Medidas de Gibbs

e

Teorema de Aizenman-Higuchi

por

Elias da Costa

2013
Resumo

Na primeira parte deste trabalho, apresentamos a teoria geral das medidas de Gibbs. A abordagem é baseada nas equações DLR e no formalismo termodinâmico.

Em seguida, estudamos o modelo de Ising ferromagnético bidimensional. Mostramos que este modelo possui a propriedade forte de Markov e também algumas desigualdades de correlação, por exemplo a desigualdade de FKG.

Por último provamos o Teorema de Aizenman-Higuchi o principal resultado desta dissertação. Este teorema sobre decomposição extremal foi provado independentemente, no início dos anos oitenta, por Michael Aizenman e Atsushi Higuchi, ambos baseados nos trabalhos de Lucio Russo. A prova dada aqui, devido a Aizenman, se basea na investigação das simetrias dos espaços de configurações duplas e na aplicação sistemática da desigualdade de FKG e das equações DLR.

Palavras-chave: Medidas de Gibbs, Modelo de Ising, transição de fase, condição de unicidade de Dobrushin, teorema de Aizenman-Higuchi.
Abstract

In the first part of this work, we present the general Gibbs measure theory. The approach is based on the DLR equations and the Thermodynamical Formalism.

Next we study the ferromagnetic Ising model on the square lattice. We prove that this model satisfy the strong Markov property and also prove some correlation inequalities, as for example FKG.

In the end we prove the Aizenman-Higuchi’s theorem which is the main result of this master thesis. This theorem is about extremal decomposition and it was proved independently by Michael Aizenman and Atsushi Higuchi, both based on the work of Lucio Russo. The proof given here is due to Aizenman and is made by the investigation of the double configuration space symetries and systematic application of the FKG inequality and the DLR equations.

Keywords: Gibbs measures, Ising model, phase transition, Dobrushin’s uniqueness condition, Aizenman-Higuchi theorem.
Sumário

1 Sobre a existência de Medidas de Gibbs

<table>
<thead>
<tr>
<th>1.1</th>
<th>Medida e especificação DLR</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>Definições</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Notação e terminologia</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Projeções</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2</td>
<td>A σ-álgebra dos cilindros</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Produto de medidas</td>
<td>5</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Campo aleatório canônico</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Equações de Dobrushin-Lanford-Ruelle</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Núcleo de medidas</td>
<td>8</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Notações especiais</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Especificação DLR</td>
<td>11</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Especificação local</td>
<td>11</td>
</tr>
<tr>
<td>1.4.2</td>
<td>A especificação independente</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>(\lambda)-modificação e (\lambda)-especificação</td>
<td>14</td>
</tr>
</tbody>
</table>

2 Medida e especificações de Gibbs

2.1	\(\lambda\)-modificação na forma exponencial	19
2.1.1	\(\lambda\)-modificação dadas por \(\preceq\)-modificação	19
2.1.2	\(\preceq\)-modificações dadas por hamiltonianos	20
2.1.3	Hamiltonianos dados por potenciais de interação	23
2.2	Grupos de simetrias e especificações de Gibbs	26

3 Existência de medidas de Gibbs

<p>| 3.1 | Medidas de Gibbs | 31 |
| 3.1.1 | Especificação de Gibbs | 31 |
| 3.2 | Quase localidade | 33 |
| 3.3 | Topologia da convergência local | 35 |
| 3.4 | Podemos identificar as topologias da convergência local e da convergência fraca-(\ast)? | 35 |
| 3.5 | A topologia da convergência local é metrizável? | 36 |
| 3.6 | O limite Termodinâmico | 38 |</p>
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Análise Funcional</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>C.1 Representação de Riesz-Markov</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>C.2 Convexidade e Decomposição extremal</td>
<td>78</td>
</tr>
<tr>
<td>D</td>
<td>Probabilidade</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>D.1 Probabilidade e esperança Condicional</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>D.2 Kolmogorov: extensões de medidas de probabilidade</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>D.3 Convergência e convergência fraca</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Bibliografia</td>
<td>84</td>
</tr>
</tbody>
</table>
Parte I

Sobre a existência de Medidas de Gibbs
Capítulo 1

Medida e especificação DLR

Introdução

O objetivo deste capítulo é apresentar três conceitos cuja motivação advém da construção da chamada medida DLR. Assim, chamada em homenagem a três eminentes matemáticos Dobrushin, Lanford e Ruelle por suas contribuições seminais à mecânica estatística do equilíbrio na última metade do século XX.

O primeiro conceito apresentado na Seção 1.1 é o de campo aleatório cuja definição depende do conhecimento a priori de outras definições: espaço de estados, espaço de configurações e rede. Em seguida, mostramos que todo campo aleatório pode ser identificado com seu campo aleatório canônico. Tal identificação lida com produto de espaços mensuráveis e com projeções envolvendo o produto cartesiano.

Na Seção 1.3 as medidas DLR são introduzidas como um campo aleatório que é caracterizado pela condição DLR. Condição que nos leva a tratar, na Seção 1.4 núcleos de medida, especificações, especificações DLR e especificações independentes. É precisamente em especificações independentes que as condição DLR coincide com a condição de consistência de Kolmogorov. Nas diversas caracterizações da condição DLR é preciso estabelecer alguma terminologia e notação.

Uma λ-modificação, como introduzida na Seção 1.5 permite construir uma especificação DLR, não trivial, transformando uma especificação independente em uma λ-especificação. O principal resultado deste capítulo é o Teorema 1.1.

O outro objetivo deste capítulo é preparar o terreno para mostrarmos a existência de medidas de Gibbs, no Capítulo 3, uma vez que Medidas de Gibbs, como veremos no Capítulo 2 serão um caso específico de medidas DLR.
1.1 Campo aleatório

1.1.1 Definições

Em toda esta seção seguimos as definições e notações da referência [15] com ligeiras modificações visando uma apresentação rápida do problema da transição de fase em mecânica estatística.

Definição 1.1. Seja T um conjunto não vazio e uma família de variáveis aleatórias $\sigma = (\sigma_i)_{i \in T}$ definidas sobre um espaço de probabilidades (Ω, F, μ) e tomando valores no espaço mensurável (E, E). Chamamos o par $(\mu, (\sigma_i)_{i \in T})$ de campo aleatório.

Esta definição nos remete a seguinte pergunta.

Questão 1.1. Dada uma família $\{\sigma_i\}_{i \in T}$ de funções mensuráveis $\sigma_i : (\Omega, F) \rightarrow (E, \mathcal{E})$ existe uma medida μ sobre (Ω, F) tal que $(\mu, (\sigma_i)_{i \in T})$ é um campo aleatório?

A seguir definimos uma relação de equivalência sobre campos aleatórios com mesmo espaço de estados.

Definição 1.2. Dizemos que dois campos aleatórios $(\mu, (\theta_i)_{i \in T})$ e $(\nu, (\sigma_i)_{i \in T})$ são equivalentes, e denotamos por $(\mu, (\theta_i)_{i \in T}) \sim (\nu, (\sigma_i)_{i \in T})$ se ambos tem o mesmo espaço de estados e $\nu(\theta_i^{-1}(\cdot)) = \mu(\sigma_i^{-1}(\cdot))$ para todo $t \in T$.

Esta relação nos permite uma classificação de modo que campos aleatórios de uma mesma classe são do ponto de vista probabilístico essencialmente os mesmos. Mais precisamente tais campos definem probabilidades $\mu(\sigma_i(\cdot))$ idênticas. Explorando a Definição [12] gostaríamos de trabalhar com campos aleatórios mais tratáveis possíveis do ponto de vista construtivo. Mais precisamente temos a seguinte questão.

Questão 1.2. Dado um espaço mensurável (E, \mathcal{E}) é possível construir uma família $\{\theta_i\}_{i \in T}$ de funções mensuráveis $\theta_i : (\Xi, \mathcal{A}) \rightarrow (E, \mathcal{E})$ e uma medida $\nu : \Xi \rightarrow [0, 1]$ tal que $((\theta_i)_{i \in T}, \nu) \sim ((\sigma_i)_{i \in T}, \mu)$?

A resposta é sim. E mais, este campo aleatório pode ser construído a partir de (E, \mathcal{E}). Mas antes de procedermos a uma tal construção precisamos revisitar alguns conceitos de teoria da medida usando a notação da referência [15] para produtos de espaços mensuráveis e produtos de medidas.
1.2 Notação e terminologia

1.2.1 Projeções

Em todo este texto, a menos de menção em contrário, \mathbf{T} denota um conjunto enumerável. Para cada $V \subset \mathbf{T}$ seja \mathbf{E}^V o conjunto das funções de V em \mathbf{E}, i.e., o conjunto das famílias $\omega_V \triangleq (\omega_i)_{i \in V}$ com $\omega_i \in \mathbf{E}$. Se $V = A \cup B$, a justa posição $\omega_A \omega_B$ também denota ω_V. Na terminologia da mecânica estatística os índices i que moram em \mathbf{T} são denominados sítios e \mathbf{T} é chamado de rede. Usamos o termo sítio somente no contexto de campos aleatórios.

Ainda como acima, para $V \subset \mathbf{T}$ denominamos cada $\omega_V = (\omega_i)_{i \in V}$ de configuração em \mathbf{E}^V. Para o caso específico de $V = \mathbf{T}$ fixamos a notação $\omega = \omega_{\mathbf{T}}$.

E o valor $\omega_i \in \mathbf{E}$ atribuído a cada sítio por uma função $\omega: \mathbf{T} \to \mathbf{E}$ que mora em $\mathbf{E}^\mathbf{T}$ é chamado de estado do sítio i na configuração ω. Isto, sugere a terminologia espaço de configurações para o conjunto Ω e espaço de estados para o conjunto \mathbf{E}.

