STEP 4. POLYNOMIAL DECAY. Choose n0 such that 1−θacn0+1(r ) ≥ θ−1
a and assume that for some

function ∆ : [0,r ] → [1,∞) and γ> 1,

ω† ◦ cn(t ) ≤ κ(∆(t )+n)−γ.

Furthermore, assume that M is a probability measure on B∗∪⋃
j≤n B j such that, for some ∆0 ≥ 0,

δ> 0,

M(B j ) = 0 for j = 0, . . . ,n0, (5)

M(B j ) ≤ δ(∆0 +∆(t )+n − j )−γ for j −1,n0 +1, . . . ,n.

For M+ := Z k
z1,z2

d M(z1, z2) it then follows that M+(B+
j ) ≤ M(B j−k ) for j ̸= −1, which proves (5) with

respect to M+, n +k and j = 0, . . .n +k. So it remains to construct k, δ and ∆0, independent of n
such that

M+(B+
−1) ≤ δ(∆0 +∆(t )+n +k − j )−γ. (6)

For ease of notation, set ∆t :=∆0 +∆(t ). Moreover, choose n0 such that 1−θaω
†(cn0+1(r )) ≥ θ−1

a and
n0 < m0 < n. By (4),

M+(B+
−1) ≤

n0∑
j=−1

(1−θ−1
a )M(B j )+θa

n∑
j=n0+1

ω†(c j (r ))M(B j )+θacn(t )M(B∗)

≤ (1−θ−1
a )δ

(∆t +n +1)γ
+

m0∑
j=n0+1

θaκδ

((∆(r )+ j )(∆t +n − j ))γ

+
n∑

j=m0+1

θaκδ

((∆(r )+ j )(∆t +n − j ))γ
+θacn(t )M(B∗)

≤ (1−θ−1
a )δ

(∆t +n)γ
+ θaκδ

(∆t +n −m0)γ
(γ−1)−1

(∆(r )+n0)γ−1

+ θaκδ

(∆(r )+m0)γ
(γ−1)−1

(∆t −1)γ−1 +θacn(t )M(B∗).
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We now choose m0. If n ≤ ∆t −∆(r ), set m0 = n. Otherwise, we choose m0 such that ∆t +n −m0 =
∆(r )+m0 ±1. In both cases, one obtains that

M+(B+
−1) ≤ (1−θ−1

a )δ

(∆t +n)γ
+

2θaκδ
γ−1

(
n1−γ

0 + (∆0 −1)1−γ
)

(∆t +∆(r )+n)γ
+ θaκ

(∆(t )+n)γ
.

For ϵ > 0, we may enlarge n0 such that 2θaκn1−γ
0 (γ− 1)−1 < ϵ. For ∆0 := k/ϵ, it then follows from

k ≥ n0 +p that 2θaκ(∆0 −1)1−γ(γ−1)−1 < ϵ. Moreover, this choice also ensures that, for δ := κθa/ϵ,

M+(B+
−1) ≤ δ(1+ϵ)γ

(∆t +n +k)γ

(
(1−θ−1

a )+2ϵ+ κθa

δ

(∆t +n)γ

(∆(t )+n)γ

)
≤ δ(1+ϵ)γ

(∆t +n +k)γ
(
1−θ−1

a +4ϵ
)

.

The estimate in 6 then follows e.g. for ϵ−1 := max{8θa ,2γθa}.
We are now in position to obtain the asymptotic behaviour through induction. Assume that that

n = q(n0 +p)+ r for q,r ∈N and 0 ≤ r < n0 +p. Then we may apply the above iteration q −1-times
for k = n0 + p and once for k = n0 + p + r to the Dirac measure M0 := δ(x,y) and B 0∗ := {(x, y)} if
t := d(x, y) < r and B 0

−1 := {(x, y)} and t := r , otherwise. Hence,

dP n
x,y (z, z̃) := d Z n0+p+r

zq−1,z̃q−1
(z, z̃) · · ·Z n0+p

z1,z̃1
(z2, z̃2)d Z n0+p

x,y (z1, z̃1)

is a coupling of mn
x and mn

y . Moreover, if B q
j and B q

∗ refer to the set obtained by induction, it follows

that

(∗) :=
∫

d(z, z̃)dP n
x,y (z, z̃)

=
n∑

j=−1

∫
B

q
j

d(z, z̃)dP n
x,y (z, z̃)+

∫
B

q
∗

d(z, z̃)dP n
x,y (z, z̃)

≤
n∑

j=−1

c j (r )

δ(∆t +n − j )γ
+ cn(t )M0(B 0

∗).

STEP 4. POLYNOMIAL DECAY AND WEAK REGULARITY. We now give the estimate for
∫
ω†(d)dP n

x,y .
Observe that it follows from Step 3 that, for −1 < n0 < m,∫

ω†(d)dP n
x,y ≤

m0∑
j=−1

κ(∆(t )+ j )−γ

δ(∆t +n − j )γ
+

n∑
j=m0+1

κ(∆(t )+ j )−γ

δ(∆t +n − j )γ
+κ(∆(t )+n)−γM0(B 0

∗)

≤ κ(∆(t )−1)1−γ

δ(γ−1)(∆t +n −m0)γ
+ κ(∆(t )+m0)−γ

δ(γ−1)(∆t −1)γ−1 +κ(∆(t )+n)−γ.

For m0 with ∆t +n −m0 =∆(t )+m0, we hence obtain that∫
ω†(d)dP n

x,y ≤
κ

δ(1−γ)

(
∆(t )+ ∆0 +n

2

)−γ
.

STEP 5. EXPANDING MAPS. If cn(t ) ≤ κsn t , thenω† =ω0,(β−1)log. Hence, γ=β−1 and∆(t ) = (− log t −
κ)/ log s and, in particular, β> 2. It then follows by separating the sum at m0 = n/2 that

(∗) ≤
κr

s(1−s)

δ(∆t +n/2)β−1
+ κr sn/2∆

2−β
t

δ|2−β| +κsn t

Then the middle term is bounded, up to constants depending on T and β, by sn/2∆
2−β
t . Hence, for

n with sn/2(∆t +n/2)β−1 ≤ 1, it follows by enlarging κ, if necessary, that

(∗) ≤κ
δ

(
∆t + n

2

)1−β
.

STEP 6. EXPANSIVE MAPS. If cn(t ) ≤ κt (1+nt 1/β)−β = κ(t−1/β+n)−β and ω=ωα,0log for some α> 0

and β> 1 with αβ> 1, then γ=αβ−1 and ∆(t ) = t−1/β. In particular, αβ> 2. Now choose m0 such
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that ∆0 + t−1/β+n −m0 = t−1/β+m0. It then follows as above with ∆t =∆0 + t−1/β that

(∗) ≤ κ(t−1/β)−β+1

δ(∆t +n −m0)αβ−1
+ κ(t−1/β+m0)−β

δ(αβ−2)
∆
αβ−2
t +κ(t−

1
β +n)−β

≪ 1(
t−1/β+ ∆0+n

2

)αβ−1
,

where we have used that αβ−1 <β.

STEP 7. THE CASE γ > 0. Now assume that ω† ◦ cn(t ) ≤ κ(∆(t ) + n)−γ for some γ > 0. Further-
more, assume that M is a probability measure on B∗∪⋃

j≥n B j where n is chosen in such way that

ω†(cn(r )) ≤ θ−2
a M(B−1)/2. Then, by the same argument and with the same notation as in Step 4, it

follows for k ∈N that∫
P m

x,y (B+
−1)d M(x, y) ≤(1−θ−1

a )M(B−1)+θaω
†(cn(r ))(1−M(B−1))

≤(1−θ−1
a )M(B−1)+ 1

2
θ−1

a M(B−1 =
(
1− 1

2θa

)
M(B−1).

Hence, in order to be in position to apply the estimate again, it suffices to choose m such that
ω†(cm−p (r )) ≤ ρθ−2

a M(B−1)/2, for ρ := 1− 1
2θa

. In other words, for nk with ω†(cnk−p (r )) ≤ ρkθ−2
a /2,

for k = 0,1, · · · , it follows for

Qk := P nk
xk ,yk

· · ·dP n0
x0,y0

(x1, y1)dP n0
x,y (x0, y0)

that Qk (B k
−1) ≤ ρk and Qk (B k

j ) = 0 for k = 0, . . . ,m − p − 1, where B k· refers to the set obtained by

applying B· 7→ B+· k-times. In particular,∫
d(z, z̃)dQk ≤ ρk + cnk−p (r ).

As ω† ◦ c j (r ) ≤ κ(∆(r )+ j )−γ it follows that one may choose nk to be smallest integer bigger than

p −∆(r )+ (2κθ2
a)1/δρ−k/γ. For this choice of nk , one then obtains that

∑k
j=0 n j ∼ (2κθ2

a)1/δρ−(k+1)/γ.
The statement on the decay for γ> 0 follows from this.

STEP 8. CONTINUITY OF ∆0 AND n0 . First of all, note that (4) holds for θa := κexp(κ∥a∥ω) for some
κ only depending on T and ω†. In particular, by eventually enlarging κ, we may assume that the
parameter ϵ at the end of Step 4 might be chosen as ϵ := κ−1 exp(−κ∥a∥ω). In particular, δ > 0 in
fact might be chosen independently from a and that ∆0 := 2n0κexp(κ∥a∥ω) satisfies the required
properties. As n0 might be chosen to be the minimal value such that ω†(cn0+1(r )) ≤ θ−1

a −θ−2
a and

2(κθa)2n1−γ
0 < γ−1, it follows that ∆0 and n0 vary continuously with ∥a∥ω. □

We now discuss applications of Theorem 2.5 with respect to the Hölder continuity of the equi-
librium state with respect to a. In order to do so, we first introduce several new objects in order to
be able to treat both cases in Theorem 2.5 simultaneously. That is, in the expanding case, we set
γ :=β−1, ω† :=ω0,β−1log and

ωn(t ) := κ(
log t/log s +∆0/2+n/2

)1−β.

On the other hand, if T is expansive, we consider γ :=αβ−1, ω† :=ωα−1/β,0log and

ωn(t ) := κ
(
t−1/β+∆0/2+n/2

)1−αβ
.

A further key ingredient is the Wasserstein distance, which is defined as follows.

Definition 2.9. Assume that µ1,µ2 are probability measures onΩ. Then

W (µ1,µ2) := inf
{∫

d(x, y)dQ(x, y) : Q is a coupling of µ1,µ2
}

refers to the Wasserstein distance of µ1 and µ2.
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As it is well known, W is a metric on the space of Borel probability measures which is compatible
with the weak∗-topology. Moreover, by Kantorovich’s duality,

Wd (µ1,µ2) = sup{
∫

f d(µ1 −µ2) : Lip( f ) ≤ 1},

where Lip( f ) refers to the Lipschitz constant of f (i.e. Lip( f ) = Hölω1,0log ( f )). By having a look to
Theorem 2.5, it is natural to consider an equivalent metric on Ω. In order to do so, note that for
any concave and strictly increasing function ω : [0,1] → [0,∞) with ω(0) = 0, it follows from the
subadditivity of concave functions that ω(d) is a metric. Moreover, as ω is invertible, it follows that
the topologies generated by d and ω(d) coincide. With respect to this new metric, we will write

Wω(µ1,µ2) := inf
{∫
ω(d(x, y))dQ(x, y) : Q is a coupling of µ1,µ2

}
.

We begin with an analysis of the asymptotics of (L n
a

)∗(µi ) with respect to Wd , where (La)∗ is the
dual of the action of La on the space of continuous functions. By Kantorovich’s duality, it suffices in
fact to analyse the action of La on Lipschitz continuous functions (i.e. ω1,0log-Hölder continuous
functions). So assume that Q is a coupling of µ1 and µ2 and that Theorem 2.5 is applicable. Then
P n

x,y dQ(x, y) defines a coupling of the (L n
a

)∗(µi ), where P n
x,y is as in Theorem 2.5. Hence, if f is

Lipschitz continuous, then∣∣∣∣∫ L n
a ( f )dµ1 −L n

a ( f )dµ2

∣∣∣∣= ∣∣∣∣∫ L n
a ( f )(x)−L n

a ( f )(y)dQ(x, y)

∣∣∣∣
=

∣∣∣∣∫ f (x̃)− f (ỹ)dP n
x,y (x̃, ỹ)dQ(x, y)

∣∣∣∣
≤ Lip( f )

∫
d(x̃, ỹ)dP n

x,y (x̃, ỹ)dQ(x, y) ≪ωn(r ).

That is, Wd ((L n
a

)∗(µ1), (L n
a

)∗(µ2)) ≪ ωn(r ) and, in particular, ((L n
a

)∗(µ1) : n ∈ N) is a Cauchy se-
quence and therefore converges to a probability measure µ. It then follows from continuity that
((La)∗(µ) =µ. By applying the estimate to δx and µ and after changing the metric, one then obtains
the following corollary.

Corollary 2.10. Under the assumptions of Theorem 2.5, there exists a unique Borel probability mea-
sure µ with ((La)∗(µ) = µ. Moreover, for any Lipschitz continuous function f and n > n0, ∥L n

a
( f )−∫

f dµ∥∞ ≪ Lip( f )ωn(r ). If f is ω†-Hölder continuous, then ∥L n
a

( f )−∫
f dµ∥∞ ≪ Hölω† ( f )ωn(r ).

In order to obtain an estimate on the Hölder regularity of L n
a

( f ), it suffices to consider µi := δxi

for i = 1,2 in the above estimate and apply Theorem 2.5 for the case γ> 1. Hence,∣∣L n
a ( f )(x1)−L n

a ( f )(x2)
∣∣≪ Lip( f )ωn(d(x1, x2))

for n sufficiently large. That is, if T is expanding, then γ = β−1 and n has to be bigger then some
lower bound which depends on d(x, y). Therefore, Theorem 2.5 does not provide an answer in this
case. However, by considering functions which are Lipschitz continuous with respect to the met-
ric ω†(d), the estimate on

∫
ω†(d)dP n

x,y provides a uniform upper bound for n ≥ n0. That is, one
immediately obtains the following result.

Corollary 2.11. Under the assumptions of Theorem 2.5, assume that γ > 1 and that f is ω†-Hölder
continuous withω†-Hölder coefficient C f . We then have with respect to the measure µ given by Corol-

lary 2.10, for n ≥ 0, that
∥∥∥L n

a
( f )−∫

f dµ
∥∥∥
ωn

≪ Hölω† ( f ).