Seguiremos usando a notação $V \preceq \mathbf{T}$, que atualmente é usual em mecânica estatística clássica, para designar um subconjunto V de \mathbf{T} que é finito. Se vale a relação $V \subset \mathbf{T}$ então V é chamado de volume finito.

Definição 1.3 (Produto cartesiano). *Seja* $V \subset \mathbf{T}$ *um conjunto qualquer de índices*. Definimos o produto cartesiano $\prod_{i \in V} \mathbf{E}^i$ *de uma família* $\{\mathbf{E}^i\}_{i \in V}$ *de conjuntos não vazios* \mathbf{E}^i *sendo o conjunto de todas as funções* $\omega = (\omega_i)_{i \in V}$ *dadas por*

$$V \ni i \mapsto \omega_i \in \bigcup_{i \in V} \mathbf{E}^i$$

tal que $\omega_i \in \mathbf{E}^i$. *No caso particular de* $\mathbf{E}^i = \mathbf{E}$ *para qualquer índice* $i \in V$ *denotamos o produtório por* \mathbf{E}^V.

Definição 1.4 (Projeção). *Seja* $\Lambda \subset \Gamma \subset \mathbf{T}$. *Denotamos, por* $\Pi_{\Gamma, \Lambda}$, *a projeção*

$$\mathbf{E}^\Gamma \ni \omega_\Gamma \mapsto \omega_\Lambda \in \mathbf{E}^\Lambda.$$

No caso particular de $\Gamma = \mathbf{T}$ *denotamos* $\Pi_{\Gamma, \Lambda}$ *simplesmente por* Π_Λ. *E para* $\Lambda = \{i\}$ *para algum índice* $i \in \mathbf{T}$, *denotamos* Π_Λ *por* Π_i.
1.2.2 A σ-álgebra dos cilindros

Definição 1.5. Seja $V' \subset V \subset T$. Um conjunto C em E^V é chamado de cilindro com base B em $E^{V'}$ ou simplesmente um V'-cilindro em E^V se
\[C = \Pi_{V,V'}^{-1}(B) = \{ \omega_V \in E^V : \Pi_{V,V'}(\omega_V) \in B \} = B \times E^{V\setminus V'} . \]

Observação 1.1. Observe que para todo $\Gamma \subseteq T$ temos que \mathcal{E}^Γ é gerada pelos cilindros em E^Γ com base $B \in \mathcal{E}^\Lambda$ com $\Lambda \subseteq \Gamma$.

Definição 1.6 (σ-álgebra dos cilindros). Sejam (E, \mathcal{E}) um espaço mensurável e $V \subset T$. Denotamos por $\sigma(\Pi_{TV})_{\Gamma \subseteq V}$ ou \mathcal{F}_V a σ-álgebra sobre E^T gerada pelos cilindros em E^T com base $B \in \mathcal{E}^\Lambda$ onde Λ percorre todos os volume finitos contidos em V.

Para $\Lambda \subseteq T$ denotamos por \mathcal{J}_Λ a σ-álgebra $\mathcal{F}_{T \setminus \Lambda}$. Chamamos \mathcal{J}_Λ de σ-álgebra dos eventos externos a Λ e $J \triangleq \cap_{\Lambda \subseteq T} \mathcal{J}_\Lambda$ de σ-álgebra caudal. Por fim, fazemos a convenção $\mathcal{F}_\emptyset = \{ \emptyset, E^T \}$.

Definição 1.7 (σ-álgebra dos cilindros-caso geral). Sejam espaço mensurável (E, \mathcal{E}) e $V' \subset V \subset T$. Denotamos por $\sigma(\Pi_{VT})_{\Gamma \subseteq V}$, a σ-álgebra sobre E^V gerada pelos cilindros em E^V com base $B \in \mathcal{E}^\Lambda$ onde Λ percorre todos os volume finitos contidos em V'.

É fácil ver então que para todo $V \subset T$ e todo par $A, B \subset V$ tal que $A \cup B = V$ e $A \cap B = \emptyset$ que temos $\sigma(\Pi_{VT})_{\Gamma \subseteq V} = \sigma(\Pi_{AT})_{\Gamma \subseteq A} \otimes \sigma(\Pi_{BT})_{\Gamma \subseteq B}$. Em particular, para todo $\Lambda \subseteq T$ temos $\mathcal{F} \triangleq \sigma(\Pi_{TT})_{\Gamma \subseteq T} = \mathcal{F}_\Lambda \otimes \mathcal{J}_\Lambda$.

Definição 1.8. Uma função $f : E^T \rightarrow \mathbb{R}$ é chamada de função V-cilíndrica se para todo $I \subset \mathbb{R}$ existe um $B_I \in E^V$
\[f^{-1}(I) = \Pi_{V}^{-1}(B_I), \]
isto é, se a imagem inversa de qualquer $I \subset \mathbb{R}$ por f é um V-cilindro em E^T.

Proposição 1.1. Seja $V \subset T$. Uma função $f : E^T \rightarrow \mathbb{R}$ é uma função V-cilíndrica, se e somente se,
\[f(\omega_{V,T \setminus V}) = f(\omega_{V} \cdot T \setminus V) \] (1.1)
para todo $\eta, \zeta \in E^T$.

Demonstração. Suponha que f seja uma função V-cilíndrica. Então para todo $r \in \mathbb{R}$ existe para algum $B_r \subset E^V$ tal que $f^{-1}(r) = \Pi_{V}^{-1}(B_r) = B_r \times E^{V\setminus V}$. O que é equivalente ao fato de que para todo par de configurações $\omega_T \cdot T \setminus V \in B \times E^{T\setminus V}$ e $\omega_V \cdot T \setminus V \in B \times E^{T\setminus V}$ temos
\[\omega_V \cdot T \setminus V \in f^{-1}(r) \quad \text{e} \quad \omega_V \cdot T \setminus V \in f^{-1}(r), \]
on seja, $f(\omega_{V,T \setminus V}) = f(\omega_{V} \cdot T \setminus V) = r$ para todo $\eta, \zeta \in E^T$. A recíproca é consequência direta da definição. □
Proposição 1.2. Toda função $f : \mathbb{E}^T \to \mathbb{R}$ mensurável com respeito a σ-álgebra \mathcal{F}_V é uma função V-cilíndrica.

Demonstração. Todos os conjuntos finitos Γ que determinam as projeções Π_{TT} que geram a σ-álgebra \mathcal{F}_V estão variando apenas em V. Logo, todos os conjuntos de \mathcal{F}_V são da forma $A \times \mathbb{E}^{T\setminus V}$ para algum $A \subset \mathbb{E}^V$. Logo para qualquer $\omega \in \mathbb{E}^T$ com $f(\omega_\Gamma \omega_{T\setminus V}) = r$ temos $f^{-1}(r) = A \times \mathbb{E}^{T\setminus V}$. Portanto, para qualquer $\eta_{T\setminus V}, \zeta_{T\setminus V} \in \mathbb{E}^{T\setminus V}$ temos

$$f(\omega_\Gamma \eta_{T\setminus V}) = f(\omega_\Gamma \zeta_{T\setminus V}) = r.$$

□

1.2.3 Produto de medidas.

Seja $\mathcal{F}(\mathbb{E}, \sigma^i)$ o conjunto das medidas de probabilidade λ^i sobre (\mathbb{E}^i, σ^i). Para cada $\Gamma \in T$ defina a medida λ^Γ sobre σ^Γ inicialmente para a álgebra dos retângulos $B = \prod_{i \in \Gamma} B^i$, com $B_i \in \sigma^i$ como $\lambda^\Gamma(B) = \prod_{i \in \Gamma} \lambda^i(B^i)$. Em seguida, usando o Teorema da extensão de medidas de Carathéodory, estendemos de maneira única λ^Γ para toda a sigma-álgebra σ^Γ. Se para todo índice $i \in T$ temos $(\mathbb{E}^i, \sigma^i) = (\mathbb{E}, \sigma)$ e $\lambda^i = \lambda$ estabelecemos a seguinte recorrência,

$$\lambda^\Lambda = \begin{cases}
\lambda^i, & \text{se } \Lambda = \{i\}; \\
\lambda^{\Lambda \setminus \{i\}} \otimes \lambda^i, & \text{se } \Lambda \supset \{i\}.
\end{cases}$$

Proposição 1.3. Seja $\lambda \in \mathcal{F}(\mathbb{E}, \sigma)$. Para cada $i \in T$ fixemos $(\mathbb{E}^i, \sigma^i) = (\mathbb{E}, \sigma)$ e $\lambda^i = \lambda$. Então

$$\lambda^\Lambda(\cdot) = \lambda^\Gamma(\Pi_{\Gamma \Lambda}^{-1}(\cdot))$$

para quaisquer $\Lambda \subset \Gamma \in T$.

Demonstração. Note que $\lambda^\Gamma(\Pi_{\Gamma \Lambda}^{-1}(\cdot)) \in \mathcal{F}(\mathbb{E}^\Lambda, \sigma^\Lambda)$. Além disso, as probabilidades λ^Λ e $\lambda^\Gamma(\Pi_{\Gamma \Lambda}^{-1}(\cdot))$ coincidem na álgebra dos retângulos $B = \prod_{i \in A} B_i$ de \mathbb{E}^A. Pela unicidade do Teorema da extensão de Caratéodory segue a igualdade. □

Proposição 1.4. Seja $\Gamma \in T$. As projeções canônicas $\Pi_i : \mathbb{E}^\Gamma \to \mathbb{E}$, com $i \in \Gamma$, são variáveis aleatórias independentes com respeito a probabilidade λ^Γ sobre $(\mathbb{E}^\Gamma, \sigma^\Gamma)$.