We now discuss how these results allow to obtain the asymptotics of L n
a and the continuity of

µa , λa and ha as functions of a. The key observation in here is that L n
a

( f /ha) =L n
a ( f )/ρn

a ha which

allows to apply Corollary 2.10 to L n
a . In particular, if we assume that µ(h−1) = 1, we have that∥∥ρ−nL n

a (1)−h
∥∥∞ ≤ κeκCa (ca +n)−γ. (7)

For dma :=µa(h−1
a )−1h−1

a dµ= h−1
a dµ, we then obtain the following.

Corollary 2.12. Assume that γ> 0 and f is ω†-Hölder continuous. Then, with respect to Ca ,Cb as in
(2) and (3), ca depending continuously on ∥a∥ω and κ depending only on T and γ,∥∥∥∥L n

a ( f )(x)

L n
a (1)(x)

−ma( f )

∥∥∥∥
∞

≤ κeκCa∥ f ∥ω† (ca +n)−γ.
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Proof. It follows from Corollary 2.10 that

∣∣∣∣L n
a ( f )(x)

L n
a (1)(x)

−ma( f )

∣∣∣∣=
∣∣∣∣∣L

n
a

( f /ha)(x)

L n
a

(1/ha)(x)
−ma( f )

∣∣∣∣∣
≤ 1

L n
a

(h−1
a )(x)

(∣∣L n
a ( f h−1

a )(x)−µa( f h−1
a )

∣∣+ ∣∣µa( f h−1
a )−m( f )L n

a (h−1
a )(x)

∣∣)
≤κepCa

(
Hölω† ( f h−1

a )+∥ f ∥∞Hölω† (h−1
a )

)
(ca +n)−γ

≤2κepCa∥ f ∥ω†∥h−1
a ∥ω† (ca +n)−γ.

Hence, it remains to remark that ∥h−1
a ∥ω† ≤ 2e(p+1)Ca by Proposition 2.4 □

Note that the above statement is independent from ha and ρa . In particular, it immediately fol-
lows that a → ma and a 7→ ρa = ∫

L (1)dma are continuous. In fact, the following holds.

Theorem 2.13. Assume that the conditions of Theorem 2.5 hold with respect to the potentials a, b
and assume that γ> 0. Then, for some κ only depending on T and γ and with Ca ,Cb as in (2) and (3),

Wω† (µa ,µb),Wω† (ma ,mb), |ρa −ρb |,∥ha −hb∥∞ (8)

< e∥a−b∥∞κmin
{
eκCa ,eκCb

}∥a −b∥
γ
γ+1
∞ .

Proof. Assume that ha and hb are the functions given by (7) with respect to a and b and observe
that the constants in there are of the form epCa and eCa . Furthermore, observe that L n

a
( f /ha) =

L n
a ( f )/ρnha , Hence, by Corollary 2.10 and Proposition 2.4,

∥ρ−n
a L n

a (1)−haµ(h−1
a )∥∞ ≤ ∥ha∥∞Hölω† (1/ha)(ca +n)−γ ≤ e(2p+1)Ca (ca +n)−γ.

Moreover, ca depends continuously on ∥a∥ω by Theorem 2.5. In particular, limρ−n
a L n

a (1) = ha . By
combining (2), (3), the continuity properties of ha and the above convergence, one then obtains that
∥L n

a
(1/ha)∥ω† ≤ eκCa with respect to some κ only depending on T . As Hölω† ( f g ) ≤ ∥ f ∥ω†∥g∥ω† , by

possibly enlarging κ,∥∥∥∥L n
a ( f L n

a (1))

ρ2n
a ha

−µa( f )µa(h−1
a )

∥∥∥∥
∞

= ∥∥L n
a ( f L n

a (h−1
a ))−µa( f )µa(h−1

a )
∥∥
∞

≤∥∥L n
a ( f L n

a (h−1
a ))−µa( f L n

a (h−1
a ))

∥∥
∞+ ∣∣µa( f (L n

a (h−1
a )−µ(h−1

a )))
∣∣

≤κ
Hölω† ( f L n

a
(h−1

a ))

(ca +n)γ
+∥ f ∥∞∥L n

a (h−1
a )−µa(h−1

a )∥∞

≤κ
∥ f ∥ω†∥L n

a
(h−1

a )∥ω†

(ca +n)γ
+κHölω† (h−1

a )∥ f ∥∞
(ca +n)γ

≤ 2κeκCa

(ca +n)γ
∥ f ∥ω† .

We are now in position to obtain an approximation which is independent from ρa and ha :

∥∥∥∥L n
a ( f L n

a (1))

L 2n
a (1)

−µa( f )

∥∥∥∥
∞

=
∥∥∥∥∥L n

a
( f L n

a
(h−1

a ))

L 2n
a

(h−1
a )

−µa( f )

∥∥∥∥∥
∞

≤
∥∥∥∥∥L n

a
( f L n

a
(h−1

a ))

L 2n
a

(h−1
a )

− µa( f )µ(h−1
a )

L 2n
a

(h−1
a )

∣∣∣∣∣
∞
+|µa( f )|

∥∥∥∥∥ µ(h−1
a )

L 2n
a

(h−1
a )

−1

∥∥∥∥∥
∞

≤
∥∥∥∥∥ 1

L 2n
a

(h−1
a )

∥∥∥∥∥
∞

(
2κeκCa

(ca +n)γ
∥ f ∥ω† + eκCa

(ca +2n)γ
∥ f ∥∞

)
≪ κeκCa

(ca +n)γ
∥ f ∥ω†

We now compare the action of L n
a and L n

b on ω†-Hölder functions. Note that
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∣∣∣∣∣L n
a ( f L n

a (1))

L 2n
a (1)

− L n
a ( f L n

b (1))

L 2n
b (1)

∣∣∣∣∣
≤

∣∣∣∣∣∣∣
L n

a

(
f L n

a (1)
(
1−ebn−an L n

a (ebn−an )
L n

a (1)

))
L 2n

a (1)

∣∣∣∣∣∣∣+
∣∣∣∣∣L

n
a ( f L n

b (1))

L 2n
b (1)

∣∣∣∣∣
∣∣∣∣∣L

2n
b (1)

L 2n
a (1)

−1

∣∣∣∣∣
≤∥ f ∥∞

∣∣∣e2∥an−bn∥∞ −1
∣∣∣+∥ f ∥∞

∣∣∣e∥a2n−b2n∥∞ −1
∣∣∣≤ 2∥ f ∥∞

∣∣∣e2n∥a−b∥∞ −1
∣∣∣

We now give an estimate µa( f )−µb( f ). As this quantity is invariant under adding a constant to f ,
we may assume without loss of generality that min f = 0. Hence, ∥ f ∥ω† ≤ (1+ω†(1))Hölω† ( f ). For

n = ∥a −b∥−1/(γ+1)
∞ , one then obtains from the last two estimates that

|µa( f )−µb( f )|≪ Hölω† ( f )eκCa

(ca +n)γ
+e∥a−b∥∞Hölω† ( f )∥a −b∥

γ
γ+1
∞ + Hölω† ( f )eκCb

(cb +n)γ

≪ Hölω† ( f )e∥a−b∥∞ min
{
eκCa ,eκCb

}∥a −b∥
γ
γ+1
∞ .

The first estimate in (8) and the second estimate follows by the same lines. For the continuity of ρa ,
note that

|ρa −ρb | =
∣∣∣∣∫ La(1)dma +

∫
Lb(1)dmb

∣∣∣∣
≤

∣∣∣∣∫ La(1)−Lb(1)

∣∣∣∣dma +
∣∣∣∣∫ Lb(1)d(ma −mb)

∣∣∣∣
≤

(
e∥b−a∥∞ −1

)
ρa +e∥a−b∥∞ min

{
eκCa ,eκCb

}∥a −b∥
γ
γ+1
∞ Hölω† (Lb(1))

≪ e∥b−a∥∞ min
{
eκCa ,eκCb

}∥a −b∥
γ
γ+1
∞ .

The final estimate in (8) follows by similar arguments, based on the fact that ∥ρn
aL n

a (1)−ha∥∞ ≪
∥ha∥∞(ca +n)γ. □

Remark 2.14. We now discuss two classes of examples where these conditions turn out to be nat-
ural. We begin with the Pomeau-Manneville family in Example 2.3. For δ ∈ (0,1), this map is Ruelle
expansive with contraction rate cn(t ) ≪ t (1+ntδ)−1/δ. Hence, the above results with respect to the
sup-norm hold with respect to potential functions a, which are α-Hölder continuous for δ < α. As
α-Hölder continuous functions on R for α > 1 are constant, the natural range for the Hölder expo-
nent of a is δ<α≤ 1.

Furthermore, we have that αδ−1 > 2 if α > 2δ. Therefore, in order to apply results like Corollary
2.11 for the decay of regularity, one has to assume that δ< 1/2 and 2δ<α≤ 1. Observe that a change
of behaviour at δ = 1/2 is reasonable as it is known from the decay of correlation of the invariant
probability measure which is absolutely continuous with respect to Lebesgue measure, that this is
a critical value (see [Sar02, Gou04]). However, the results in here do not cover this measure as it
is associated to the geometrical potential − logT ′, which is δ-Hölder. As a concluding remark with
respect to this example, we would like to remark that the expansive behaviour of T is only due to the
indifferent fixed point at zero, i.e. consequence of an isolated phenomena. This can be used in fact
to obtain exponential decay based on the combinatorial observation that there are more expanding
than expansive branches (see [Klo]).

The second class of examples is related to the Dyson model of a ferromagnet with binary spins
and polynomially decaying interactions, which is the physically relevant scale. In terms of thermo-
dynamic formalism, this translates to considering the shift on {−1,1}N and the potential

a((x1, x2, . . .)) =
∞∑

n=1
x1xn+1n−α.

As it easily can be seen, this potential is ω0,(α−1)log-Hölder continuous (cf. Section 5.1) and that
his weak regularity is not an isolated phenomenon as above. Furthermore, it follows that there is
polynomial decay of correlation whenever α> 2. This adds a new detail to this well-studied model
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as so far it only was known that there exists more than one equilibrium state for α = 2 (see [FS82])
and a unique one for α > 2, as in this case, the unicity follows, e.g., from the observation that the
potential satisfies Walters condition (see [Wal07]).

3. SPECTRAL TRIPLES AND THEIR SPECTRAL METRICS

In this section we adapt the construction of the spectral triple by R. Sharp in [Sha12, Sha16] to
our more general setting of Ruelle expansive maps. Moreover, we provide criteria such that Connes’
pseudo-metric is comparable to the Wasserstein distance on probability measures.

3.1. Spectral triples. We now begin with the construction of the spectral triples. In order to do so,
we will make use of the fact that preimages of Ruelle expanding maps come in pairs. Therefore recall
that for any (r,λ)-expanding map T the map T n is (r /2,λn)-expanding. In particular, there exists an
open cover U of Ω such that for any n ∈N, U ∈ U , x, y ∈U and x̃ ∈Ω with T n(x̃) = x, there exists a
unique ỹ ∈Ω with T n(ỹ) = y and d(T k (x̃), (T k (ỹ)) ≤ λn−k d(x, y) for k = 0, . . . ,n. We will refer to ỹ as
the n-the preimage of y adapted to x̃ and U and set

T −n
x̃ : U →Ω, T −n

x̃ (y) := ỹ .

In order to parametrize the set of all inverse branches, fix xU ∈U , define

W ∗
U := {(x,n) ∈Ω×N : T n(x) = xU }

and set l (w) := n and τw = T −n
x , for w = (x,n) ∈W ∗.

The construction of the spectral triple starts with the C∗-algebra A = C (Ω,C), the space of all
continuous complex valued functions defined onΩ and the Hilbert space

HU = ℓ2(W ∗
U )⊕ℓ2(W ∗

U ),

for some fixed U ∈U . In here, we will write a generic element in H as

⊕
w∈W ∗

U

(
ϵ1(w)

ϵ2(w)

)
,

where ϵi : W ∗
U →C are complex valued functions with

∑
w∈W ∗

U
|ϵi (w)|2 <∞. We now fix two arbitrary

elements x, y ∈U . For a ∈ A, the operator La : H → H is defined by

La(
⊕

w∈W ∗

(
ϵ1(w)

ϵ2(w)

)
) = ⊕

w∈W ∗

(
a(τw (x))ϵ1(w)

a(τw (y))ϵ2(w)

)
.

To construct the Dirac operator Ds , we fix a continuous function J : Ω→ (0,∞), s ≥ 0 and set, for
w ∈W ∗

U ,

Js
w (x) :=

l (w)−1∏
k=0

(
J (T k (τw (x)))

)s
.

The operator Ds is then defined by

Ds :Dom(Ds ) :=
{ ⊕

w∈W ∗

(
ϵ1(w)

ϵ2(w)

)
:
∑
w

|ϵi (w)|2
Js

w (x)2 <∞
}
→ HU , (9)

⊕
w∈W ∗

(
ϵ1(w)

ϵ2(w)

)
7→ ⊕

w∈W ∗

1

Js
w (x)

(
ϵ2(w)

ϵ1(w)

)
.

It then follows immediately from the definitions that Dom(Ds ) is dense in HU and that 〈Ds x, y〉 =
〈x,Ds y〉 for all x, y ∈ Dom(Ds ). That is, Ds is symmetric. By choosing an orthonormal basis of HU , it
is then easy to see that Dom(Ds ) = Dom(D∗

s ), implying that Ds is self-adjoint. Moreover,

[Ds ,La](
⊕

w∈W ∗

(
ϵ1(w)

ϵ2(w)

)
) = ⊕

w∈W ∗

a(τw (x))−a(τw (y))

Js
w (x)

(
−ϵ2(w)

ϵ1(w)

)
.
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Proposition 3.1. Assume that T is Ruelle expanding and that J :Ω→ (0,∞) is a continuous function
with

lim
n→∞sup{∥Js

w∥∞ : ℓ(w) = n} = 0.

Then there exists s0 > 0 for x, y ∈U for some U ∈U . Then such that (HU , A,Ds ) is a spectral triple for
0 < s < s0.

Proof. It is only left to show that Ds has a compact resolvent and that there exists s0 > 0 such that
{a ∈ A : ∥[D,La]∥ <+∞} is dense in A for 0 ≤ s < s0.

In order to do so, observe that for t ∈C, the product structure of Ds implies that Ds − t id is invert-
ible if and only if the the linear map Aw : (z1, z2) 7→ J−s

w (x)(z2, z1)−t (z1, z2) is invertible for all w ∈W ∗
U .

Or equivalently, t 2 ̸= J−2s
w (x) for all w ∈ W ∗

U and Aw has eigenvalues ±J−s
w (x)− t ̸= 0. As Js

w (x) → 0
as ℓ(w) → ∞, the eigenvalues of A−1

w tend to zero as ℓ(w) → ∞. This implies that (Ds − t id)−1 is
compact for t in the resolvent set of Ds .

It remains to analyse [Ds ,La]. If a is Lipschitz continuous, then

|a(τw (x))−a(τw (y))|
Jw (x)

≤ Lip(a)
d(τw (x),τw (y))

(infz J (z))sℓ(w)
≤ Lip(a)

(
λ

infz J (z)s

)ℓ(w)

.

In particular, if 0 ≤ s < s0 := logλ/log(infz J (z)), then [Ds ,La] is a bounded operator. The remaining
assertion follows from the fact that the Lipschitz continuous functions are dense in C (Ω). □

Remark 3.2. Even though the proof of Proposition 3.1 is elementary, the result gives rise to interest-
ing observations with respect to the dimension of the ambient spaceΩ and the relation of Ds to the
usual derivative. Firstly, ifΩ⊂ {1,2, . . .k}N is a subshift of finite type with metric

d((xi ), (yi )) :=λmin{i :xi ̸=yi },

then U consists of the cylinders of length one and the expansion rate of the shift T is equal to λ. In
particular, a change of metric corresponds to a change of λ and a brief analysis of the above proof
shows that (HU , A,Ds ) is a spectral triple for any s > 0.

On the other hand, ifΩ is not zero-dimensional, then s0 plays an essential rôle as indicated in the
following basic example. Let T :T2 →T2, (x, y) 7→ (2x mod 1,2y mod 1) and J = 1/4. Then J is nor-
malized and d(τw (x),τw (y))/Js

w (x) = 2(2s−1)|w |d(x, y). Hence, this quotient is uniformly bounded if
and only if s ∈ [0,1/2]. Moreover, if a ∈C 1(T) and hw := τw (x)−τw (y), then

a(τw (x))−a(τw (y))

Jw (x)
= 2(2s−1)|w |d(x, y)

(
a′(τw (x)) (hw /|hw |)+o(1)

)
= 2(2s−1)|w | (a′(τw (x))

(
x − y

)+d(x, y)o(1)
)

,

where a′ denotes the usual derivative. In particular, if s = 1/2, this establishes a connection between
[Ds ,La] and a′. Moreover, note that 1/2 is the natural parameter in this example: the equilibrium
state associated to J is the two-dimensional Lebesque measure whereas J 1/2 corresponds to the
arclength.

Now assume that, after identifying T2 with [0,1]2/∼, that x − y is colinear to (1,0) and that a :
T2 →R is of the form (z1, z2) 7→ f (z2), where f : [0,1] →R is continuous and f (0) = f (1). Then a ∈ A,
[Ds ,La] = 0 and there is no uniform bound on max a −min a = max f −min f . Hence, the image of

{a ∈ A : ∥[Ds ,La]∥ ≤ 1}

in A/z1 is unbounded and, therefore, a result due to Rieffel and Pavlović implies that Connes’
pseudo-metric is not a metric (for a brief exposition of Connes’ pseudo-metric, see [KS13, Section
2.1]). However, by considering a finite direct sum of the spectral triple, this problem can be resolved
as shown in Theorem 3.4 below.

3.2. Spectral triples and their spectral metrics. In this section, we modify the above construction
in order to obtain a spectral triple such that the topology of X can be recovered by Connes’ pseudo-
metric. In order to do so, we assume that T is a Ruelle expansive map such that the associated open
cover U has a certain overlap, that is, for each U ∈U , there exists V ∈U with U ̸=V and U ∩V ̸= 0.
Furthermore, we now fix J :Ω→ (0,1) and assume that there exists a finite set R ⊂⋃

U ̸=V U ∩V such
that the following conditions are satisfied.
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(C0) R ∩U ̸= ; for all U ∈U .
(C1) There exists s > 0 and C1 > 0 such that for all x, y ∈U ∩R, w ∈W ∗

U and U ∈U ,

1/C1 < d(τw (x),τw (y))

Js
w (x)

<C1

(C2) There exists C2 such that, for all x, y ∈ R and u, v ∈ W n , there exist k ∈ N, z1, . . . zk ∈ R,
U1, . . .Uk and w1 ∈W n

U1
, . . . wk ∈W n

Uk
with z1 = x, w1 = u and zk = y , wk = v such that

(1) for each j = 1, . . .k −1, τw j+1 (z j+1) ∈ τw j (U j ),

(2)
∑k−1

j=1 d(τw j (z j ),τw j+1 (z j+1)) ≤C2d(τu(x),τv (y)).

The motivation behind these conditions is the following. Assume thatΩ is pathwise connected, that
γ is a curve inΩ and that n ∈N. Then any cover of γ by elements of T −n(U ) gives rise to a sequence
of points in T −n(R) such that any two neighbouring points are in τω(U ) for some U andω. This then
will allow to identify those a ∈C (Ω) such that [D s ,La] extends to a bounded operator.

The spectral triple under consideration is now a finite sum of those in Proposition 3.1, provided
that U and R are as above.

Definition 3.3. For x, y ∈U ∈U and s > 0, let Dx,y
s refer to the Dirac operator as in (9). We then refer

to (HU , A,D s
x,y ) as the partial spectral triple, to Dx,y

s as the partial Dirac operator and to

(H , A,Ds ) :=
( ⊕

U∈U

⊕
x,y∈R∩U ,x ̸=y

HU , A,
⊕

U∈U

⊕
x,y∈R∩U ,x ̸=y

Dx,y
s

)
as the global spectral triple.

With (C0) to (C2) at hand, it is then possible to relate Connes’ pseudo-metric and the Wasserstein
distance W as defined in Definition 2.9. For a spectral triple (H , A,D) and states p, q of A, the Connes
(pseudo-)metric is defined by

dspec(p, q) := sup
{

p(a)−q(a) : a ∈ A, [D,La] densely def.,∥[D,La]∥ ≤ 1
}

.

However, if A is the C∗-algebra of continuous functions on a compact metric space, then the set of
states of A coincides with the set of Borel probability measures by the Riesz representation theorem.
Also note that in this situation, the set of Lipschitz continuous functions is dense in A and that it
follows from Kantorovich’s duality that

W (p, q) := sup
{∫

ad p −∫
ad q : a ∈ A,Lip(a) ≤ 1

}
.

Furthermore, observe that the metric on X can be recovered through d(x, y) = W (δx ,δy ), where
δx ,δy refer to the Dirac measures in x and y , respectively.

Theorem 3.4. Assume that T : X → X is a Ruelle expansive map, X is a compact, metric space and
J : X → (0,∞) is continuous. If (C1) holds, then (H , A,Ds0 ) is a spectral triple. If (C1) and (C2) hold,
then

C−1
1 W ≤ dspec ≤C1C2W.

Proof. It follows from (C1) and the expansiveness of T that

Js
w (x) ≤C1d(τw (x),τw (y)) → 0 as ℓ(w) →∞.

It follows from this as in the proof of Proposition 3.1 that Ds0 has a compact resolvent. So it remains
to analyse [Ds0 ,La]. As it easily can be seen,

∥[Ds ,La]∥ = sup

{ |a(τw (x))−a(τw (y))|
Js

w (x)
: x, y ∈U ∩R, w ∈W ∗,U ∈U

}
.

Hence, if a is Lipschitz continuous then (C1) implies that for all s ∈ (0, s0], x, y ∈U ∩R, w ∈W ∗
U and

U ∈U ,
|a(τw (x))−a(τw (y))|

Js
w (x)

≤ Lip(a)
d(τw (x),τw (y))

Js
w (x)

≤C1Lip(a),

where Lip(a) refers to the Lipschitz constant of a. Hence, ∥[Ds ,La]∥ ≤ C1Lip(a). This proves that
(H , A,Ds0 ) is a spectral triple.
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On the other hand, if a ∈C (Ω) is such that [Ds ,La] is a bounded operator, then

|a(τw (x))−a(τw (y))| ≤ ∥[D s ,La]∥Js
w (x) (10)

for all x, y ∈ U ∩R, and w ∈ W ∗
U and U ∈ U . So assume that x, y ∈ Ω and that ϵ > 0. By uniform

continuity of a, there exists δ > 0 such that d(z, z̃) < δ implies |a(z)−a(z̃)| < ϵ. Now choose n ∈ N

such that diam(τw (U )) ≤ δ for all w with ℓ(w) = n. It then follows from condition (C2) there are
z1, . . . zk and w1, . . . wk satisfying the conditions in (C2) and such that d(x, z1),d(zk , y) < δ. Hence,

d(x, y) ≥ d(τu1 (z1),τuk (zk ))−2δ≥ 1

C2

k−1∑
j=1

d(τw j (z j ),τw j+1 (z j+1))−2δ

≥ 1

C1C2

k−1∑
j=1

J
s0
w j

(z j )−2δ

The estimate combined with (10) then implies that

|a(x)−a(y)| ≤|a(x)−a(τu1 (z1))|+
k−1∑
j=1

|a(τw j (z j ))−a(τw j+1 (z j+1))|

+ |a(τu1 (z1))−a(y)|

≤∥[Ds ,La]∥
k−1∑
j=1

J
s0
w j

(z j )+2ϵ≤C1C2(d(x, y)+2δ)+2ϵ.

As ϵ can be arbitrarily chosen, we obtain that Lip(a) ≤C1C2. □

Note that the above theorem is applicable to the second example in Remark 3.2. Namely it suf-
fices to define U as the set open squares of the form (x, x+1/2)×(y, y+1/2) for x, y ∈ {0,1/4,1/2,3/4}
and R = {(k/8, l /8) : k, l = 1,3,5,7}. For a more interesting example, we refer to section 3.4.

3.3. Subshifts of finite type. The motivation of this section is to obtain an analogous result for to-
tally disconnected spaces. The applications we have in mind are conformal graph directed Markov
systems (see [MU03]) with a totally disconnected limit set. However, in order to omit the details,
we only formulate the result in terms of shift spaces. Therefore, we now recall the definition of a
topologically mixing subshift of finite type.

Definition 3.5. Assume that A = {1, . . . ,k} for some k > 1, B = (ai j ) ∈ {0,1}k×k and set

Ω := {(xi : i ∈N∪ {0}) : xn ∈A ,1i (xn)1 j (xn+1) ≤ ai j ∀i , j ∈A ,n ∈N∪ {0}}.

We then say that (Ω,T ) is a subshift of finite type, where T is the shift map T (x1, x2, . . .) := (x2, x3, . . .).
In this setting, we refer to A as the alphabet or the set of states. Moreover, we say that the subshift of
finite type is aperiodic if there exists n0 ∈N such that all coordinate of B n0 are strictly positive.

Recall that, as it is well known, T is topologically mixing if and only if A is aperiodic. Furthermore,
d((xi : i ≥ 0), (yi : i ≥ 0)) := 2−min{i :xi ̸=yi } defines a metric onΩ such that (Ω,d) is compact and totally
disconnected and T :Ω→Ω is Ruelle expanding with parameter 1/2.

We now fix J :Ω→ (0,∞) such that g := log J isω0,βlog-Hölder for some β> 1 and that ρg = 1, with
ρg given by Proposition 2.4. We now use the results in Section 2 in order to define a new metric.
That is, with mg given by Corollary 2.12, assume that x, y ∈Ωwith d(x, y) = 2−k < 1. That is, the first
k coordinates of x and y coincide whereas the (k +1)-th are different. In particular,

dmg (x, y) := mg ({(zi ) : zi = xi for i = 0,1, . . . ,k −1}) = mg ({z : d(x, z) ≤ 2−k })

satisfies dmg (x, y) = dmg (y, x). Furthermore, if d(x, y) = 1, set dmg (x, y) = 1. It now follows immedi-
ately from the definition that dmg satisfies the triangle inequality. A further important ingredient is

(2) which implies that gk (x) ≍ gk (y) whenever d(x, y) ≤ 2−k . Hence, as mg is a conformal measure,
it follows that

mg (T k (A)) =
∫

A

1

gk (x)
dmg

for any A such that T k is bimeasurable on A. In particular, (2) implies that

mg ({z : d(x, z) ≤ 2−k }) ≍ egk (x). (11)
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Finally, as L
n0
g

(1) = 1, it follows that sup g n0
< 0. In particular, sup gk → −∞, which implies that

d(x, y) = 0 if and only if x = y . Hence, dmg is a metric. With respect to this metric, the following
holds.

Theorem 3.6. Assume that (Ω,T ) is a topologically mixing subshift of finite type, that log J is aω0,βlog-
Hölder continuous potential for some β> 1 and that ρlog J = 1. Moreover, assume that R ⊂Ω is a finite
set such each cylinder of length (i.e. ball of radius 1/2) contains precisely two elements. Then (H , A,D1)
is a spectral triple and dspec ≍Wdmg

, where Wdmg
refers to the Wasserstein distance with respect to dmg .

Proof. Observe that (11) implies Condition (C1) of Theorem 3.4. Hence, (H , A,D1) is a spectral triple.
We omit the proof of the remaining statement as it is significantly simpler than the one in Theorem
3.4. □

3.4. A spectral triple associated to the Sierpinski gasket. We now give an example of a spectral
triple associated to a connected fractal set, for which Connes’ pseudometric in fact is a metric, in
contrast to the example given in Remark 3.2.

Instead of working directly with the Sierpinski gasket, we consider 4 copies of this well known
fractal, placed on the regular octohedron as illustrated in Figure 3.4. The reason for this procedure
stems from the fact that we want to define the Sierpinski gasket as a repeller of a Ruelle expanding
map which only is possible after taking care of the three extremal points of the standard Sierpinski
gasket. That is, with △1 to △4 referring to the copies of the standard Sierpinski gasket and endpoints

△2 △3 △4

△1

x1x2x3

x4x6x5x4

x1

FIGURE 1. An expanding map on the union of 4 Sierpinski gaskets

x1 to x6 as indicated in Figure 3.4, we define T : X → X , where X := ⋃4
i=1△i , to be the piecewise,

orientating preserving similarity which expands distances by 2 such that

x1 7→ x3, x2 7→ x2, x3 7→ x1, x4 7→ x4, x5 7→ x6, x6 7→ x5.