Demonstração. Por definição, devemos provar que para quaisquer conjuntos $A_i \in \mathbb{E}^\Gamma$ tais que $A_i \in \sigma(\Pi_{\Gamma \{i\}})$ com $i \in \Gamma$ temos $\lambda^\Gamma(\bigcap_{i \in \Gamma} A_i) = \prod_{i \in \Gamma} \lambda^i(A_i)$. Observemos que para todo $i \in \Gamma$ existe $B_i \in \mathbb{E}$ tal que $A_i = B_i \times \mathbb{E}^{\Gamma \setminus \{i\}}$. Portanto, $\bigcap_{i \in \Gamma} A_i = \bigcap_{i \in \Gamma} B_i$ e consequentemente $\lambda^\Gamma(\bigcap_{i \in \Gamma} A_i) = \lambda^\Gamma(\bigcap_{i \in \Gamma} B_i) = \prod_{i \in \Gamma} \lambda^i(B_i).$ □
1.2.4 Campo aleatório canônico.

Definição 1.9. Um campo aleatório \((\nu, (\sigma_i))_{i \in T}\) com espaço de estados \((E, \mathcal{E})\) é chamado campo aleatório canônico se seu espaço de configurações \((\Omega, \mathcal{F})\) é o espaço produto \((E^T, \mathcal{E}^T)\) e \(\sigma_i = \Pi_i\).

Proposição 1.5. Seja \((\mu, (\sigma_i))_{i \in T}\) com espaço de estados \((E, \mathcal{E})\). Então existe \(\nu \in \mathcal{P}(E^T, \mathcal{E}^T)\) única tal que \((\mu, (\sigma_i))_{i \in T} \sim (\nu, (\Pi_i))_{i \in T}\).

Demonstração. Defina \(\lambda^i(\cdot) \in \mathcal{P}(E, \mathcal{E})\) como idêntica a \(\mu(\sigma_i^{-1}(\cdot))\) para todo \(i \in T\). Seja \(\lambda^A\) a medida produto como na seção (1.2.3). Pela Proposição 1.3 podemos verificar que a família \(\{\lambda^A\}_{A \in T}\) satisfaz a condição de consistência de Kolmogorov como na Definição (D.6) do Apêndice D. Pelo Teorema da Extensão podemos verificar que a família \(\{\lambda^A\}_{A \in T}\) satisfaz a condição de consistência de Kolmogorov como na Definição (D.6) do Apêndice D. Pelo Teorema da Extensão de Kolmogorov existe uma única \(\nu \in \mathcal{P}(E^T, \mathcal{E}^T)\) com \(\nu(\Pi_i^{-1}(\cdot)) = \lambda^i\). Por outro lado, \(\mu(\sigma_i^{-1}(\cdot)) = \lambda^i\) para todo \(i \in T\). Logo \(\nu(\Pi_i^{-1}(\cdot)) = \mu(\sigma_i^{-1}(\cdot))\) para todo \(i \in T\).

Portanto, pelo que discutimos acima, podemos tratar sem perda de generalidade as \(\sigma_i\)’s como projeções de \(E^T\) sobre \(E^i = E\). Portanto fixamos a notação como a seguir.

Notação 1.1. Para \(\Lambda, \Gamma \subseteq T\) com \(\Lambda \subset \Gamma\) denotamos por:

1. \(\sigma_i : E^T \to E_i\) a projeção canônica \(E^T \ni (\omega_i)_{i \in T} \mapsto \omega_i \in E^i\)
2. \(\sigma_A : E^T \to E^A\) a projeção \(E^T \ni \omega = (\omega_i)_{i \in T} \mapsto \omega_A = (\omega_i)_{i \in \Lambda} \in E^A\),
3. \(\sigma_T, \Lambda : E^T \to E^\Lambda\), a projeção \(E^T \ni \omega_T = (\omega_i)_{i \in T} \mapsto \omega_\Lambda = (\omega_i)_{i \in \Lambda} \in E^\Lambda\),
4. Fixado \(\Omega = E^T\) temos então \(\mathcal{F} = \mathcal{F}\) onde a \(\sigma\)-álgebra \(\mathcal{F}\) sobre \(\Omega = E^T\) é a \(\sigma\)-álgebra gerada por \(\bigcup_{\Lambda \subseteq T} \mathcal{F}_\Lambda\).

1.3 Equações de Dobrushin-Lanford-Ruelle

Definição 1.10 (Dobrushin-Lanford-Ruelle). Seja um campo aleatório canônico \((\mu, (\Pi_i))_{i \in T}\) sobre uma rede enumerável \(T\). Dizemos que \((\mu, (\Pi_i))_{i \in T}\) satisfaz as equações de Dobrushin-Lanford-Ruelle (DLR) se para qualquer \(\Lambda \subseteq T\)

\[
\mu\left(\Pi_\Lambda(A) \times \{\Pi_T \setminus \Lambda(\omega)\}\right) = \mu(A|\mathcal{J}_\Lambda)(\omega)
\]

(1.2)
com igualdade \(\mu|\mathcal{J}_\Lambda\)-q.t.p. para todo \(A \in \mathcal{F}\).

Essas equações, nos remete a um sistema prescrito de probabilidades condicionais. Mais precisamente temos a observação a seguir.
Observação 1.2. Para cada volume finito $\Lambda \in T$ a equação [1.2] exige que a aplicação

$$\mathcal{F} \times \Omega \ni (A, \omega) \mapsto \mu\left(\Pi_\Lambda(A) \times \{\Pi_{T\setminus\Lambda}(\omega)\}\right)$$

seja a probabilidade condicional de $A \in \mathcal{F}$, com respeito à σ-álgebra \mathcal{J}_Λ, avaliada no ponto $\omega \in \Omega$. De acordo com a definição de probabilidade condicional na observação [D.1] do Apêndice [D] a medida de probabilidade μ satisfaz a equação [1.2] se, e somente se, para quaisquer $\Lambda \in T$, $A \in \mathcal{F}$ e $B \in \mathcal{J}_\Lambda$ temos que

$$\mu(A \cap B) = \int_B \mu\left(\Pi_\Lambda(A) \times \{\Pi_{T\setminus\Lambda}(\omega)\}\right) d\mu\big|_{\mathcal{J}_\Lambda}(\omega).$$

Para que esta equação faça sentido é suficiente que $\mu(\Pi_\Lambda(A) \times \{\Pi_{T\setminus\Lambda}(\omega)\})$ satisfaça para todo $\omega \in \Omega$ e todo $A \in \mathcal{F}$ as seguintes condições

$$\mu\left(\Pi_\Lambda(A) \times \{\Pi_{T\setminus\Lambda}(\cdot)\}\right): \Omega \to [0, 1] \text{ seja } \mathcal{J}_\Lambda\text{-mensurável},$$
$$\mu\left(\Pi_\Lambda(\cdot) \times \{\Pi_{T\setminus\Lambda}(\omega)\}\right): \mathcal{F} \to [0, 1] \text{ é uma probabilidade.}$$

Seguindo [15] o nosso ponto de partida para obter uma medida de probabilidade μ satisfaça a equação [1.2] ou equivalentemente a equação [1.3] começa com a construção de uma família $\gamma = \{\gamma_\Lambda\}_{\Lambda \in T}$ de aplicações $\gamma_\Lambda : \Omega \times \mathcal{F} \to \mathbb{R}$ tais que

$$\gamma_\Lambda(A|\cdot)\Omega \to \mathbb{R} \text{ é } \mathcal{J}_\Lambda\text{-mensurável}$$
$$\gamma_\Lambda(\cdot|\omega)\mathcal{F} \to \mathbb{R} \text{ é uma probabilidade.}$$

Em seguida, ajustamos a construção para obtermos a propriedade adicional

$$\gamma_T(A \cap B|\omega) = \int_B \gamma_\Lambda(A \cap B|\cdot) d\gamma_T(\cdot|\omega)$$

para todo $A \in \mathcal{F}$, $B \in \mathcal{J}_\Lambda$ com $\Lambda \subset \Gamma \in T$. Finalmente, depois de metrizarmos $\mathcal{P}(\Omega, \mathcal{F})$ escolhemos uma sequência de medidas de probabilidade $\gamma_{T_n}(\cdot|\omega_n) \in \mathcal{P}(\Omega, \mathcal{F})$ convergindo para uma medida de probabilidade $\mu \in \mathcal{P}(\Omega, \mathcal{F})$ que satisfaça a equação [1.3].

A partir das equações DLR vamos definir o que vem a ser uma especificação DLR. Mas antes precisamos revisitar a definição de núcleo de medidas e suas propriedades.
1.3.1 Núcleo de medidas

As ideias da observação 1.2 descritas nas equações (1.4) e (1.5) são formalizadas na seguinte definição.

Definição 1.11. Sejam \((X, \mathcal{X})\) e \((Y, \mathcal{Y})\) espaços mensuráveis. Uma aplicação \(\kappa : Y \times X \rightarrow \mathbb{R}\) chama-se núcleo de medida de \((Y, \mathcal{Y})\) para \((X, \mathcal{X})\) se para todo \(A \in \mathcal{X}\) e todo \(y \in Y\) esta aplicação satisfaz:

1. \(\kappa(\cdot|y) : X \rightarrow \mathbb{R}\) é uma medida sobre \((X, \mathcal{X})\).
2. \(\kappa(A|\cdot) : Y \rightarrow \mathbb{R}\) é uma função \(\mathcal{Y}\)-mensurável.

Usamos as expressões núcleo de probabilidade em \(y\), núcleo \(\sigma\)-finito em \(y\), núcleo de Borel em \(y\), núcleo de Borel regular em \(y\), núcleo de Radon em \(y\), para indicar que a medida \(\kappa(\cdot|y)\) tem as propriedades de ser uma medida de probabilidade, \(\sigma\)-finita, de Borel (c.f. Definição C.2), de Borel regular (c.f. Definição C.2 item a) e de Radon (c.f. Definição C.2 item b), respectivamente.

Quando a medida \(\kappa(\cdot|y)\) possui estas propriedades sem depender de uma particular escolha de \(y \in Y\) então usamos as expressões ‘núcleo de probabilidade’, ‘núcleo \(\sigma\)-finito’, ‘núcleo de Borel’, ‘núcleo de Radon’.