In terms of the action on △i , this means that

△1 7→⋃
i ̸=1△i , △2 7→⋃

i ̸=4△i , △3 7→⋃
i ̸=3△i , △4 7→⋃

i ̸=4△i .

It is now straightforward to check that, that T is continuous and that each point has three preimages.
We now show how to apply Theorem 3.4. Let d refer to the geodesic metric X , that is the distance
between two points is the Euclidean length of the shortest path between these points (as in, e.g.,
[CIL08]). Furthermore, let Ui be the ϵ-neighbourhood of △i for ϵ sufficiently small such that T |Ui

is a homeomorphism. In particular, the connected components of Ui ∩U j are then open balls of
radius ϵ whose centers are elements of R = {x1, . . . x6}.
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We now consider the constant function J = 1/3 and the action of Llog J on C (X ). As each x ∈ X has

three preimages, we have that Llog J (1) = 1. Moreover, as τw contracts by 2−ℓ(w) and J is constant, it
follows that

d(τw (x),τw (y)) = d(x, y)2−ℓ(w) = d(x, y)Jlog2/log3
w (x)

for any x, y ∈ R ∩Ui and w ∈ W ∗
Ui

and i = 1, . . .4. Hence, hypothesis (C1) is satisfied with respect
to s = log2/log3. In order to verify (C2), we make use of the fact that the Sierpinski gasket is a
geodesic space. That is, the distance between two points is defined as infimum over all path lengths
of paths from x to y and this infimum is realized by a curve, referred to as geodesic, from x to y .
In particular, , for x, y ∈ T −n(R), there exists a curve in X from x to y which realizes the (geodesic)
distance between x and y . Moreover, this curve has subsequent visits to elements of T −n(R). This
then defines a sequence z1, . . . zk ∈ T −n(R) and w1, . . . wk ∈W n such that in fact

d(x, y) =
k−1∑
j=1

d(τw j (z j ),τw j+1 (z j+1)).

Hence, Theorem 3.4 is applicable and one obtains that the spectral metric associated to the global
spectral triple is comparable to the Wasserstein distance.

Remark 3.7. We now give a brief comparison with the construction of a spectral triple of Chris-
tensen, Ivan and Lapidus in [CIL08] for the Sierpinski gasket. In there, the authors start with the
construction of a spectral triple on the unit interval based on the observation that the usual deriva-
tive acts as a multiplication operator on a Fourier series. After that, the spectral triple on the gasket
is obtained as an infinite direct product of scaled copies of this initial triple.

The approach in here is different as it is based on a difference operator instead of a derivative.
Hence, it is natural to work here with Lipschitz functions instead of square integrable functions.
Due to Kantorovich’s duality, the proof that the spectral metric is equivalent to the ambient metric
becomes elementary (cf. Theorems 3.4 and 3.6). Furthermore, it follows as in [CIL08] that the Haus-
dorff measure can be recovered by identifying the Dixmier trace of La |D0|−1 with the integral of a
(see Corollaries 4.2 and 4.3 below).

4. DIXMIER TRACE REPRESENTATION OF GIBBS MEASURES

We now analyse spectral triples for a given function J :Ω→ (0,1) of higher regularity and deter-
mine the Dixmier trace of La |Ds |−1, with La and Ds as defined in (9). In here, we do not necessary
require that La and Ds belong to a spectral triple, which allows to include the following combina-
tions of Ruelle expansive maps and functions log J of lower regularity.

(E) Assume that T :Ω→Ω is topologically mixing. Furthermore, assume that T is either Ruelle
expanding and log J is ω0,βlog-Hölder continuous for some β > 1, or T is Ruelle expansive

with contraction rate t (1+nt−1/β+n)−β and log J isωα,0log-Hölder withαβ> 1, respectively.

Note that it follows from the results in Section 2 that under these conditions the pressure function

P (s) := lim
n→∞

1

n
logL n

s log J (1)(z0),

is well defined and does not depend on z0 ∈ Ω. Moreover, if P (s) is finite, then ρs := exp(P (s)) is
the spectral radius of the action of Ls log J on the space of ω†-Hölder continuous functions with ω† =
ω0,(β−1)log or ω† =ωα−1/β,log, respectively.

Now assume that hs , µs and ms are constructed as in (7) and Corollaries 2.10 and 2.12 for the
potential s log J . As T is locally invertible and the preimages of the covering U generate the Borel
σ-algebra, it follows from the Rokhlin formula for the Kolmogorov-Sinai entropy h(µs ) that

h(µs ) =
∫

log
dµs ◦T

dµs
dµs =

∫
−s log(J )− loghs + loghs ◦T +P (s)dµs

= P (s)− s
∫

log(J )dµs .
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Theorem 4.1. Assume that (E) holds and that, for some δ > 0, P (δ) = 0 and h(µδ) > 0. Then for any
ω†-Hölder continuous and positive function a and x ∈Ω,

Trω(La |Dδ|−1) = 2hδ(x)

δh(µδ)

∫
admδ.

Note that the Rokhlin formula provides a simple condition for h(µδ) > 0. Namely, as P (δ) = 0, it
follows that δ

∫
log Jdµ=−h(µδ). In particular, h(µδ) > 0 whenever J < 1. The proof of the following

result is based on this observation and also indicates that the noncommutative integral only is non-
trivial for a single choice of the parameter s.

Corollary 4.2. Assume that (E) holds and that J < 1. Then there exists a unique δ0 > 0 such that
P (δ0) = 0. Moreover, for any ω†-Hölder continuous function a with a ≥ 0, a ̸= 0, x ∈Ω and s ≥ 0,

Trω(La |Ds |−1) =


∞ : 0 ≤ s < δ0,
2hδ(x)
δh(µδ)

∫
admδ : s = δ0,

0 : s > δ0.

Proof. We first prove that T is non-invertible. So assume that T is invertible. It then follows from
the contraction along preimages, that

diam(Ω) = diam(T −n(Ω)) ≤ ∑
U∈U

diam(T −n(U ))
n→∞−−−−→ 0,

which is absurd. Hence, T is non-invertible and there exists x ∈ Ω with at least two preimages.
Furthermore, as T is topologically mixing, there is n0 such that #T −n0 ({x}) ≥ 2 for all x ∈Ω, which
implies that P (0) ≥ log2/n0 > 0.

Moreover, it follows from Lemma 4.5 that P ′(s) ≤ max(log J ) < 0. Hence, there exists a unique
δ0 > 0 with P (δ0) = 0. As h(µδ0 ) > 0 by Rokhlin’s formula, Theorem 4.1 is applicable and provides the
statement for s = δ0.

It hence remains to prove the cases for s ̸= δ0. In order to do so, note that for s > δ, it follows from
ρs < 1 that

∑∞
n=1 L n

s log J (a) <∞. By applying Theorem 4.4, it then follows as in the proof of Theorem

4.1 that Trω(La |Ds |−1) = 0 for s > δ.
On the other hand, note that it follows from the fact that the support of mδ isΩ, that

∫
admδ > 0.

Hence, by Theorem 4.1, Trω(La |Ds |−1) ≥ Trω(La |Dδ|−1) > 0 for s < δ0. It immediately follows from
this that Trω(La |Ds |−1) =∞ for s < δ0. □

We give a further application of Theorem 4.1 to normalized potentials, that is Llog J (1) = 1. In the
next corollary µ refers to the equilibrium state associated to log J .

Corollary 4.3. Assume that (E) holds and that log J is normalized. Then δ = 1 is the unique root of
P (s) for s ≥ 0, the non-commutative integral a → Trω(La |Ds |−1) is non-trivial only for s = 1 and, for
any ω†-Hölder continuous and positive function a and x ∈Ω,

Trω(La |D1|−1) = 2

h(µ)

∫
adµ.

Proof. Observe that it follows from the proof of Corollary 4.2 that there exists n0 such that #T −n0 {x} ≥
2 for all x ∈ Ω. As log J is normalized, this implies that

∏n0−1
k=0 J ◦T k (x) < 1 for all x ∈ Ω. The result

then follows from applying Corollary 4.2 to T n0 . □

4.1. Proof of Theorem 4.1. The remaining part of this section is devoted to the proof of Theorem
4.1. For the proof of this theorem, it is crucial to understand the spectrum of La |Ds |−1. As the
absolute value of (ϵ1,ϵ2) 7→ (ϵ2,ϵ1) is the identity, it follows that

La |Ds |−1(
⊕

w∈W ∗

(
ϵ1(w)

ϵ2(w)

)
) = ⊕

w∈W ∗

(
a(τw (x))Js

w (x)ϵ1(w)

a(τw (y))Js
w (x)ϵ2(w)

)
.

In particular, La |Ds |−1 has pure point spectrum and each element of the spectrum is of the form
a(τw (x))Js

w (x) or a(τw (y))Js
w (x). In order to determine the Dixmier trace, we consider the ζ- func-

tions

ζ+(s) =
∞∑

k=1

∑
w∈W ∗
l (w)=k

a(τw (x))J(τw (x))s , ζ−(s) =
∞∑

k=1

∑
w∈W ∗
l (w)=k

a(τw (y))J(τw (x))s .
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The relation to the Dixmier trace is now given by the following version of the Hardy-Littlewood
Tauberian theorem which can be found in [Con94], Chapter IV.2, Prop. 4 (see also [Sha12]).

Theorem 4.4. Assume that (bn) is a decreasing sequence of positive numbers. Then the following
statements are equivalent.

(1) lims→1+(s −1)
∑∞

k=1 bs
k = 1.

(2) limn→∞ 1
logn

∑n
k=1 bk = 1.

In particular, we have for c > 0 and δ> 0 that

(1) lims→δ+(s −δ)
∑∞

k=1 bs
k = cδ,

(2) limn→∞ 1
logn

∑n
k=1 bδk = c

are equivalent. We now assume that min a ≥ 1. As this implies that ∥as−δ−1∥∞ → 0 as s → δ+, it
follows that lims→δ+(s −δ)(ζ+(s)+ζ−(s)) = c for some c > 0 implies that

Trω(La |Dδ|−1) = lim
n→∞

1

logn

n∑
k=1

bk = c

δ
,

where the bn refer to the n-th largest eigenvalue of La |Dδ|−1 up to multiplicity. Hence, it suffices to
determine c. However, as

ζ+(s)+ζ−(s) = ∑
w∈W ∗

(a(τw (x))+as (τw (y)))J(τw (x))s

= 2
∞∑

n=1
L n

s log J (a)(x)+ ∑
w∈W ∗

(a(τw (y))−a(τw (y)))J(τw (x))s

=: 2
∞∑

n=1
L n

s log J (a)(x)+R(s),

it remains to understand the asymptotics of (s −δ)
∑

n L n
s log J (a) and (s −δ)R(s).

STEP 1. THE ASYMPTOTICS OF (s −δ)ζ+(s). In order to do so, we apply the results from Section 2. Set
Ls :=Ls log J and let ρs , hs , ms and µs refer to the objects given by Proposition 2.4, (7) and Corollary
2.10. In particular, it follows from Theorem 2.13 that they vary continuously in s and that for any n
sufficiently large, ∣∣∣∣L n

s (a)

ρn
s hs

−ms (ϕ)

∣∣∣∣≤ κHölω† (a)

(cs +n)γ
,

where κ only depends on T and cs > 1 is continuous in s by Theorem 2.5. We now show that ρs < 1
for s > δ sufficiently close to δ.

Lemma 4.5. Assume that γ> 0. Then P (s) is differentiable and dP (s)/d s = ∫
(log J )dµs .

Proof. We now write A := log J . It follows from Corollary 2.12 that for each ω†-Hölder continuous
function f ,

∥Ls (a)/Ls (1)−ms ( f )∥∞ ≤ κHölω† ( f )eκCs A n−γ.

The uniform estimate above now implies that

d

d s
log

1

n
L n

s (1)(z0) = 1

n

∑
σn (x)=z0 An(x)e s An (x)

L n
s A(1)(z0)

= L n
s ( 1

n An)(z0)

L n
s (1)(z0)

= 1

n

∫
Andms ±κn−γHölω† (A)

= 1

n

n−1∑
j=0

∫
A ◦T j dms ±κn−γHölω† (A)

= 1

n

n−1∑
j=0

∫
Aρ− j

s L
j

s A(1)dms ±κn−γHölω† (A).

As L
j

s A(1)/ρ− j
s converges uniformly to hs , it follows that

d

d s
log

1

n
L n

s A(1)(z0)
n→∞−−−−→

∫
Ahs dms
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uniformly for s = s0 ± ϵ, for s0 > 0 and ϵ> 0 sufficiently small. Hence, the right hand side coincides
with the derivative of the pressure function. □

Note that P (δ) = 0 implies that h(µδ) = −δ∫
Adµδ > 0. As µs varies continuously in s, it hence

follows that P ′(s) < 0 for δ < s < δ+ ϵ for ϵ sufficiently small. Hence, P (s) is strictly decreasing in
[δ,δ+ϵ] and, therefore, λs < 1 for s ∈ (δ,δ+ϵ]. In particular,

(∗) :=
∣∣∣∣(s −δ)ζ+(s)− ρs (s −δ)

1−ρs
hs (x)ms (a)

∣∣∣∣= (s −δ)

∣∣∣∣ ∞∑
n=1

L n
s (a)(x)−ρn

s hs (x)ms (a)

∣∣∣∣
≤ Hölω† (a)κ∥hs∥∞(s −δ)

∞∑
n=1

ρn
s (cs +n)−γ.

Now assume that γ> 1. As lims→δ+ρs = 1, it follows that lims→δ+
∑

n ρ
n
s (cs +n)−γ exists and is finite

by an application of Abel’s theorem. Hence, the right hand side tends to 0 as s → δ+. On the other
hand, if 0 < γ < 1, it follows from a lengthy calculation with the Taylor expansion of (1− x)γ−1 that
for 0 ≤ t < 1,

∞∑
n=1

t nn−γ ≤ e(1−γ)2π2/12

1−γ
(
(1− t )γ−1 −1

)
In particular, it follows for 0 < γ< 1 from this estimate, Lemma 4.5 and the continuity of hs that

limsup
s→δ+

(∗) ≤ Hölω† (a)κ lim
s→δ+

(
s −δ
λs −1

∥hs∥∞
)

lim
t→1−(1− t )

∞∑
n=1

t nn−γ

≪ Hölω† (a)∥hδ∥∞
(−∫

log Jdµδ
)−1 lim

t→1−(1− t )γ = 0.

This implies that lims→δ+ (∗) = 0. Hence,

lim
s→δ+

(s −δ)ζ+(s) =−hδ(x)mδ(a) lim
s→δ+

s −1

eP (s) −1
=−hδ(x)

∫
admδ

h(µδ)
. (12)

STEP 2. THE ASYMPTOTICS OF (s−δ0)R(s). Let cn refer to the contraction rate of T . As already shown
in Section 2, it holds in both cases that ω†(cn) ≪ n−γ. Hence, for s > δ0

R(s) ≤ Hölω† (a)
∞∑

n=1
ω†(cn)L n

s (1) ≪ Hölω† (a)
∞∑

n=1
L n

s (1)n−γ

≪ Hölω† (a)
∞∑

n=1
λn

s n−γ.

It then follows from the same argument as above that lims→δ+(s−1)R(s) = 0. This proves the theorem
for a > 0. The general case then follows by considering a +1.

5. EXAMPLES AND COUNTEREXAMPLES

In this section, we discuss the existence of spectral triples and the representation of the Dixmier
trace as in Theorem 4.1. As a first class of examples, we consider topologically mixing Ruelle ex-
panding maps, equipped with a normalized potential log J , which is ω0,βlog-Hölder continuous for
some β> 1. In particular, it follows from Proposition 3.1, that (HU , A,Ds ) is a spectral triple for each
s ∈ (0, s0), with s0 given by Proposition 3.1. On the other hand, as the representation as a Dixmier
trace only holds for the single parameter δ= 1 (cf. Corollary 4.3, it is natural to ask in which cases a
spectral triple comes with a non-commutative integral with the same exponent.

However, the examples and results given above suggest that the relation between s0 and δ is re-
lated to the topological dimension of Ω. For subshifts of finite type, it is shown in Remark 3.2 that
s0 =∞. Hence, one may choose s = 1 and obtains a spectral triple with a Dixmier trace represen-
tation of the equilibrium state. Moreover, by applying Theorem 3.6, it follows that after a change of
metric, the spectral metric coincides with the Wasserstein distance with respect to the new metric.
Or in other words, ifΩ is a Cantor set, then there exist spectral triples with strong properties.

If, on the other hand, the space is connected, the situation might be different. As shown in Sec-
tion 3.4, there exists a spectral triple for the parameter s = log2/log3 whose spectral metric coin-
cides with Wasserstein distance. Moreover, by going through the proof of Theorem 3.4, it follows
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that (HU , A,Ds ) no longer is a spectral triple for s > log2/log3. However, as the potential is normal-
ized, the Dixmier representation only holds for s = 1.

Hence, from a general point of view, it seems that spectral triples and their spectral metric are
associated to curve length whereas the Dixmier trace reflects a kind of volume.

5.1. The Dyson potential. We now discuss an example from statistical mechanics and do not re-
quire that the potential is normalized. That is, we consider Ω := {−1,1}N equipped with the shift
map T (i.e. T ((xi : i ≥ 1)) = (xi : i ≥ 2)) and the metric d((xi : i ≥ 1), (yi : i ≥ 1)) := 2−min{i :xi ̸=yi }. Note
that this implies that T is uniformly expanding and cn(t ) = 2−n t . For α> 1, we then refer to

Φ((xi : i ≥ 1)) = x1

∞∑
n=1

n−αxn+1

as the Dyson potential due to the similarity to Dyson’s model of ferromagnetism. We now determine
the regularity ofΦ. So assume that d(x, y) ≤ 2−k for k > 1. Then x j = y j for j = 1, . . .k −1 and

|Φ(x)−Φ(y)| ≤
∞∑

n=1
|xn+1 − yn+1|n−α ≤ 2

∑
n≥k

n−α≪ k1−α =
(
− logd(x, y)

log2

)1−α
.

Hence, we have shown that Dyson potential isω0,(α−1)log-Hölder continuous. In particular, it follows
from Corollary 2.10 that for α> 2,

∥LΦ( f )−µ( f )∥∞ ≪ Höl( f )n2−α,

for eachω0,(α−2)log-Hölder continuous function f . However, as we see from the next result, Theorem
4.1 is not immediately applicable.

Lemma 5.1. Assume that α> 2. Then the pressure function P (s) is increasing for s ≥ 0. Furthermore,
P ′(0) = 0, P (0) = log2 and P (s) > s maxΦ for all s ≥ 0.

Proof. For s = 0, Φ = 1. Hence, for this parameter, the measure of maximal entropy is the equilib-
rium state. This implies that P (0) = log2 and P ′(0) = 0 by symmetry. Moreover, note that the Dirac
measure δ1 on (1111. . .) is an invariant measure with

∫
Φdδ1 = maxΦ. Hence, by the variational

principle, P (s) ≥ s maxΦ. However, in our setting, equilibrium states are unique (see, e.g., [Wal07]),
µs is the unique equilibrium measure and µs is not atomic. Hence, P (s) > s maxΦ. Now assume
that

∫
Φdµs < 0 for some s > 0. Moreover, define µ̃s by µ̃s ([(x1 . . . xn)]) := µs ([(−x1 . . . − xn)]), for

[(x1 . . . xn)] := {(yi ) : yi = xi∀i = 1, . . .n}. As the Borel σ-algebra is generated by these cylinder sets,
it follows that µ̃s also is a probability measure. As µ̃s is invariant as well, the variational principle
implies that

P (s) ≥ h(µ̃s )+ s
∫
Φd µ̃s = h(µs )− s

∫
Φdµs > h(µs )+ s

∫
Φdµs .

Hence, µs is not an equilibrium measure, which is absurd. Therefore,
∫
Φdνs ≥ 0 for all s ≥ 0. The

assertion then follows from Lemma 4.5. □

Hence, in case of the Dyson potential, P (s) ̸= 0 for all s ∈R. However, by slightly modifying Φ, we
obtain the following for the potentialΦt :=Φ− t .

Lemma 5.2. Assume that Φ is the Dyson potential and α> 2. Then, for each t > maxΦ, the pressure
function s 7→ P (s) is strictly decreasing and there is a unique δ with P (δ) = 0. Furthermore,

lim
s→δ+

(s −δ)
∞∑

k=0
e−nt L n

sΦ( f )(z) = mδ( f )hδ(z)

h(µδ)
.

Proof. By the above lemma, there is no zero of PΦt (s) for t ≤ maxΦ. On the other hand, as Φt < 0, it
follows from Corollary 4.2, that Theorem 4.1 is applicable. In particular, the assertion follows from
(12) in the proof of Theorem 4.1. □

A possible application of this Lemma is the following.

Proposition 5.3. Assume that Φ is the Dyson potential, that α > 2, that t > maxΦ, that J := eΦ−t

and that x = (−1, x2, x3, . . .) and y = (1, y2, y3, . . .). Then there exists a unique δ> 0 such that P (δ) = 0.
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Furthermore, then (H , A,Dδ) as in Theorem 3.6 is a spectral triple whose spectral metric is a metric
and

Trω(La |Dδ|−1) = 2(hδ(x)+hδ(y))

h(µ)

∫
admδ

for any positive and ω0,(α−2)log-Hölder continuous function a.

Proof. The statement is a consequence of Theorem 3.6, Lemma 5.2 and Theorem 4.1. □

5.2. Potentials from Walters’ family. We now assume that Ω := {0,1}N, that T is the shift map and
that potential g :Ω→ R is continuous. We now would like to give examples where the statement of
Theorem 4.1 is true, that is

lim
s→1+

(s −1)
∞∑

k=1
L k

sg (a)(x) = 1

c

∫
Ω

a dm, (13)

for some c > 0 and a continuous function a. In here, we assume that f is in the so-called Walters
family, introduced in [Wal07].

Definition 5.4. A potential g is in the Walters family if g is continuous and there exist convergent
sequences (an)n∈N, (bn)n∈N, (cn)n∈N and (dn)n∈N such that, for any x ∈Ω and all n ∈N,

g (0n+11x) = an+1, g (01n0x) = bn , g (1n+10x) = cn+1, g (10n1x) = dn .

We refer to a,b,c and d , respectively, as the limits of the sequences an ,bn ,cn and dn . The rel-
evance of this family is based on the fact that the family is sufficiently rich to include examples of
important classes of functions like the Bowen class or functions satisfying Walters condition (see
Theorem 1.1 in [Wal07]). Moreover, it is possible to obtain necessary and sufficient conditions in
this class such that Ruelle’s operator theorem holds (see Theorem 3.1 in [Wal07]).

For our purposes, it is in fact sufficient to study the following subclass of Walters’ family. Namely,
we assume that g is of the form

f (x) =


c0 : x ∈ [0],

cn : x ∈ [1n 0], for n ∈N,

c x = (1,1, . . .),

(14)

for some convergent sequence (cn) and c := limn→∞ cn .
In Appendix A, we will analyse the action of the Ruelle operator Lg associated to potentials in this

class in more detail in the appendix. In particular, we obtain in Proposition A.4 a simple condition
in order to guarantee that the leading eigenvalue of Lg is equal to 1. We will now give two examples
of potentials not covered by Theorem 4.1 in order to show that in lower regularity the limit (13) only
sometimes exists.

Example 5.5. For a given sequence ak > 0, k ≥ 1, we consider the associated sequence bk = ak+1
ak

,
k ≥ 1. Obviously, (bk ) is determined by (ak ) and vice-versa. Furthermore, we assume that

∑∞
k=1 ak =

α is finite, a1 = 1 and that limk→∞ bk exists and that f :Ω→R satisfies

f (x) =


− log

∑∞
j=1 ak : x ∈ [0],

logbn : x ∈ [1n0],n ≥ 1;

logb : x = (1,1,1, . . .).

(15)

The classical Hofbauer case (see [Hof77]) as described in [FL01, Lop93, CL15] corresponds to ak =
k−γ, γ > 1, k ≥ 1. Moreover, for this case one can get an explicit expression for the eigenfunction h
and the eigenmeasure m (see [FL01]). If, in addition, γ > 2, then there exists an equilibrium µ for
this potential.

In the general setting, the following holds. Let h be the continuous function with

h(x) =
{ ∑∞

j=1 ak : x ∈ [0],
1

an+1

∑∞
j=n+1 a j : x ∈ [1n0],n ≥ 1.
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It follows from a straightforward calculation that L f (h) = h. Hence, g = f + logh − logh ◦T is a
normalized potential and the Jacobian J of the associated equilibrium state µ is of the form J =
e f h/h ◦T . That is, for x ∈ [1n ,0], n ≥ 1,

J (x) =
∑∞

j=n+1 a j∑∞
j=n a j

= 1− an∑∞
j=n a j

.

We will now analyse the case were a = 1[1], that is, the indicator function of the cylinder [1]. Our goal
in this case is to obtain an explicit expression of the zeta function

ζ+(s) :=
∞∑

k=1
L k

sg (a)(z)

and to evaluate lims→1+ (s −1)ζ+(s). We will now assume that s > 1 and z ∈ [01]. As we will see, the
convergence of the series

∑∞
n=1 an log an will play here an decisive role.

Note that L n
s f (1[1])(z) =L n

s f (1[1])(0, z) =L n
s f (1[1])(0,1d ,0, . . .), for d > 0. To simplify the notation

we set Ln
s :=L n

s f (1[1])(z) for n ≥ 1. Then

L1
s =as

2

L2
s =L1

s
1

αs +as
3

L3
s =L2

s
1

αs +L1
s

1

αs as
2 +as

4

L4
s =L3

s
1

αs +L2
s

1

αs as
2 +L1

s
1

αs as
3 +as

5

...

By induction one then obtains the following renewal equation for Ln
s :

Ln
s =

n−1∑
k=1

as
k

αs Ln−k
s +as

n+1.

From this we obtain the convergence of the following series and the expression
∞∑

k=1
Lk

s = (
∞∑

j=1
as

j −1)+ (
∞∑

j=1
a j )−s (

∞∑
j=1

as
j )

∞∑
k=1

Lk
s .

Therefore ζ+(s) = L1
s +L2

s +L3
s + . . .+Ln

s + . . . is given in an explicit form by

ζ+(s) =
∑∞

j=1 as
j −1

1−∑∞
j=1 as

j (
∑∞

j=1 a j )−s .

Consider the function γ(s) = ∑∞
j=1 as

j (
∑∞

j=1 a j )−s . In the case γ is differentiable at the left of s = 1

there exists

γ′(1−) = lim
s→1

∑∞
j=1 as

j (
∑∞

j=1 a j )−s −1

s −1
< 0.

Therefore,

lim
s→1+

(s −1)ζ+(s) =
∑∞

j=1 a j −1

−γ′(1)
,

Now, we estimate

γ′(1) =
∑∞

n=1 an log an∑
an

− log(
∞∑

n=1
an). (16)

Note that
∑∞

n=1 an log an is finite for an = n−γ and γ> 2. Then, γ′(1) is finite and non-zero. This case
is an example of a potential f which is not in the Walters class but

lim
s→1+

(s −1)ζ+(s) = 1

hµ f

∫
Ω

a dµ f ,

in the same way as in (2).
□
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Example 5.6. We will now construct a potential f of the form (15) where the an , n ∈ N, of last
example are such that the expression (16) forγ′(1) above is not finite. We are interested in a sequence
an , n ∈N, such that,

(a)
∑∞

n=1 an is finite,
(b)

∑∞
n=1 an log an does not converges and

(c) there exists the limit: limk→∞Ck =C .

Take

an = 1

n (log2(n))p , (17)

n ≥ 2, for some positive p. Remember that we take a1 = 1. In this case C = 1. Now, considering the
case p = 2, we get

∑∞
n=1 an log an =∞ (that is item (b) is true) and the potential associated to such a

sequence an (and, Cn) is not contained in Bowen’s class (see Theorem 1.1 in Walters).
In this case, one obtains an explicit conformal measure µ, where µ(Cn) ∼ an , but there is no

equilibrium probability with support on the all space Ω. Moreover, one can show that µ([1]) > 0.
Note that in this case γ′(1) =∞, and therefore the limit

lim
s→1+

(s −1)ζ+(s) =
∑∞

j=1 a j −1

−γ′(1)
= 0.