Observação 1.3. Podemos olhar para qualquer medida de probabilidade \(\mu : \mathcal{X} \rightarrow [0, +\infty]\) sobre um espaço mensurável como um núcleo de probabilidade \(\kappa\) de \((X, \{\emptyset, X\})\) para \((X, \mathcal{X})\) definido para todo \(A \in \mathcal{X}\) e todo \(x \in X\) como \(\kappa(A|x) = \mu(A)\). A mensurabilidade de \(\kappa\) com respeito a \(\{\emptyset, X\}\) é consequência do seguinte fato: para todo \(A \in \mathcal{X}\), temos:

\[
\kappa(A|\cdot)^{-1}(B) = \begin{cases} X & \text{se } \mu(A) \in B; \\ \emptyset & \text{se } \mu(A) \notin B. \end{cases}
\]

qualquer que seja o boreliano \(B \subset \mathbb{R}\).

Definição 1.12. Um núcleo de medida \(\kappa\) de \((Y, \mathcal{Y})\) para \((X, \mathcal{X})\) é chamado núcleo próprio com respeito a uma \(\sigma\)-álgebra \(\mathcal{B} \subset \mathcal{X}\) se para todo \(B \in \mathcal{B}\),

\[\kappa(B \cap A|\omega) = 1_B(\omega) \cdot \kappa(A|\omega).\]

Proposição 1.6. Seja \(\kappa\) um núcleo de medida de \((Y, \mathcal{Y})\) para \((X, \mathcal{X})\). Então \(\kappa\) é um núcleo próprio com respeito à \(\sigma\)-álgebra \(\mathcal{B} \subset \mathcal{X}\) se, e somente se,

\[\kappa(B|y) = 1_B(y)\]

para todo \(B \in \mathcal{B}\) e todo \(y \in Y\).
Demonstração. Sejam \(B \in \mathcal{B} \subset \mathcal{X} \) e \(A \in \mathcal{X} \). Para todo \(y \in \mathcal{Y} \) obtemos das propriedades elementares de probabilidade e da igualdade \(1_B(y) + 1_{B^c}(y) = 1 \), as seguintes identidades:
\[
\begin{align*}
\kappa(A|y) &= \kappa(A \cap B|y) + \kappa(A \cap B^c|y) \\
\kappa(A|y) &= \kappa(A|y) \cdot 1_B(y) + \kappa(A|y) \cdot 1_{B^c}(y).
\end{align*}
\] (1.8)

Além disso, para todo \(C \in \mathcal{B} \), temos
\[
\kappa(A \cap C|y) \leq \min\{\kappa(A|y), \kappa(C|y)\}
\] (1.9)

A última igualdade é obtida verificando-se que \(\min\{\kappa(A|y), 1_C(y)\} = \kappa(A|y) \leq 1 \) se \(1_C(y) = 1 \) e \(\min\{\kappa(A|y), 1_C(y)\} = 0 \) se \(1_C(y) = 0 \). Já que por hipótese temos, \(1_C(y) = \kappa(C|y) \) para todo \(C \in \mathcal{B} \) então
\[
\begin{align*}
\kappa(A \cap B|y) &\leq \kappa(A|y) \cdot 1_B(y) \\
\kappa(A \cap B^c|y) &\leq \kappa(A|y) \cdot 1_{B^c}(y).
\end{align*}
\]

Se pelo menos um das igualdades não é atingida acima então pela equação \((1.8) \) temos \(\kappa(A|y) < \kappa(A|y) \). A recíproca segue diretamente da definição. \(\square \)

1.3.2 Notações especiais

Antes de prosseguirmos para a demonstração de um dos principais teoremas deste capítulo, vamos fixar mais algumas notas para facilitar a exposição.

Notação 1.2. Seja \(\kappa \) um núcleo de medida de \((\mathcal{Y}, \mathcal{Y})\) para \((\mathcal{X}, \mathcal{X})\). Suponha \(f : \mathcal{X} \to \mathbb{R} \) uma função integrável com respeito à medida \(\kappa(\cdot|y) \) para todo \(y \in \mathcal{Y} \). Então a integral de Lebesgue de \(f \) com respeito a medida mencionada acima será denotada por
\[
\kappa(f|y) \triangleq \int_X f(u) d\kappa(u|y).
\] (1.10)

Quando \(\mu \) for uma medida sobre \((\mathcal{X}, \mathcal{X})\), a integral de Lebesgue de \(f \) será denotada também por
\[
\mu(f) \triangleq \int_X f(u) d\mu(u).
\] (1.11)

Definição 1.13 (ação de função sobre núcleo). Seja \(\kappa \) um núcleo de medida de \((\mathcal{Y}, \mathcal{Y})\) para \((\mathcal{X}, \mathcal{X})\). Suponha \(\rho : \mathcal{X} \to \mathbb{R} \) uma função integrável com respeito a \(\kappa(\cdot|y) \) para todo \(y \in \mathcal{Y} \). Então a ação de \(\rho \) sobre o núcleo \(\kappa \), é o núcleo \(\rho\kappa \) de \((\mathcal{Y}, \mathcal{Y})\) para \((\mathcal{X}, \mathcal{X})\) definido por:
\[
\mathcal{X} \times \mathcal{Y} \ni (A, y) \longmapsto \rho\kappa(A|y) \triangleq \kappa(\rho \cdot 1_A|y) = \int_X \rho(u) \cdot 1_A(u) d\kappa(u|y) \in \mathbb{R}
\] (1.12)
Definição 1.14 (ação de núcleo sobre função). Seja \(\pi \) um núcleo de medida de \((Y, \mathcal{Y})\) para \((X, \mathcal{X})\). Suponha que \(g : X \to \mathbb{R} \) é uma função integrável com respeito respeito a \(\pi(\cdot|y) \) para todo \(y \in Y \). Então a ação do núcleo \(\pi \) sobre \(g \) é a função \(\pi g \) é definida da seguinte maneira:

\[
Y \ni y \longmapsto \pi g(y) \triangleq \pi(g|y)
\]

\[
= \int_X g(u) d\pi(u|y) \in \mathbb{R}
\]

(1.13)

Definição 1.15 (convolução de núcleos de medida). Sejam \(\kappa \) um núcleo de medida de \((Y, \mathcal{Y})\) para \((X, \mathcal{X})\) e \(\tau \) um núcleo de medida de \((Z, \mathcal{Z})\) para \((Y, \mathcal{Y})\). A convolução de \(\tau \) e \(\kappa \) nessa ordem, denotado por \(\tau \kappa \) é o núcleo de medida de \((Z, \mathcal{Z})\) para \((X, \mathcal{X})\):

\[
\mathcal{X} \times \mathcal{Z} \ni (A, z) \longmapsto \tau \kappa(A|z) \triangleq \kappa\left(\tau(A|\cdot)\big|z\right) = \int \tau(A|v) d\kappa(v|z)
\]

(1.14)

Como uma medida também pode ser vista como um núcleo, em todos os casos acima, podemos fixar os núcleos \(\kappa \) e \(\tau \) como sendo uma medida \(\mu \) e a partir daí obter duas medidas \(f\mu \) e \(\mu\kappa \) bem definidas.

Observação 1.4. Por último, para uma família finita \(\{(X^i, \mathcal{X}^i, \mu^i)\}_{i \in I} \), com \(I = \{1, \ldots, N\} \), de espaços de medida \((X^i, \mathcal{X}^i, \mu^i)\) escrevemos \(x, X, \mathcal{X} \) e \(\mu \) para indicar \(x_1, \ldots, x_N \), \(X_1 \times \cdots \times X_N \), \(\mathcal{X} \) e \(\mu \).

Proposição 1.7. Seja \((X, \mathcal{X})\) um espaço mensurável e \(\mathcal{B} \) é uma sub-\(\sigma\)-álgebra de \(\mathcal{B} \). Seja \(\kappa \) um núcleo de probabilidade de \((X, \mathcal{B})\) para \((X, \mathcal{B})\) e \(\mu \) uma medida de probabilidade em \((X, \mathcal{X})\). Então as seguintes condições para qualquer \(A \in \mathcal{X} \), \(B \in \mathcal{B} \) e \(x \in X \), são equivalentes:

1. \(\mu(A|\mathcal{B})(x) = \kappa(A|x) \quad \mu \text{ q.t.p.} \)
2. \(\mu(A) = \int_A \kappa(A|x) d\mu(x) \)
3. \(\mu(A) = \mu\kappa(A) \)

Demonstração. Pela observação 1, a probabilidade condicional de \(A \in \mathcal{X} \) dada a sub-\(\sigma\)-álgebra \(\mathcal{B} \) é a única função \(\mu(A|\mathcal{B}) \in L(\nu) \) tal que

\[
\int_B 1_A(x) d\mu(x) = \int_B \mu(A|\mathcal{B})(x) d\mu_{|\mathcal{B}}(x) \quad \forall A \in \mathcal{X}, \forall B \in \mathcal{B}.
\]

(1.15)

Provemos que [1] implica [2]. Como \(B \in \mathcal{B} \) é qualquer podemos fazer \(B = X \) e obter \(\int_X 1_A(x) d\mu(x) = \int_X \mu(A|\mathcal{B})(x) d\mu(x) \).