For this choice of z0 ∈ [010] and [w] = [1], we get

lim
s→1+

(s −1)ζ+(s) = 0.

This provides an example where the results of the previous sections do not apply.

In Appendix A, we will consider general potentials satisfying expression (14) and more general
functions a. Moreover, in Theorem A.7 of Appendix A.2, we consider the case of a potential f (as
in (14)) which is in the Walters class but is not Hölder continuous, such that, lims→1+ (s −1)ζ+(s) is
finite. In this result the observable a can be the indicator function of any cylinder set [w] inΩ.

6. DIXMIER TRACE REPRESENTATIONS FOR EQUILIBRIUM MEASURES OF TOPOLOGICAL MARKOV

SHIFTS

The key ingredient in proving Theorem 4.1 is the uniform decay of the Ruelle operator. In this
section we illustrate how to obtain a similar identity in non-compact setting using a spectral gap
(see Definition 6.1). The basic setup and presentation follow closely the reference [CS09]. Now
A =N and T = (ti j )A ×A is a matrix of zeroes and ones. Letσ :Ω→Ω denote the left shift mapping,
where

Ω≡ {(x1, x2, . . .) ∈A N : txi xi+1 = 1}.

We think of Ω as the collection of one sided infinite admissible words. We equip it with its usual
distance d(x, y) = 2−N (x,y), where N (x, y) ≡ inf{k : xk ̸= yk } (with the convention that inf; = +∞).
The resulting topology is generated by the cylinder sets [y1, y2, . . . , yn] ≡ {x ∈ X : xi = yi , i = 1, . . . ,n},
where n ≥ 1. A word y ∈A n is called admissible if the cylinder it defines is non-empty. The length
of an admissible word y = (y1, . . . , yn) will be denoted in this section by |y | ≡ n. We also assume that
σ :Ω→Ω is topologically mixing and locally compact. This is the case when for any two symbols
p, q ∈A , there is an N (p, q) ∈N such that for all n ≥ N (p, q) there is an admissible word of length n
which starts at p and ends at q , and for all p ∈A we have #{q ∈A : tpq = 1} <∞.

We define the n-th variation of a function f : Ω→ R as varn( f ) ≡ sup{| f (x)− f (y)| : xn
1 = yn

1 },
where zn

m ≡ (zm , . . . , zn). A function f : Ω→ R is called weakly θ-Hölder continuous function for
0 < θ < 1 if there exists a positive number Holθ( f ) such that varn( f ) ≤ Holθ( f ) θn . The Birkhoff sum
of a function f is denoted by Sn( f )(x) ≡∑n−1

k=0 f ◦σk .
Suppose f weakly θ-Hölder continuous function (or has summable variations) and X is topolog-

ically mixing. The Gurevich pressure of f is the limit

PG ( f ) = lim
n→∞

1

n
log Zn( f , q), where Zn( f , q) = ∑

σn (x)=x
exp(Sn( f )(x))1[q](x)
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and q ∈A . This limit is independent of q , and if sup f <∞ then it is equal to sup{hµ+
∫

f dµ}, where
the supremum ranges over all invariant probability measures such that the supremum is not of the
form ∞−∞, see [Sar99].

In this setting the Ruelle operator associated with f is defined in similarly way

L f (ϕ)(x) = ∑
q∈A

e f (qx)ϕ(qx)

This is well-defined for functions f such that the sum converges for all x ∈ X . Let dom(L f ) denote
the collection of such functions.

Definition 6.1 (Spectral Gap Property - SGP). Suppose that f is θ-weakly Hölder continuous, and
that PG ( f ) < ∞. We say that f has the spectral gap property (SGP) if there is a Banach space of
continuous functions B, such that,

(1) B ⊂ dom(L f ) and B ⊃ {1[a] : a ∈A n ,n ∈N};
(2) f ∈B implies | f | ∈B, ∥| f |∥B ≤ ∥ f ∥B ;
(3) B-convergence implies uniform convergence on cylinders;
(4) L f (B) ⊂B and L f : B →B is bounded;
(5) L f = λP + N , where λ = exp(PG ( f )), and P N = N P = 0, P 2 = P , dim(ImP ) = 1, and the

spectral radius of N is less than λ;
(6) if g is θ-Hölder, then L f +zg : B →B is bounded and z 7−→L f +zg is analytic on some com-

plex neighborhood of zero.

The motivation to introduce this concept is the next theorem. This result were proved in several
contexts by many authors, see [CS09] and references therein.

Theorem 6.2. Suppose X is a topologically mixing countable Markov shift, and f : X → R is a θ-
weakly Hölder continuous potential with finite Gurevich pressure, finite supremum, and the SGP.
Write L f =λP +N . Then,

(1) P takes the form P f = h
∫

f dν, where h ∈B is a positive function, and ν is a measure which
is finite and positive on all cylinder sets;

(2) the measure dµ= hdν is a σ-invariant probability measure satisfying: if µ has finite entropy,
then µ is the unique equilibrium measure of f ;

(3) there is a constant 0 < κ < 1 such that for all g ∈ L∞(µ) and f bounded Hölder continuous,
there exists a positive constant C (ϕ,ψ) such that |covµ(ϕ,ψ◦σn)| ≤C (ϕ,ψ)κn (cov = covari-
ance);

(4) suppose g is a bounded Hölder continuous function, such that Eµ[g ] = 0. If g ̸= f − f ◦σ with
f continuous, then there is ϱ> 0 such that Sn(g )/

p
ϱn converges in distribution (w.r.t. µ) to a

standard normal distribution.
(5) suppose g is a bounded Hölder continuous function, then the function t 7−→ PG ( f +t g ) is real

analytic on a neighborhood of zero.

Now the C∗-algebra A is taken to be as C0(X ,C), the set X of complex valued continuous func-
tions f : X → C that vanish at infinity. The Hilbert space H is ℓ2(W ∗) ⊕ ℓ2(W ∗), where W ∗ is
the set of all finite length admissible words w = (w1, w2, . . . , wn), where n ∈ N and w j ∈ A . The
space ℓ2(W ∗) is defined as before, the complex vector space of all functions ϵ : W ∗ → C, satisfying∑

w∈W ∗ |ϵ(w)|2 <∞. Fix two arbitrary elements x, y ∈Ω. For each a ∈ A the operator La : H → H is
defined by

La(
⊕

w∈W ∗(x,y)

(
ϵ1(w)

ϵ2(w)

)
) = ⊕

w∈W ∗(x,y)

(
a(w x)ϵ1(w)

a(w y)ϵ2(w)

)
,

where W ∗(x, y) is the set of all admissible words w ∈ W ∗ such that twn x1 = twn y1 = 1. Finally, the
Dirac operator is given by

D = (
⊕

w∈W ∗(x,y)

(
ϵ1(w)

ϵ2(w)

)
) = ⊕

w∈W ∗(x,y)

1

J(w x)

(
ϵ1(w)

ϵ2(w)

)
,

where J(w x) = [J (wl (w)x) . . . J (wl (w) · · ·w1x)], l (w) is the length of a string w ∈ W ∗(x, y) and log J =
f + logh− log◦h◦σ− logλ. We also assume there are constants 0 < κ1 < κ2 such that e−κ1q ≤ J (qx) ≤
e−κ2q for all x ∈Ω.
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The verification that (A, H ,D) is a spectral triple is more involved. The difficult is to verify item
(3) of Definition 1.2. When working with spectral triples in this context (infinite alphabets) we need
to restrict ourselves to a class of functions J for which the operator D−1 is a compact operator. A
simple example of a such function is J (x) = e−x1+1(1−e)−1. To prove the existence of a dense subset
of C0(Ω,C) satisfying {a ∈ A : ∥[D,La]∥ <+∞} it is enough to observe that{

a ∈C0(Ω,C) :
∑

w∈W ∗

|a(w x)−a(w y)|
|J(w x)| < +∞

}
is a self-adjoint subalgebra of C0(Ω,C), separating points inΩ and for any x ∈Ω there is an element
a is this subalgebra such that a(x) ̸= 0, and therefore we can apply the Stone-Weiertrass theorem for
locally compact spaces. Indeed, the family of functions (Sn)n∈N, given by

Sn(x) ≡ arctan(
1

xn
)exp(−2κ1

n−1∑
j=1

x j )

is in this subalgebra is non-vanish and separating points. Since we are assuming PG ( f ) <∞ follows
immediately that hµ(σ) is finite. By using the main result of [CS09] we can find a potential J having
SGP and satisfying the above conditions. Therefore follows from the above theorems and similar
computation as presented before, the formula

Trω(LaD−1) = 2

hµ

∫
Ω

a dµ, ∀a ∈C0(X ,C).

7. REMARKS ABOUT UNCOUNTABLE ALPHABETS

Let us begin this section with the following observation. In case where A is finite alphabet, any
element of the Hilbert space H , considered in first section, can be written as⊕

w∈W ∗

(
ϵ1(w)

ϵ2(w)

)
=

∞⊕
n=1

⊕
(w1,...,wn )∈A n

admissible

(
ϵ1(w1, . . . , wn)

ϵ2(w1, . . . , wn)

)
. (18)

Actually such representation has a precise meaning when A is either finite or infinite countable. In
this section we want to use this observation to discuss what happens with our previous construc-
tions when uncountable alphabets are taken into account. This generalization would have natural
interest as a pure mathematical problem, but it has also a potential to create a bridge between non-
commutative geometry and equilibrium states of continuous spins systems in Statistical Mechanics.

In previous section, we shown that the DLR-Gibbs measures of the Dyson model admits a Dixmier
trace representation. Although it is a very important model in studying ferromagnetic system, it has
some limitations due to its formulation in terms of discrete spins. To be able to extend our results for
more realistic models such as X Y and Heisenberg models, it is necessary to generalize the previous
constructions to allow for uncountable alphabets.

An interesting example where the alphabet is uncountable is described in [ERZ06] which consid-
ers a certain type of X Y model.

Let E = (E ,d) be a compact metric space and p : B(E) → [0,1] an a priori probability measure
on E , fully supported. Consider the following symbolic space Ω = EN endowed with its standard
topology, metric, etc. In this setting the Ruelle operator, associated to a potential log J :Ω→ R, acts
in a continuous function ϕ :Ω→C as follows

Llog J (ϕ)(x) =
∫

E
exp(log J (qx))ϕ(qx)d p(q),

where qx ≡ (q, x1, x2 . . .). Similarly, we say that log J is a normalized potential if Llog J (1)(x) = 1, for
all x ∈Ω. To simplify matters in what follows, we assume that J :Ω→R is a positive and continuous
function, and that log J is a normalized Hölder potential.

For example, if E =S2, the unit sphere in R3, then the set of σ-invariant DLR-Gibbs measures of
the Heisenberg model on the lattice N (for a large class of potentials) coincides with the conformal
measures for L ∗

log J for some suitable potential log J , which depends on the choice of the interaction.

In the sequel we show an obstruction to obtain a spectral triple in this cases following the ideas
of the previous sections.
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Taking into account the expression (18) the natural way to construct a spectral triple is taking the
C∗-algebra A as C (Ω,C) and the Hilbert space H as the Hilbert direct sum

H ≡
∞⊕

n=1

∫ ⊕

E n
C⊕C dpn ,

where the constant fiber direct integrals∫ ⊕

E n
C⊕Cdpn ≡ L2(E n ,dpn ,C⊕C)

which is the Hilbert space of square integrable C⊕C-valued functions, with respect to the product
measure dpn =∏n

i=1 d p. So an element in this space H can be thought as a pair of functions ϵ1,ϵ2 :
∪∞

i=1En →C satisfying
∞∑

n=1

(∫
E n

|ϵk (w)|2 dpn(w)

)2

<+∞, k = 1,2.

To keep as closed as possible of (18) one would represent the elements in this space as follows

∞⊕
n=1

∫ ⊕

E n

(
ϵ1(w)

ϵ2(w)

)
dpn(w).

Now, for each a ∈ A the natural way to define the operators La : H → H is

La

( ∞⊕
i=1

∫ ⊕

E n

(
ϵ1(w)

ϵ2(w)

)
dpn(w)

)
=

∞⊕
n=1

∫ ⊕

E n

(
a(w x)ϵ1(w)

a(w y)ϵ2(w)

)
dpn(w)

and the Dirac operator would be given by

D

( ∞⊕
n=1

∫ ⊕

E n

(
ϵ1(w)

ϵ2(w)

)
dpn(w)

)
=

∞⊕
i=1

∫ ⊕

E n

1

J(w x)

(
ϵ1(w)

ϵ2(w)

)
dpn(w).

Although this construction is natural, in the general case it will not provide a spectral triple. The
main obstruction is the compactness of D−1. For example, if we take the metric space E = [0,1]
endowed with its standard distance and the probability measure p as being the Lebesgue measure,
then the operators D has no compact resolvent, which is a requirement in the definition of a spectral
triple. Note that this is not only a technical issue because in such cases it is not clear how to define
even singular traces. It would be interesting to know whether a spectral triple can be construct on
this setting because of its potential applications in studying DLR-Gibbs measures associated to the
long-range interactions X Y or Heisenberg models in one-dimensional lattices.

APPENDIX A. THE RUELLE OPERATOR APPLIED TO INDICATORS OF CYLINDERS FOR A FAMILY OF

POTENTIALS

First we consider the case of a general f and a general cylinder set [w]. Let z0 ∈ [010] and assume
that ψ is the indicator function I[w] of the cylinder [w] for some finite word w in the alphabet {0,1}.
Then

L n
s ψ(z0) = ∑

y∈σ−n (z0)

[
n−1∏
j=0

f s
(
σ j (y)

)]
· I[w](y) = ∑

a∈{0,1}n−|w |

[
n−1∏
j=0

f s
(
σ j (w az0)

)]

for all n ≥ |w |. Holding w and z0 fixed, we write L n
s I[w](z0) simply as Ln

s .
Now, for a potential f as in expression (14) we formally derive some expressions, whose validity

will depend on the convergence of some sequences. Later we investigate in some examples the
convergence issue.