Usando [1] na equação ao lado ficamos com

\[
\int_X 1_A(x) d\mu(x) = \int_X \kappa(A|x) d\mu(x).
\]

Por definição temos que \(\mu(A) = \int_X 1_A(x) d\mu(x) \), o que nos permite concluir a validade de [2]. Apelando novamente para a definição podemos escrever \(\mu\kappa(A) = \int_X \kappa(A|x) d\mu(x) \). Mas desta
igualdade é imediato verificar que (2) é equivalente a (3). Para ver que (2) implica (1) basta usar a unicidade da probabilidade condicional em (1.15) e que \(\mu(A) = \int_X 1_A(x) d\mu(x) \). Isto nos fornece uma igualdade é \(\mu|_\mathcal{B} \)-q.t.p., mas como \(\mu|_\mathcal{B} \ll \mu \) temos finalmente a igualdade \(\mu \)-q.t.p.

\[\square \]

1.4 Especificação DLR

1.4.1 Especificação local

Definição 1.16 (Especificação DLR). Seja \(\gamma = \{ \gamma_{\Gamma} \} \) uma família de núcleos de medida de \((\Omega, \mathcal{F})\) para \((\Omega, \mathcal{F})\) indexada por volumes finitos \(\Gamma \in \mathcal{T} \). Dizemos que \(\gamma \) é uma especificação DLR se para quaisquer \(\Gamma \in \mathcal{T}, \omega \in \Omega, A \in \mathcal{F} \) e \(B \in \mathcal{J}_{\Gamma} \)

1. \(\gamma_{\Gamma}(A \cap B|\omega) = 1_B(\omega) \cdot \gamma_{\Gamma}(A) \),

2. \(\gamma_{\Delta} \gamma_{\Lambda}(A|\omega) = \gamma_{\Delta}(A|\omega) \) onde \(\Lambda \subseteq \Delta \subseteq \mathcal{T} \).

Observação 1.5. A condição descrita no item 2 da Definição 1.16 é simplesmente a condição de consistência DLR, escrita na notação de produto de núcleos de probabilidade conforme a Definição 1.15. Explicitamente,

\[\gamma_{\Delta} \gamma_{\Lambda}(A|\omega) = \gamma_{\Delta} (\gamma_{\Lambda}(A\cdot)|\omega) = \int_{\Omega} \gamma_{\Lambda}(A\cdot) \cdot d\gamma_{\Delta}(\cdot|\omega) = \gamma_{\Lambda}(A|\omega). \]

Observação 1.6. O item 1 da Definição 1.16 garante a seguinte propriedade: qualquer especificação satisfaz o reverso da condição descrita no item 2 da Definição 1.16. Mais precisamente, \(\gamma_{\Lambda} \gamma_{\Delta}(A|\omega) = \gamma_{\Delta}(A|\omega) \) com \(\Lambda, \Delta \in \mathcal{T} \) e \(\Lambda \subseteq \Delta \). Isso se deve às seguintes implicações: \(\Lambda \subseteq \Delta \Rightarrow \mathcal{J}_{\Delta} \subseteq \mathcal{J}_{\Lambda} \Rightarrow \forall A \in \mathcal{F} \) a função \(\lambda_{\Delta}(A|\cdot) \) é \(\mathcal{J}_{\Lambda} \)-mensurável. Portanto,

\[\gamma_{\Lambda} \gamma_{\Delta}(A|\omega) = \gamma_{\Lambda}(\gamma_{\Delta}(A|\cdot)|\omega) = \gamma_{\Delta}(A|\omega) \lambda_{\Lambda}(1|\omega) = \gamma_{\Delta}(A|\omega). \]

Em todo este texto vamos nos referir à identidade 1.16 como equação DLR reversa.

Observação 1.7 (Especificações locais). Na literatura de mecânica estatística especificações DLR podem ser dadas por famílias \(\gamma = \{ \gamma_V \} \) de núcleos de medidas \(\gamma_V \) indexados por volumes infinitos \(V \subset \mathcal{T} \). Por isso, as especificações DLR da Definição 1.16 são chamadas de especificações locais em referência ao fato de que os núcleos \(\gamma_{\Lambda} \) são indexados por volumes finitos \(\Lambda \), o que dá a ela um caráter local. Daqui por diante, usaremos a terminologia especificação local.
Definição 1.17. Dizemos que $\mu \in \mathcal{P}(\Omega, \mathcal{F})$ é especificada por γ se $\mu \in G(\gamma)$, onde

$$G(\gamma) \triangleq \left\{ \mu \in \mathcal{P}(\Omega, \mathcal{F}) : \forall \Lambda \subset T, \forall A \in \mathcal{F}, \mu(A|\mathcal{J}_\Lambda)(\omega) = \gamma(\Lambda, A|\omega), \mu - q.t.p. \omega \in \Omega \right\}.$$

Definição 1.18. Denotamos por $\mathcal{J} = \{ \Lambda : \Lambda \subset T \}$ a coleção dos volumes finitos de T. Dizemos que uma sub-coleção $\mathcal{J}_o \subset \mathcal{J}$ é cofinal se para todo $\Gamma \in \mathcal{J}$, existe $\Gamma_o \in \mathcal{J}_o$ tal que $\Gamma \subset \Gamma_o$.

Proposição 1.8. Seja $\gamma = (\gamma_\Lambda)_{\Lambda \subset T}$ uma especificação local. As seguintes condições são equivalentes:

1. $\mu \in G(\gamma)$.
2. $\mu|\Gamma = \mu \quad \forall \Gamma \in \mathcal{J}$.
3. Existe um conjunto cofinal $\mathcal{J}_o \subset \mathcal{J}$ tal que $\mu|\Gamma_o = \mu \quad \forall \Gamma_o \in \mathcal{J}_o$.

Demonstração. A equivalência de [1] e [2] vem do Lema [1.7]. A condição [2] claramente implica [3]. Para a recíproca, note que dado qualquer $\Gamma \in T$, existe um $\Delta_o \in \mathcal{J}_o$ com $\Gamma \subset \Delta_o$. Assim aplicando, nessa ordem, o item 2 da Definição 1.16 e o item 3 da Proposição 1.8 obtemos as seguintes igualdades $\mu|\Gamma = \mu|\Gamma\Delta_o = \mu|\Delta_o = \mu$.

1.4.2 A especificação independente.

Para a próxima definição seja $\delta_{\omega_{T\setminus \Lambda}}(\cdot)$ a medida de Dirac sobre o espaço mensurável $(\mathbb{E}_{T\setminus \Lambda}, \sigma(\Pi_{(T\setminus \Lambda),\Gamma})_{\Gamma \subset T\setminus \Lambda})$ concentrada no ponto $\omega_{T\setminus \Lambda}$, i.e.

$$\delta_{\omega_{T\setminus \Lambda}}(A) = \begin{cases} 1, & \text{se } \omega_{T\setminus \Lambda} \in A; \\ 0, & \text{caso contrário}. \end{cases} \quad (1.17)$$

Para cada medida λ sobre $(\mathbb{E}, \mathcal{E})$ e cada $\Lambda \subset T$ nos temos que $\lambda^\Lambda : \sigma(\Pi_{(T\setminus \Lambda),\Gamma})_{\Gamma \subset T\setminus \Lambda} \to [0, 1]$ é uma medida sobre \mathbb{E}^Λ. Para todo $A \in \mathcal{F}$ e $\omega \in \Omega$ defina a aplicação $\lambda^\Lambda : \Omega \times \mathcal{F} \to \mathbb{R}$ como

$$\lambda^\Lambda(A|\omega) = \lambda^\Lambda \otimes \delta_{\omega_{T\setminus \Lambda}}(A) = \lambda^\Lambda(A^\omega_{T\setminus \Lambda}),$$

onde $A^\omega_{T\setminus \Lambda} = \{ \zeta \in \mathbb{E}^\Lambda : \zeta_{\omega_{T\setminus \Lambda}} \in A \}$.

Proposição 1.9. Seja λ uma medida sobre $(\mathbb{E}, \mathcal{E})$. Para cada $\Lambda \subset T$ a aplicação $\lambda^\Lambda : \mathcal{F} \times \Omega \to [0, \infty]$ é um núcleo de medida de $(\mathbb{E}^T, \mathcal{F})$ para $(\mathbb{E}^T, \mathcal{F}_\Lambda)$.

Demonstração. Claramente para todo $\omega \in \Omega$, $\mu^\Lambda \otimes \delta_{\omega T^\Lambda}(\cdot) : \mathcal{F} \to [0,1]$ é uma probabilidade. Provemos para todo $A \in \mathcal{F}$ que $\mu^\Lambda \otimes \delta_{\cdot T^\Lambda}(A) : \Omega \to [0,1]$ é uma função \mathcal{J}_A-mensurável. Pelo Teorema de Tonelli sabemos que a aplicação $\mathbb{E}^{T^\Lambda} \ni \omega_{T^\Lambda} \mapsto \lambda^\Lambda(\cdot \omega_{T^\Lambda})$ é $\sigma(\Pi_{T^\Lambda}), \Gamma_{T^\Lambda}$ mensurável. Por outro lado, a função constante $\mathbb{E} \ni \omega_A \mapsto 1$ é uma função mensurável com respeito à σ-álgebra $\sigma(\Pi_{T^\Lambda}), \Gamma_{T^\Lambda} = \{\emptyset, \emptyset^\Lambda\}$. Como o produto de funções

$$
\Omega = \mathbb{E}^{T^\Lambda} \times \mathbb{E} \ni \omega_{T^\Lambda} \omega_A \mapsto \lambda(\omega_{T^\Lambda}) \cdot 1
$$

é mensurável com respeito à σ-álgebra $\mathcal{J}_\Lambda = \sigma(\Pi_{T^\Lambda}), \Gamma_{T^\Lambda}$ segue o resultado. □

Proposição 1.10. Para quaisquer $\Lambda \subset \Gamma \subset \mathbf{T}$

$$
\mu^\Lambda \otimes \delta_{\omega T^\Lambda}(A \cap B) = 1_B(\omega) \cdot \mu^\Lambda \otimes \delta_{\omega T^\Lambda}(A) \quad \text{filtração}
$$

$$
\int_{\Omega} [\mu^\Lambda \otimes \delta_{\omega T^\Lambda}](A) d[\mu^\Lambda \otimes \delta_{\omega T^\Lambda}](\omega) = \mu^\Lambda \otimes \delta_{\omega T^\Lambda}(A) \quad \text{consistência}
$$

(1.18)

Demonstração. Segue imediatamente das propriedades de funções cilíndricas e do Teorema de Tonelli. Veja referência [15]. □

Definição 1.19 (especificação independente). Seja λ uma medida de probabilidade sobre $(\mathbb{E}, \mathcal{E})$. Uma família de núcleos de probabilidade $\lambda_A(\cdot | \omega) = \delta_{\omega T^\Lambda} \otimes \lambda^\Lambda$ com $\Lambda \subset \mathbf{T}$ é chamada de λ- especificação. Em referência à medida λ indicaremos $\{\lambda_A\}_\Lambda$ também por λ.