Theorem A.1. For n > |w |,

Ln
s =

n−|w |∑
j=1

(
j−1∏
i=0

C s
i

)
·Ln− j

s +
n−1∏
k=0

f s
(
σk (w1n−|w |z0)

)
.
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Proof.

n−|w |∑
j=1

(
j−1∏
i=0

C s
i

)
Ln− j

s

=
n−|w |∑

j=1

(
j−1∏
i=0

C s
i

)
· ∑

a∈{0,1}n− j−|w |

n− j−1∏
k=0

f s
(
σk (w az0)

)

=
n−|w |∑

j=1

[
j−1∏
i=0

f s
(
σi (01 j−1z0)

)] ∑
a∈{0,1}n− j−|w |

n− j−1∏
k=0

f s
(
σk (w a01 j−1z0)

)

=
n−|w |∑

j=1

[
j−1∏
i=0

f s
(
σn− j+i (w a01 j−1z0)

)] ∑
a∈{0,1}n− j−|w |

n− j−1∏
k=0

f s
(
σk (w a01 j−1z0)

)
=

n−|w |∑
j=1

∑
a∈{0,1}n− j−|w |

n−1∏
k=0

f s
(
σk (w a01 j−1z0)

)
The set {

w a01 j−1z0; a ∈ {0,1}n− j−|w |
}

is the set of all n-th pre-images of z0 which has z0 preceded by exactly ( j −1) digits 1 and belongs to
[w]. Thus, ⋃

j=1n−|w |

{
w a01 j−1z0; a ∈ {0,1}n− j−|w |

}
has all the n-th pre images of z0 in the set [w], except for w1n−|w |z0. We have, therefore,

n−|w |∑
j=1

(
j−1∏
i=0

C s
i

)
·Ln− j

s +
n−1∏
k=0

f s
(
σk (w1n−|w |z0)

)
=

∑
a∈{0,1}n−|w |

n−1∏
k=0

f s
(
σk (w az0)

)
= Ln

s .

□

This theorem has the following consequences, whose proofs are omitted.

Corollary A.2. For N ∈N,

N∑
n=0

L|w |+n
s = L|w |

s +
N−1∑
n=0

(
N−1−n∑

j=0

j∏
i=0

C s
i

)
L|w |+n

s +
N∑

n=1

n+|w |−1∏
k=0

f s
(
σk (w1n z0)

)
.

Corollary A.3.

∞∑
n=0

L|w |+n
s =

L|w |
s +∑∞

n=1
∏n+|w |−1

k=0 f s
(
σk (w1n z0)

)
1−∑∞

j=0

∏ j
i=0 C s

i

From Corollary A.3, we conclude that

ζ+(s) =
L|w |

s +∑∞
n=1

∏n+|w |−1
k=0 f s

(
σk (w1n z0)

)
1−∑∞

j=0

∏ j
i=0 C s

i

+
|w |−1∑
n=1

Ln
s . (19)

The second term in the right hand side of Equation (19) is a finite sum (does not have convergence
problems), but we shall see in the next section that lims→1+ ζ+(s) = +∞ under the hypothesis of a
normalized eigenvalue. We shall investigate the existence of the limit

lim
s→1+

(s −1)ζ+(s) = lim
s→1+

(s −1) ·
L|w |

s +∑∞
n=1

∏n+|w |−1
k=0 f s

(
σk (w1n z0)

)
1−∑∞

j=0

∏ j
i=0 C s

i

.

Here, it is worth noting that the denominator does not depends of the cylinder [w].
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A.1. Normalization of the Eigenvalue. We are now interested in examples where the main eigen-
value of the Ruelle operator is equal to 1 but f not necessarily is normalized. We recall that, accord-
ing to Corollary 3.5 in [Wal07], λ is the maximal eigenvalue if and only if,

1

λ2

[
ed1 +

∞∑
j=1

ed1+ j
ea2+...+a1+ j

λ j

][
eb1 +

∞∑
j=1

eb1+ j
ec2+...+c1+ j

λ j

]
= 1 . (20)

For the potential defined in (14), we have an ≡ logC0 ≡ bn , dn ≡ logC1 and cn+1 = logCn+1. Hence,
(20) translates to the following.

Proposition A.4. If

C0 =
[

1+
∞∑

j=1

(
j∏

k=1
Ck

)]−1

, (21)

then, the main eigenvalue of the Ruelle operator for the potential g is equal to 1.

Proof. Assuming that λ= 1 in (20), we get[
C1 +

∞∑
j=1

C1C j
0

][
C0 +

∞∑
j=1

C0C2 . . .C j+1

]

=C0C1

[
1+

∞∑
j=1

C j
0

][
1+

∞∑
j=1

C2 . . .C j+1

]
=

( ∞∑
j=1

C j
0

)[ ∞∑
j=1

(
j∏

k=1
Ck

)]

= C0

1−C0
·
[ ∞∑

j=1

(
j∏

k=1
Ck

)]
= 1.

In this case C0 satisfies (21) □

Therefore, we now investigate potentials given by (Cn)n∈N, for which
∑∞

j=1

∏ j
k=1 Ck converges and

for which the restriction to the cylinder [0] is equal to C0 as in (21).
Define γ : [1,+∞) →R to be the second term in the denominator of ζ+(s) in (19), that is

γ(s) :=
∞∑

j=0

j∏
i=0

C s
i =C s

0

[
1+

∞∑
j=1

j∏
i=1

C s
i

]
. (22)

If we suppose that the eigenvalue is normalized, then γ(1) = 1, by (21), and, by (19), we see that
lims→1+ ζ+(s) = +∞, which makes the question of the existence of the limit lims→1+ (s − 1)ζ+(s) a
non trivial one. Let z(s) be the numerator of the first term in ζ+(s), for s ≥ 1. Therefore,

lim
s→1+

(s −1)ζ+(s) = lim
s→1+

z(s)

(s −1)−1
(
γ(1)−γ(s)

) . (23)

As γ(1) = 1, we conclude that, under the above hypothesis, if γ has right derivative at s = 1 and z(1)
is finite, then the above limit is finite.

Remark A.5. Note that the term on the numerator depends on the cylinder [w] and the term on the
denominator does not.

A.2. An example with Walters regularity. We consider the potential g = log f : Ω = {0,1}N → R of
the following kind. Let

t = (e
1
3 +e−

1
2 )−1 ,

and, for n ∈ N, define Cn = t exp
[

(−1)n+1

n

]
, which satisfies limn Cn = t . f is then defined by (14).

We would like to point out that P. Walters mentioned in a private message a version of the above
example (a potential which is in the Walters class but it is not of Hölder continuous).

We will now show (see Theorem A.7) that in this case, the limit

lim
s→1+

(s −1)ζ+(s) =− z(1)

γ′(1)
. (24)
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exists. As stated in [Wal07], a potential in the Walters family is in Walters class of regularity if and
only if, for the associated sequences (an)n∈N and (cn)n∈N given by Definition 5.4 with respective
limits a and c, the following holds.∑

n∈N
(an −a) and

∑
n∈N

(cn − c) converge .

For the potential defined in the first paragraph of this section, an ≡ logC0 while cn = logCn = log t +
(−1)n+1

n , so ∑
n∈N

(an −a) = 0 ,

and ∑
n∈N

(cn − c) = ∑
n∈N

[
log t + (−1)n+1

n
− log t

]
= ∑

n∈N

(−1)n+1

n
,

which is convergent. Therefore, g = log f is of Walters class of regularity. Note that a potential g =
log f , for f as in (14), cannot be normalized, unless the sequence Cn is constant (which is equivalent
to a constant potential), as

Lg 1(x) = eg (0x) +eg (1x) =C0 + f (1x) = 1 (25)

for every x ∈Ω.
We will show that this potential is not Hölder continuous. In order to do so, define, forφ ∈C (Ω,R),

vn(φ) = sup
{|φ(x)−φ(y)|; x, y ∈Ω, xi = yi , i = 0, . . . ,n −1

}
.

A function φ is Hölder with Hölder exponent α ∈ (0,1) if

sup
n∈N

vn(φ)

2−nα <∞ .

Given n ≥ 2, let x = 1n0x, for any fixed x ∈ Ω, and y = 1∞. Then d(x, y) = 2−(n+1), and | log f (x)−
log f (y)| = 1/n. This implies that vn(log f ) ≥ 1

n and, in particular, This implies that log f is not Hölder
continuous.

We now determine the derivative of γ defined in (22). In order to so, let

γn(s) =C s
0

[
n∑

j=1

(
j∏

k=1
C s

k

)
+1

]

Then

γ′n(s) = logC0 ·C s
0

[
n∑

j=1

(
j∏

k=1
Ck

)s

+1

]
+C s

0

[
n∑

j=1

(
j∏

k=1
Ck

)s

· log

(
j∏

k=1
C s

k

)]

=C s
0

{
logC0

[
1+

n∑
j=1

t j s e s·∑ j
k=1

(−1)k+1

k

]

+
n∑

j=1

[
t j s e s·∑ j

k=1
(−1)k+1

k · j · log t ·
j∑

k=1

(−1)k+1

k

]}

We will now address the question of differentiability of the function γ.

Theorem A.6. The derivative γ′(1) exists and is finite.

Proof. Remember that t < 1. Let

ρ = sup
n∈N

n∑
i=1

(−1)i+1

i
.
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Then, for ϵ> 0 and s ∈ [1,1+ϵ],

C s
0 logC0

[
n∑

j=1
t j s e s·∑ j

k=1
(−1)k+1

k

]

≤ logC0 ·max{C0,C 1+ϵ
0 } ·max{eρ ,eρ(1+ϵ)} ·

n∑
j=1

(
t s) j

≤ logC0 ·max{C0,C 1+ϵ
0 } ·max{eρ ,eρ(1+ϵ)} ·

n∑
j=1

t j

and

C s
0

n∑
j=1

[
t j s e s·∑ j

k=1
(−1)k+1

k · j · log t ·
j∑

k=1

(−1)k+1

k

]

≤max{C0,C 1+ϵ
0 } ·λ ·max{eρ ,eρ(1+ϵ)} ·

n∑
j=1

j · t j .

By the Weierstrass M criterion, the series of functions γ′n : [1,1+ ϵ] → R converges uniformly to the
function

s 7→C s
0

{
logC0

[
1+

∞∑
j=1

t j s e s·∑ j
k=1

(−1)k+1

k

]

+
∞∑

j=1

[
t j s e s·∑ j

k=1
(−1)k+1

k · j · log t ·
j∑

k=1

(−1)k+1

k

]}
.

Hence, the function γ′ : [1,1+ϵ] →R is well defined. □

It follows from the above that expression (24) is true if z(1) is finite. Now we will investigate if z(1)
is finite for the case of a general cylinder [w]. Considering the indicator function I[w] of the cylinder
[w], we obtain from the results in Section A.1, that

z(s) = L|w |
s +

∞∑
n=1

n+|w |−1∏
k=0

f s
(
σk (w1n z)

)
,

where it remains to analyze the convergence as s → 1.

Theorem A.7. z(1) is finite in the case of the existence of the limit

lim
s→1

∞∑
k=0

k∏
i=0

C s
i . (26)

Therefore, in this case, lims→1+ (s−1)ζ+(s) =− z(1)
γ′(1) exists. Note that condition (26) does not depend on

the cylinder set [w].

Proof. When w = u0 (it is possible for u to be the empty word),

n+|w |−1∏
k=0

f s
(
σk (w1n z)

)
=

|w |−1∏
k=0

f s
(
σk (u0. . .)

)n−1∏
k=0

f s
(
σk (1n z)

)
=

|w |−1∏
k=0

f s
(
σk (u0. . .)

)n−1∏
k=0

C s
n−k ,

where u0. . . can be any point inΩ in the cylinder [u0]. Thus,

z(s) = L|w |
s +

|w |−1∏
k=0

f s
(
σk (u0. . .)

) ∞∑
n=1

n−1∏
k=0

C s
n−k
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When w = u1l , with u empty or having 0 as the last digit,

n+|w |−1∏
k=0

f s
(
σk (w1n z)

)
=

|w |−l∏
k=0

f s
(
σk (u . . .)

)n+l−1∏
k=0

f s
(
σk (1n+l z)

)
=

|w |−1∏
k=0

f s
(
σk (u . . .)

)n+l−1∏
k=0

C s
n+l−k ,

where u . . . can be any point inΩ in the cylinder [u]. Thus,

z(s) = L|w |
s +

|w |−l−1∏
k=0

f s
(
σk (u . . .)

) ∞∑
n=1

n−1∏
k=0

C s
n+l−k

In both cases, convergence of lims→1 z(s) is guaranteed by the existence of
∑∞

k=0

∏k
i=0 C s

i . □

A.3. A more general family of examples. The most general situation where the calculations of the
preceding section are valid is in the case of uniform convergence of the sequence of functions

[1,1+ϵ] ∋ s 7→
n∑

j=1

(
j∏

k=1
Ck

)s

[1,1+ϵ] ∋ s 7→
n∑

j=1

(
j∏

k=1
Ck

)s

· log

(
j∏

k=1
Ck

)
Nevertheless, the second condition is implied by the first, for

∞∑
j=1

[(
j∏

k=1
Ck

)s

· log

(
j∏

k=1
Ck

)]
−

n∑
j=1

[(
j∏

k=1
Ck

)s

· log

(
j∏

k=1
Ck

)]

=
∞∑

j=n+1

(
j∏

k=1
Ck

)s

· log

(
j∏

k=1
Ck

)
,

and the first convergence conditions bounds log
∏ j

k=1 Ck .
Trying to generalize the calculations of the preceding section, we present a class Λ of potentials

f for which they can be extended. Choose a sequence (αk )k∈N, with the property that
∑

k∈Nαk

converges and fix t ∈ (0,1). Then define Ck := teαk , for k ∈ N, and define C0 by (21), so that the
eigenvalue is normalized. The potential f associated to those choices is then given by (14). We
denote byΛ the class of such potentials. We observe thatΛ is a family indexed by the set{

((αk )k∈N, t ) ;
∑

k∈N
αk converges & t ∈ (0,1)

}
.