Proposição 1.11. Seja $\lambda \in \mathcal{P}(\mathbb{E}, \mathcal{E})$ e \mathbf{T} uma rede enumerável. Então

$$
\mathcal{G}(\lambda) = \{\lambda^\mathbf{T}\}
$$

Demonstração. Pelo do item 2 da Proposição 1.8 $\lambda^\mathbf{T} \in \mathcal{G}(\gamma)$ se, e somente se, para todo $\Lambda \subset \mathbf{T}$ temos $\lambda^\mathbf{T} \left[\lambda \otimes \delta_{\omega T^\Lambda} \right](F) = \mu(F)$ para todo $F \in \mathcal{F}$. Para todo $A \in \mathcal{F}_\Lambda$ não vazio, existe $B \in \mathcal{E}^\Lambda$ não vazio tal que $A = B \times \mathbb{E}^{T^\Lambda}$. Logo $A^{\omega T^\Lambda} = B$ para todo $B \in \mathbb{E}^\Lambda$ e $\lambda_A(A|\omega) = \lambda \otimes \delta_{\omega T^\Lambda}(A) = \lambda(B)$. Pelo Teorema de Fubini-Tonelli (veja Teorema B.1 do apêndice)

$$
(\lambda^\mathbf{T} \lambda_A)(A) = \int \lambda_A(A|\omega) d\lambda^\mathbf{T}(\omega) = \int \lambda^\mathbf{T}(B) d\lambda^\mathbf{T} = \lambda^\mathbf{T}(B).
$$

Por outro lado, $\lambda^\mathbf{T}(B) = \lambda^\mathbf{T}(B) \cdot \lambda^{T^\Lambda}(\mathbb{E}^{T^\Lambda}) = \lambda^\mathbf{T}(A)$. Observando que a classe monótona $\mathcal{M} = \{M : \lambda^\mathbf{T} \lambda_A(M) = \lambda^\mathbf{T}(M)\}$ satisfaz a propriedade $\bigcup_{\Lambda \subset \mathbf{T}} \mathcal{F}_\Lambda \subset \mathcal{M} \subset \mathcal{F}$ obtemos do Teorema da Classe Monótona que $\mathcal{M} = \mathcal{F}$. □
1.5 \(\lambda\)-modificação e \(\lambda\)-especificação

Daqui por diante indicaremos que uma função \(f: \Omega \rightarrow \mathbb{R}\) é \(F\) mensurável para \(V \subset T\) escrevendo \(f \in F\).

Definição 1.20. Sejam \(T\) uma rede enumerável, \(\lambda\) uma medida sobre \((\mathbb{E}, \mathcal{E})\) e \(\lambda^\Lambda\) como em 1.2.3. Suponha que \(\lambda = \{\lambda_\Lambda\}_{\Lambda \in T} = \{\lambda^\Lambda \otimes \delta_{\omega_T(\Lambda)}\}\) seja uma família de núcleos de medida e \(\rho = \{\rho_\Lambda\}_{\Lambda \in T}\) uma família de funções \(J_\Lambda\)-mensuráveis \(\rho_\Lambda: \Omega \rightarrow [0, +\infty]\). Se

\[
\rho_\Lambda \triangleq \{\rho_\Lambda\lambda_\Lambda\}_{\Lambda \in T}
\]

(1.19)

é uma especificação chamamos \(\rho\) de \(\lambda\)-modificação e \(\rho_\Lambda\) de \(\lambda\)-especificação. Além disso, adicionamos o atributo ‘positiva’ a uma \(\lambda\)-modificação se cada \(\rho_\Lambda\) é positiva.

Lema 1.1. Seja \(T\) uma rede enumerável e \(\lambda\) uma medida de probabilidade sobre \((\mathbb{E}, \mathcal{E})\). Então \(\rho_\Lambda = (\rho_\Lambda\lambda_\Lambda)_{\Lambda \in T}\) é uma \(\lambda\)-especificação se, e somente se, para qualquer par \(\Lambda, \Delta \subset \mathcal{E}\) com \(\Lambda \subset \Delta\) temos

\[
\lambda_\Lambda(\rho_\Lambda|_\omega) = 1 \quad \forall \omega \in \Omega,
\]

(1.20)

para toda função \(F\)-mensurável \(f: \Omega \rightarrow [0, +\infty]\),

\[
(\rho_\Delta\lambda_\Delta)(f|_\omega) = (\rho_\Lambda\lambda_\Lambda)(\rho_\Delta\lambda_\Delta)(f|_\omega)
\]

(1.21)

e para toda função \(J_\Lambda\)-mensurável \(g: \Omega \rightarrow [0, +\infty]\) temos

\[
(\rho_\Lambda\lambda_\Lambda)(f \cdot g|_\omega) = g(\omega) \cdot (\rho_\Lambda\lambda_\Lambda)(f|_\omega)
\]

(1.22)

Demonstração. Segue imediatamente da Definição 1.16.

Teorema 1.1. Seja \(T\) uma rede enumerável e \(\lambda\) uma medida sobre \((\mathbb{E}, \mathcal{E})\) e uma família \(\rho = \{\rho_\Lambda\}_{\Lambda \in T}\) de funções não negativas tais que

\[
\lambda_\Lambda(\rho_\Lambda) = 1, \quad \forall \omega \in \Omega, \quad \forall \Lambda \in T.
\]

Então são equivalentes:

(a) \(\rho = (\rho_\Lambda)_{\Lambda \in T}\) é uma \(\lambda\)-modificação na rede enumerável \(T\).

(b) para todo \(\Lambda, \Delta \in T\) com \(\Lambda \subset \Delta\) para todo \(\omega \in \Omega\).

\[
\rho_\Delta(\eta) = \rho_\Lambda(\eta) \cdot [\lambda_\Lambda(\rho_\Delta)](\eta)
\]

(1.23)

para \(\lambda_\Delta(\cdot |_\omega)\) - quase todo \(\eta \in \Omega\).
(c) para todo \(\Lambda, \Delta \in T \) com \(\Lambda \subset \Delta \) para todo \(\alpha \in \Omega \) e \(\lambda_{\Delta \setminus \Lambda}(\cdot|\alpha) \)-quase todo \(\omega \in \Omega \),

\[
\rho_{\Delta}(\eta) \cdot \rho_{\Lambda}(\zeta) = \rho_{\Delta}(\zeta) \cdot \rho_{\Lambda}(\eta)
\]

para \(\lambda_{\Lambda}(\cdot|\omega) \otimes \lambda_{\Lambda}(\cdot|\omega) \)-quase todo par \((\eta, \zeta) \in \Omega \times \Omega \)

Demonstração. Suponhamos que seja válido o item (a). Equivalentemente, isto significa que \((\rho_{\Lambda}, \lambda_{\Lambda})_{\Lambda \in T}\) é uma especificação. Revisitando a Definição 1.16 temos para todo \(\Lambda \in T \),

\[
\lambda_{\Lambda} f \triangleq \lambda_{\Lambda}(f \cdot) \in J_{\Lambda} \quad \forall f \in \mathcal{F}
\]

\[
\lambda_{\Lambda}(\cdot|\omega) \in \mathcal{P}(\Omega, \mathcal{F}) \quad \forall \omega \in \Omega
\]

\[
(\rho_{\Delta \setminus \Delta}) (\rho_{\Lambda} \lambda_{\Lambda}) = (\rho_{\Delta \setminus \Delta}) (\rho_{\Lambda} \lambda_{\Lambda}) \quad \forall \Delta \in T \quad \Lambda \subset \Delta
\]

Multiplicando ambos os membros de (1.23) por \(f(\eta) \) com \(f \in \mathcal{F} \) e \(f(\eta) \geq 0 \) para \(\lambda_{\Delta}(\cdot|\omega) \)-quase todo \(\eta \in \Omega \) temos que o item (b) é equivalente a

\[
\lambda_{\Delta}(f \cdot \rho_{\Delta}) = \lambda_{\Delta}(f \cdot \rho_{\Lambda} \cdot [\lambda_{\Lambda} \rho_{\Delta}])|\omega
\]

para todo \(\omega \in \Omega \) e qualquer \(\Delta \in T \) com \(\Lambda \subset \Delta \). Pelas equações (1.25) temos

\[
(\rho_{\Delta \setminus \Delta}) (\rho_{\Lambda} \lambda_{\Lambda}) = (\rho_{\Delta \setminus \Delta}) (\rho_{\Lambda} \lambda_{\Lambda}) (f \cdot |\omega) . \quad \text{E portanto (1.26) fica}
\]

\[
(\rho_{\Delta \setminus \Delta}) (\rho_{\Lambda} \lambda_{\Lambda}) = \lambda_{\Delta}(f \cdot \rho_{\Lambda} \cdot [\lambda_{\Lambda} \rho_{\Delta}])|\omega
\]

Equação equivalente a (1.23) para \(\omega \) e \(f \) nas mesmas condições de (1.26). Portanto se provarmos (1.27) a equivalência entre (a) e (b) está estabelecida.

Mas antes de provarmos (1.27) precisamos fazer algumas considerações. Sejam \(h, g \in \mathcal{F} \) com \(g(\eta) \geq 0 \) e \(h(\eta) \geq 0 \) para \(\lambda_{\Delta}(\cdot|\omega) \)-quase todo \(\eta \in \Omega \). Logo as funções \([\lambda_{\Lambda} h] \) e \([\lambda_{\Lambda} g] \) \(\in J_{\Lambda} \) são \(\eta \)-quase certamente, com respeito a \(\lambda_{\Lambda}(\cdot|\omega) \), não negativas. E assim,

\[
\lambda_{\Lambda}(g \cdot [\lambda_{\Lambda} h])(\eta) \triangleq \lambda_{\Lambda}(g \cdot [\lambda_{\Lambda} h]|\eta)
\]

\[
= [\lambda_{\Lambda} h](\eta) \cdot \lambda_{\Lambda}(g|\eta)
\]

\[
= [\lambda_{\Lambda} h](\eta) \cdot [\lambda_{\Lambda} g](\eta)
\]

\[
= \lambda_{\Lambda}(h|\eta) \cdot [\lambda_{\Lambda} g](\eta)
\]

\[
= \lambda_{\Lambda}(h \cdot [\lambda_{\Lambda} g]|\eta)
\]

onde as igualdades acima são validas para \(\lambda_{\Lambda}(\cdot|\omega) \)-quase todo \(\eta \in \Omega \) para qualquer que seja \(\omega \in \Omega \). Como \(\lambda_{\Delta} = \lambda_{\Delta \setminus \Lambda} \lambda_{\Lambda} \) temos para \(\lambda_{\Delta}(\cdot|\omega) \)-quase todo \(\eta \in \Omega \) qualquer que seja \(\omega \in \Omega \) a seguinte identidade:

\[
\lambda_{\Delta}(g \cdot [\lambda_{\Lambda} h])(\eta) = \lambda_{\Delta}(h \cdot [\lambda_{\Lambda} g]|\eta)
\]
Usando os fatos estabelecidos acima estamos agora em condições de provar (1.27). Tomando \(g = f \cdot \rho \) e \(h = \rho_\Delta \) na equação acima ficamos com,

\[
\lambda_\Delta \left(f \cdot \rho \cdot [\lambda \rho \Lambda] \right)(\eta) = \lambda_\Delta \left(\rho_\Delta \cdot [\lambda \rho \Lambda \cdot f] \right)(\eta)
\]

para \(\lambda_\Lambda(\cdot | \omega) \)-quase todo \(\eta \in \Omega \) qualquer que seja \(\omega \in \Omega \). Manipulando o segundo membro da última equação obtemos a igualdade (1.27).

Vamos mostrar agora que (b) implica (c). Assumindo (b) podemos afirmar que para todo \(\alpha \in \Omega \), a seguinte equação é verdadeira

\[
0 = \lambda_\Delta \left(| \eta \Delta - \rho \cdot [\lambda \rho \Lambda] \big| \big| \right)(\alpha)
\]

\[
= \lambda_{\Delta \setminus \Lambda} \left(\lambda_\Lambda \left(| \rho_\Delta - \rho \cdot [\lambda \rho \Lambda] \big| \big| \right) \big| | \alpha \right).
\]

Logo,

\[
\lambda_\Lambda \left(\rho_\Delta \big| \omega \right) = \lambda_\Lambda \left(\rho_\Lambda \cdot [\lambda \rho \Lambda] \big| \omega \right)
\]

\[
= [\lambda \rho \Lambda](\omega) \cdot \lambda_\Lambda \left(\rho_\Lambda \big| \omega \right)
\]

\[
= \lambda_\Lambda \left(\rho_\Lambda \cdot [\lambda \rho \Lambda](\omega) \big| \omega \right)
\]

para \(\lambda_{\Delta \setminus \Lambda}(\cdot | \alpha) \)-quase todo \(\omega \in \Omega \) qualquer que seja \(\alpha \in \Omega \). Dessa igualdade segue que

\[
\rho_\Delta(\eta) = \rho_\Lambda(\eta) \cdot [\lambda \rho \Lambda](\omega)
\]

para \(\lambda_\Lambda(\cdot \mid \omega) \)-quase todo \(\eta \in \Omega \) com \(\lambda_{\Delta \setminus \Lambda}(\cdot | \alpha) \)-quase todo \(\omega \in \Omega \) qualquer que seja \(\alpha \in \Omega \). Note também que

\[
\rho_\Lambda(\zeta) = \rho_\Lambda(\zeta)
\]

\[
\rho_\Delta(\zeta) = [\lambda \rho \Lambda](\omega) \cdot \rho_\Lambda(\zeta)
\]

para \(\lambda_\Lambda(\cdot \mid \omega) \)-quase todo \(\zeta \in \Omega \) com \(\lambda_{\Delta \setminus \Lambda}(\cdot | \alpha) \)-quase todo \(\omega \in \Omega \) qualquer que seja \(\alpha \in \Omega \). Portanto,

\[
\rho_\Delta(\eta) \cdot \rho_\Lambda(\zeta) = [\rho_\Lambda(\eta) \cdot [\lambda \rho \Lambda](\omega)] \cdot \rho_\Lambda(\zeta)
\]

\[
= \rho_\Lambda(\eta) \cdot [\lambda \rho \Lambda](\omega) \cdot \rho_\Lambda(\zeta)
\]

\[
= \rho_\Lambda(\eta) \cdot \rho_\Delta(\zeta)
\]

para \(\lambda_\Lambda(\cdot \mid \omega \otimes \lambda_\Lambda(\cdot \mid \omega) \)-quase todo par \((\eta, \zeta) \in \Omega \times \Omega \) e \(\lambda_{\Delta \setminus \Lambda}(\cdot | \alpha) \)-quase todo \(\omega \in \Omega \) qualquer que seja \(\alpha \in \Omega \).

Por último, mostramos que (c) implica (b). Primeiro integramos o primeiro membro de (1.24) na variável \(\zeta \) com respeito a medida \(\lambda_\Delta(\cdot | \alpha) \) para mostrar que
\[\lambda_\Delta(\ |\alpha\rangle)-\text{quase todo } \eta \in \Omega \text{ e } \lambda_{\Delta \setminus \Lambda}(\ |\alpha\rangle)-\text{quase todo } \alpha \in \Omega \text{ qualquer que seja } \alpha \in \Omega: \]

\[\lambda_{\Delta \setminus \Lambda} \lambda_\Lambda \left(\rho_\Delta(\eta) \cdot \rho_\Lambda \big| \alpha \big) = \lambda_{\Delta \setminus \Lambda} \left(\rho_\Delta(\eta) \cdot \lambda_\Lambda(\rho_\Lambda \big| \alpha \big) \right) \]

\[= \lambda_{\Delta \setminus \Lambda} \left(\rho_\Delta(\eta) \big| \alpha \big) \right). \]

Integrando o segundo membro de (1.24) na variável \(\zeta \) com respeito a medida \(\lambda_\Delta(\ |\alpha\rangle) \) temos para \(\lambda_\Lambda(\ |\alpha\rangle)-\text{quase todo } \zeta \in \Omega \text{ e } \lambda_{\Delta \setminus \Lambda}(\ |\alpha\rangle)-\text{quase todo } \alpha \in \Omega \) qualquer que seja \(\alpha \in \Omega \):

\[\lambda_{\Delta \setminus \Lambda} \lambda_\Lambda \left(\rho_\Delta \cdot \rho_\Lambda(\eta) \big| \alpha \big) = \lambda_{\Delta \setminus \Lambda} \left(\rho_\Lambda(\eta) \cdot \lambda_{\Delta \setminus \Lambda}(\rho_\Delta \big| \alpha \big) \right). (1.33) \]

Fazendo \(\alpha = \eta \) nas duas últimas equações e identificando o segundo membro de cada uma delas obtemos

\[\lambda_{\Delta \setminus \Lambda} \left(\rho_\Delta - \rho_\Lambda \cdot [\lambda_\Lambda \rho_\Delta] \big| \eta \big) = 0. \] (1.34)

Integrando na variável \(\eta \) com respeito a medida \(\lambda_\Delta(\ |\omega\rangle) \) e observando que \(\lambda_\Delta \lambda_{\Delta \setminus \Lambda} = \lambda_\Delta \) segue imediatamente (b). □
Capítulo 2
Medida e especificações de Gibbs

Introdução

No principal resultado do Capítulo 1, o Teorema 1.1, vimos como especificações \((\gamma_\Lambda)_{\Lambda \in T}\) podem ser definidas por meio de uma medida a priori \(\lambda\) sobre um espaço mensurável \((E, \mathcal{E})\) e uma \(\lambda\)-modificação \(\rho = (\rho_\Lambda)_{\Lambda \in T}\). Vendo de outro modo o Teorema 1.1 é uma maneira de caracterizar \(\lambda\)-modificações de uma especificação independente que se obtém de uma medida \(\lambda\) sobre um espaço de estados \((E, \mathcal{E})\).

O objetivo do Capítulo 2 é abordar tipos de \(\lambda\)-modificações que são cada vez mais fáceis de se caracterizar no que diz respeito a mensurabilidade.

Um primeiro passo nessa direção é tratarmos um tipo especial de \(\lambda\)-modificações: as pré-modificações. Em seguida, lidamos com pré-modificações na forma exponencial. É nessa segunda etapa que \(\lambda\)-modificações são dadas em termos de funções que têm significado físico: o fator de Boltzmann que é dado por uma função chamada Hamiltoniano, que por sua vez é dada em termos de uma família de potenciais que a chamamos de interação. Esta última também tem sua interpretação probabilística em termos de correlações de estados entre sitos.

Finalmente na última seção definimos o que vem as ser uma especificação de Gibbs ou simplesmente especificação Gibbsiana.