Using the notation of the preceding sections,

γ′n(s) =C s
0

{
logC0

[
1+

n∑
j=1

t j s e s·∑ j
k=1αk

]
+

n∑
j=1

[
t j s e s·∑ j

k=1αk · j · log t ·
j∑

k=1
αk

]}
,

the same arguments used there to prove the uniform convergence of
(
γ′n

)
can be used again to show

that γ′(1) is finite (see Theorem A.6). Indeed, under the hypothesis of convergence of the series∑
k∈Nαk , we can define

ρ = sup
n∈N

n∑
k=1

αk ,

and get the same estimates as in the preceding section. In the same way as before, if condition
(26) is true, then the convergence of lims→1+ (s −1)ζ+(s) is guaranteed. Hence, we have shown the
following.

Theorem A.8. For the potentials g = log f , with f ∈Λ, the limit

lim
s→1+

(s −1)ζ+(s) (27)

exists.
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APPENDIX B. APPENDIX B: A HAAR BASIS FOR L2 SPACES AND EXPLICIT CALCULATIONS OF

EIGENFUNCTIONS

We now briefly discuss the construction of spectral triples in [KS13] which we recall now. Let
(Ω,T ) refer to a topologically mixing subshift of finite type (cf. Section 3.3), ϕ : Ω→ R a Hölder
continuous potential, µ to the associated equilibrium state as in Corollary 2.10 and L2(µ) to the
Hilbert space of complex valued and µ-square integrable functions. Furthermore, for a ∈ C (Ω),
set La : L2(µ) → L2(µ), f 7→ a f and note that a 7→ La defines a faithful representation of the C∗-
algebra C (Ω). Hence, in order to obtain a spectral triple, it remains to construct a suitable Dirac
operator D . In order to do so, the authors construct a Haar basis of L2(µ), then use this basis in
order to define D on the dense subset of finite linear combinations of this subset (cf. Equation (13)
in [KS13]) and finally show that (C (Ω),L2(µ),D) is a spectral triple (Theorem 4.1 in in [KS13]) and
that the associated spectral metric is a metric.

We now recall their construction for the particular case of Ω := {0,1}N in order to have the most
simple example at hand. In here, we refer to W ∗ = ⋃

n≥1 {0,1}n as the set of finite words. Moreover,
for each w ∈W ∗, define the inner product

〈(x0, x1), (y0, y1)〉w :=µ([w0])x0 y0 +µ([w1])x1 y1

on R2 and set fw,0 := µ([w0])−1/2(1,0) and fw,1 := µ([w1])−1/2(0,1). Then, { fw,i : i = 0,1} is an or-
thonormal basis with respect to 〈·, ·〉w . As we are in dimension 2 and ∥µ([w])−1(1,1)∥w = 1, there
exists a unique matrix Aω ∈ GL2(R) such that the determinant of Aw is positive, Aw is an isometry
with respect to 〈·, ·〉w and Aw fw,1 =µ([w])−1/2(1,1). Namely, as it easily can be verified,

Aw =
√

µ([w1])
µ([w])

(
1 1

−µ([w0])
µ([w1]) 1

)
.

Moreover, the Aw -image of fw,0 is

Aw ( fw,0) =
√

µ([w1])
µ([w])µ([w0])

(
1 1

−µ([w0])
µ([w1]) 1

)(
1
0

)
=µ([w])−1/2

( √
µ([w1])/µ([w0])

−√
µ([w0])/µ([w1])

)
.

From the above, following the reasoning in [KS13], we set

ew := 〈 fw,0, Aw ( fw,0)〉w√
µ([w0])

1[w0] +
〈 fw,1, Aw ( fw,0)〉w√

µ([w1])
1[w1]

= 1√
µ([w])

(√
µ([w1])
µ([w0]) 1[w0] −

√
µ([w0])
µ([w1]) 1[w1]

)
. (28)

We are now in position to apply Theorem 3.5 in [KS13]. That is, one obtains that

B := {
ew ; w ∈W ∗}∪{

µ([0])−
1
2 1[0] , µ([1])−

1
2 1[1]

}
is a Haar basis of L2(µ). Furthermore, as the proof of Theorem 3.5 only makes use of the property
that µ(Ω) = 1, this in fact holds for any probability measure µ. As an immediate consequence of
orthonormality of B, it follows that the following operator D is well defined for any finite linear
combination f of elements in B by

D( f ) := 〈 f ,1[0]〉
µ([0])

1[0] +
〈 f ,1[1]〉
µ([1])

1[1] −〈 f ,1〉1+ ∑
w∈W ∗

〈 f ,ew 〉
µ([w])

ew . (29)

As B is a basis of L2(µ), it follows that D is densely defined. Now assume that ϕ :Ω→ R is ω0,βlog-
Hölder continuous for some β > 1 and that µ is given by Corollary 2.10. Moreover, as the proof of
Theorem 4.1 in [KS13] only makes use of µ([w]) → 0 as the length of w tends to infinity and the
distortion estimate in (2), we obtain the following partial generalisation to not necessarily Hölder
continuous potentials.

Corollary B.1. If ϕ :Ω→ R is ω0,βlog-Hölder continuous for some β > 1 and µ is given by Corollary
2.10, then (C (Ω),L2(µ),D) is a spectral triple.
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However, in order to have an explicit expression for D it is necessary to compute the valuesµ([w])
for any cylinder set [w] inΩ. The main motivation of this appendix is in fact to provide these expres-
sions for a class of normalized potentials in the Walters family. Before we do so, we give two simple
examples.

Example B.2. Assume that P = (Pi , j )i , j=0,1 is a stochastic matrix and that π ∈ R2 is a left invariant
probability vector of P . It is then well known that

µ([w0 . . . wn]) :=π(w0)Pw0w1 · · ·Pwn−1wn

defines a T -invariant probability measure. Recall that a measure of this type also is known as the
Markov measure associated with P,π. In this case, B is the union of π(0)−1/21[0], π(1)−1/21[1] and, for
w = (w0 . . . wn) ∈W ∗,

ex = 1√
µ([w])

(√
Pxn ,1
Pxn ,0

1[x0] −
√

Pxn ,0
Pxn ,1

1[x1]

)
. (30)

Example B.3. For the case of the measure µ of maximal entropy, the above simplifies to, with |w |
referring to the length of w ,

B=
{p

2
−1

1[0],
p

2
−1

1[1],
}
∪

{p
2
−|w |

(1[w0] −1[w1]) : w ∈W ∗
}

. (31)

B.1. Explicit computations for the equilibrium probability for potentials on the Walters family.
Our purpose here is to describe how one can get explicit expressions for (28) which are necessary
for defining the momentum operator D explicitly in the case of potentials on the Walters family.

Firstly, we will state a theorem of [Wal07] which we will apply. For a potential g in the Walters
family, which satisfies the hypotheses of Ruelle’s Theorem,λwill refer to the maximal positive eigen-
value and h :Ω→R to the corresponding positive eigenfunction. Furthermore, φ̂ :Ω→Rwill denote
the exponential of the normalized potential, that is,

φ̂= h ·eg

λh ◦σ .

The probability measuresµ andν are, respectively, the eigenfunction of the dual of the Ruelle Opera-
tor and the equilibrium state of g . Note that they are related through the Radon-Nikodym derivative
by dµ= h−1dν. In here, we are mainly interested in potentials of the form g = log f with f ∈Λ and
Λ as constructed in A.3. Observe that in this case, λ= 1.

Theorem B.4. For a potential g of Walters type, which is determined by the convergent sequences
(an)n∈N, (bn)n∈N, (cn)n∈N and (dn)n∈N, the eigenfunction h :Ω→R of Ruelle’s operator is determined
by the following equations:

h(0n1z) =αn = α(λ−ea)

λed

[
edn +

∞∑
j=1

ed j+n

λ j
exp

(
j∑

i=1
an+i

)]
,

h(1∞) =β= αeb(λ−ea)

ed (λ−ec )λ

[
ed1 +

∞∑
j=1

ed j+1

λ j
exp

(
j∑

i=1
ai+1

)]
,

h(1n0z) =βn = β(λ−ec )

λeb

[
ebn +

∞∑
j=1

eb j+n

λ j
exp

(
j∑

i=1
cn+i

)]
,

for all n ∈N and all x ∈Ω. The free positive parameter α is chosen so that µ is a probability measure.

For g = log f , with f ∈Λ, we derive the expressions for h:

h(0n1z) =αn = α(λ−ea)

λed

[
edn +

∞∑
j=1

ed j+n

λ j
exp

(
j∑

i=1
an+i

)]

= α(1−C0)

C1

(
C1 +

∞∑
j=1

C1C j
0

)
=α(1−C0)

(
1+ C0

1−C0

)
=α .
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Moreover,

h(1∞) =β= αeb(λ−ea)

ed (λ−ec )λ

[
ed1 +

∞∑
j=1

ed j+1

λ j
exp

(
j∑

i=1
ai+1

)]

= αC0(1−C0)

C1(1− t )

(
C1 +

∞∑
j=1

C1C j
0

)
= αC0

1− t
,

and

h(1n0z) =βn = β(λ−ec )

λeb

[
ebn +

∞∑
j=1

eb j+n

λ j
exp

(
j∑

i=1
cn+i

)]

= β(1− t )

C0

[
C0 +

∞∑
j=1

C0

(
j∏

i=1
Cn+i

)]
=β(1− t )

[
1+

∞∑
j=1

(
j∏

i=1
Cn+i

)]

=αC0

[
1+

∞∑
j=1

(
j∏

i=1
Cn+i

)]
=α

1+∑∞
j=1

∏ j
i=1 Cn+ j

1+∑∞
j=1

∏ j
i=1 Ci

 .

Note that limn→∞βn =β. Hence,

lim
n
βn =β(1− t )

[
1+ lim

n

∞∑
j=1

j∏
i=1

Cn+ j

]
=β(1− t )

[
1+

∞∑
j=1

t j

]
=β.

From the above equations, it is also possible to derive explicitly the function φ̂:

φ̂(0n+11z) =C0 := γn+1, φ̂(01n0z) = αC0

βn

φ̂(1n+10z) = βn+1 ·Cn+1

βn
:= δn+1, φ̂(10n1z) = β1 ·C1

α
,

and the normalization condition can be explicitly verified:

φ̂(10n1z) = β1 ·C1

α
= C1

α
αC0

[
1+ ∑

j=1
∞

j∏
i=1

C1+i

]

=C0

[ ∞∑
j=1

j∏
i=1

Ci

]
= 1−C0 = 1−γn+1.

Moreover,

φ̂(01n0z) =α ·C0

βn
= αC0

αC0

[
1+∑∞

j=1

∏ j
i=1 Cn+i

] = 1

1+∑∞
j=1

∏ j
i=1 Cn+i

= 1−x

⇕

x =1− 1

1+∑∞
j=1

∏ j
i=1 Cn+1

=
∑∞

j=1

∏ j
i=1 Cn+i

1+∑∞
j=1

∏ j
i=1 Cn+i

=
αC0 Cn+1

[
1+∑∞

j=1

∏ j
i=1 Cn+1+i

]
αC0

[
1+∑∞

j=1

∏ j
i=1 Cn+i

] =Cn+1
βn+1

βn
= δn+1.

The equilibrium measure ν, which is the Ruelle Operator’s eigenmeasure for the potential log φ̂,
instead of g , satisfies the following equations:

Theorem B.5. For each k ∈N, we define

ik =∏k
j=2γ j , ck = (1−γk+1),

dk = (1−δk+1),
∏k

j=2δ j , fk =∏k
j=2δ j ,

Γk =∑∞
i=0

(∏i
j=0γk+i

)
, ∆k =∑∞

i=0

(∏i
j=0δk+i

)
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and writeΘ= Γ2 +∆2 +2. The unique equilibrium state ν for g is determined by the equations

ν([01]) = ν([10]) = 1
Θ , ν([00]) = Γ2

Θ , ν([11]) = ∆2
Θ ,

ν([0n+2]) =
(∏n+1

j=2 γ j

)
·Γn+2

Θ , ν([1n+2]) =
(∏n+1

j=2 δ j

)
·∆n+2

Θ .

Moreover, for r ∈N, i ∈Nr , ki , li ∈N,

ν([0k1 1l1 0k2 1l2 . . .0kr 1lr ]) =
ik1 dl1

(∏r−1
j=2 ck j dl j

)
ckr flr

Θ
,

ν([0k1 1l1 0k2 1l2 . . .1lr−1 0kr ]) =
ik1

(∏r−2
j=1 dl j ck j

)
dlr−1 (r )ik+r

Θ
;

if, in the two last equations, we change zeros by ones and ones by zeros in the left sides, the right sides
changes by switching f ′s by i ′s, i ′s by f ′s, c ′s by d ′s and d ′s by c ′s.

From the above we get

ik =C k−1
0 ,ck = (1−C0)C k−1

0 ,dk =
(
1− βk+1Ck+1

βk

)
βk

β1

k∏
j=2

C j , fk = βk

β1

k∏
j=2

C j .

With all this information we can determine the ν-measure or the µ-measure of each cylinder set [x].
For ν, B.5 and the above identities are enough, whereas for µ-measures, it is necessary to use the
relation dµ= h−1 dν. For example,

µ([00]) =
∞∑

k=2
µ[0k 1] =

∞∑
k=2

∫
1[0k 1]h

−1 dν=
∞∑

k=2

ν[0k 1]

h(0k 1z)
=

∞∑
k=2

∏k
j=2γ j

h(0k 1z) (Γ2 +∆2 +2)
,

and then, it follows

µ([00]) = 1

Θ

∞∑
k=2

∏k
j=2γ j

h(0k 1z)
= 1

α ·Θ
∞∑

k=2
C k−1

0 = C0

αΘ(1−C0)
.

Or, another example,

µ([0k1 1l1 . . .0kr 1lr 0])

=
∫

[0k1 1l1 ...0kr 1lr 0]
h−1 dν= h−1(0k1 1z)ν[0k1 1l1 . . .0kr 1lr 0]

=h−1(0k1 1z)
ik1

(∏r−1
j=1 dl j ck j+1

)
dlr

Γ2 +∆2 +2

=C k1−1
0

αΘ

r−1∏
j=1

[(
1−

βl j +1Cl j +1

βl j

)
βl j

β1

(
l j∏

i=2
Ci

)
(1−C0)C

k j

0

](
1− βlr +1Clr +1

βlr

)
βlr

β1

lr∏
j=2

C j .

The computations above describe a general method for getting the probabilities of several kinds of
cylinder sets.
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