2.1 \(\lambda\)-modificação na forma exponencial

2.1.1 \(\lambda\)-modificação dadas por pré-modificação

Definição 2.1 (pré-modificação). Uma família \(h = \{h_\Lambda\}_{\Lambda \in T}\) de funções \(h_\Lambda : \Omega \to [0, \infty)\) \(\mathcal{F}\)-mensuráveis é chamada pré-modificação se

\[
h_\Lambda(\zeta) \cdot h_\Delta(\eta) = h_\Lambda(\eta) \cdot h_\Delta(\zeta)
\]

para todo \(\Lambda, \Delta \in T\) com \(\Lambda \subset \Delta\) com \(\zeta, \eta \in \Omega\) tais que

\[
\zeta_{T \setminus \Lambda} = \eta_{T \setminus \Lambda}.
\]
Proposição 2.1. Seja \(\lambda \) uma medida sobre \((\mathbb{E}, \mathcal{E}) \) e \(h = (h_\Lambda)_{\Lambda \in T} \) uma família de funções \(h_\Lambda : \Omega \rightarrow [0, \infty) \) \(\mathcal{F} \)-mensuráveis. Se \(h = (h_\Lambda)_{\Lambda \in T} \) é uma pré-modificação tal que \(0 < \lambda_\Lambda h_\Lambda < \infty \) para todo \(\Lambda \in T \) então

\[
\rho = \left(\frac{h_\Lambda}{\lambda_\Lambda h_\Lambda} \right)_{\Lambda \in T},
\]

é uma \(\lambda \)-modificação.

Demonstração. Como \(\lambda_\Lambda h_\Lambda : \Omega \rightarrow (0, +\infty) \) é para todo \(\Lambda \in T \) uma função \(\mathcal{F}_\Lambda \)-mensurável pela propriedade de filtração do núcleo \(\lambda_\Lambda \)

\[
\lambda_\Lambda \rho_\Lambda (\omega) = \lambda_\Lambda (\rho_\Lambda | \omega)
= \lambda_\Lambda \left(\frac{h_\Lambda}{\lambda_\Lambda h_\Lambda} | \omega \right)
= \frac{1}{\lambda_\Lambda h_\Lambda (\omega)} \lambda_\Lambda \left(h_\Lambda | \omega \right) = 1.
\]

Além disso, para todo \(\omega \in \Omega \) temos que a medida \(\lambda_\Lambda (| \omega \rangle \otimes \lambda_\Lambda (| \omega \rangle \) é suportada pelo conjunto

\[
\{ (\zeta, \eta) \in \Omega \times \Omega : \zeta_{T\setminus \Lambda} = \eta_{T\setminus \Lambda} = \omega_{T\setminus \Lambda} \}.
\]

Note que neste conjunto vale a identidade do item (c) do Teorema 1.1. Portanto, \(\left(\frac{h_\Lambda}{\lambda_\Lambda h_\Lambda} \right) \)

satisfaz as exigências do item (c) do Teorema 1.1.

2.1.2 pré-modificações dadas por hamiltonianos

Se \(\rho = (\rho_\Lambda)_{\Lambda \in T} \) uma \(\lambda \)-modificação tal que \(0 < \lambda_\Lambda h_\Lambda < \infty \) então para cada \(\Lambda \in T \) existe uma, e uma somente função, \(Z_\Lambda : \Omega \rightarrow \mathbb{R} \) tal que

\[
\left(\frac{1}{Z_\Lambda} \cdot \rho_\Lambda \lambda_\Lambda \right)_{\Lambda \in T},
\]

é uma \(\lambda \)-especificação. A saber \(Z_\Lambda^{(\cdot)} = \lambda_\Lambda \rho_\Lambda (\cdot) \). Se além disso para todo \(\Lambda \in T \), \(\rho_\Lambda \) é positiva então para cada \(\Lambda \) existe uma, e somente uma, função \(\mathcal{F} \)-mensurável \(\mathcal{H}_\Lambda : \Omega \rightarrow \mathbb{R} \) com \(\rho_\Lambda = e^{\mathcal{H}_\Lambda} \) onde a família de núcleos de probabilidade

\[
\left(\frac{1}{Z_\Lambda} \cdot \rho_\Lambda \lambda_\Lambda \right)_{\Lambda \in T} \triangleq \left(\frac{1}{Z_\Lambda} \cdot e^{-\beta \mathcal{H}_\Lambda} \lambda_\Lambda \right)_{\Lambda \in T},
\]

é uma \(\lambda \)-especificação. Equivalentemente, dado \(\beta > 0 \) podemos fazer uma mudança de escala na equação 2.5 pondo \(-\beta \mathcal{H}_\beta \Lambda = \mathcal{H}_\Lambda \) com \(Z_{\beta \Lambda} = Z_\Lambda \),

\[
\left(\frac{1}{Z_{\beta \Lambda}} \cdot \rho_\Lambda \lambda_\Lambda \right)_{\Lambda \in T} \triangleq \left(\frac{1}{Z_{\beta \Lambda}} \cdot e^{-\beta \mathcal{H}_{\beta \Lambda}} \lambda_\Lambda \right)_{\Lambda \in T}.
\]

Formalizamos esta discussão na proposição abaixo.
Proposição 2.2. Seja \(\lambda \) uma medida sobre o espaço mensurável \((E, \mathcal{E}) \) e \((\rho_\Lambda)_{\Lambda \in T} \) uma \(\lambda \)-modificação sobre a rede \(T \). Se para todo \(\Lambda \in T \) valem \(\rho_\Lambda > 0 \) e \(0 < \lambda_\Lambda \rho_\Lambda < +\infty \) então existe uma família \(\mathcal{H} = \{ \mathcal{H}_\Lambda \}_{\Lambda \in T} \) de funções \(\mathcal{H}_\Lambda : \Omega \to \mathbb{R} \) tais que para todo \(\Lambda \in T \)

\[
\left[\frac{1}{\lambda_\Lambda \rho_\Lambda} \right] \lambda_\Lambda = \left[\frac{1}{Z_\Lambda} \cdot e^{-\beta \mathcal{H}_\Lambda} \right] \lambda_\Lambda.
\]

(2.7)

Definição 2.2. Nas mesmas condições da Proposição 2.2 a família \(\mathcal{H} = (\mathcal{H}_\Lambda)_{\Lambda \in T} \) de funções \(\mathcal{H}_\Lambda : \Omega \to \mathbb{R} \) tais que \((\rho_\Lambda)_{\Lambda \in T} = (e^{-\beta \mathcal{H}_\Lambda})_{\Lambda \in T} \) é chamada de Hamiltoniano de \(\rho \). Cada função \(\mathcal{H}_\Lambda \) é chamada de Hamiltoniano de \(\rho_\Lambda \) ou hamiltoniano a volume \(\Lambda \).

Corolário 2.1. Seja \((\rho_\Lambda)_{\Lambda \in T} \) uma família de funções \(F \)-mensuráveis \(\rho_\Lambda : \Omega \to \mathbb{R} \), tal que para todo \(\Lambda \) temos \(\rho_\Lambda > 0 \) e \(0 < \lambda_\Lambda \rho_\Lambda < +\infty \). Então \((\rho_\Lambda)_{\Lambda \in T} \) é uma pré-modificação se, e somente se, para cada \(\Lambda \) existe uma família \(\mathcal{H} = \{ \mathcal{H}_\Lambda \}_{\Lambda \in T} \) de funções \(\mathcal{H}_\Lambda : \Omega \to \mathbb{R} \) tais que para todo \(\Lambda \in T \)

1. \(\mathcal{H}_\Lambda \) é \(F \)-mensurável e \(\rho_\Lambda = e^{\mathcal{H}_\Lambda} \),
2. para quaisquer \(\Lambda, \Delta \in T \) com \(\Lambda \subset \Delta \) e quaisquer \(\zeta, \eta \in \mathcal{E}^\Delta \) com \(\eta_{\mathcal{T}\setminus \Lambda} = \zeta_{\mathcal{T}\setminus \Lambda} \) tem-se

\[
\mathcal{H}_\Lambda(\zeta) + \mathcal{H}_\Delta(\eta) = \mathcal{H}_\Delta(\eta) + \mathcal{H}_\Lambda(\zeta)
\]

(2.8)

Demonstração. Segue imediatamente da Definição 2.1 e da Proposição 2.2.

Definição 2.3. Seja \(\lambda \) uma medida sobre \((E, \mathcal{E}) \) e \(\rho = (\rho_\Lambda)_{\Lambda \in T} \) uma \(\lambda \)-modificação. Chamamos \(Z_\beta^\omega \triangleq Z_\beta^\Lambda(\omega) = \lambda_\Lambda e^{-\beta \mathcal{H}_\Lambda(\omega)} \) de constante de normalização de \(\rho_\Lambda \) em \(\omega \).

Observação 2.1. Uma forma mais explícita para a constante de normalização é dada pelas equações,

\[
Z_\beta^\Lambda(\omega) = \int_{\Omega} \rho_\Lambda(\eta) \, d\lambda_\Lambda(\eta|\omega)
\]

\[
= \int_{\Omega} e^{-\beta \mathcal{H}_\Lambda(\eta)} \, d\lambda_\Lambda \otimes \delta_{\mathcal{T}\setminus \Lambda}(\eta)
\]

\[
= \int_{\Omega_{\mathcal{T}\setminus \Lambda}} e^{-\beta \mathcal{H}_\Lambda(\eta_{\mathcal{T}\setminus \Lambda})} \, d\lambda_{\mathcal{T}\setminus \Lambda}(\eta_{\mathcal{T}\setminus \Lambda})
\]

Observação 2.2. Seja \(\rho_\Lambda = e^{-\beta \mathcal{H}_\Lambda} \). Observe que fixado \(\omega \in \Omega \) e \(B \in \mathcal{F} \) temos

\[
\frac{1}{Z_\Lambda} e^{-\beta \mathcal{H}_\Lambda} \lambda_\Lambda \left(B|\omega \right) = \int_{\Omega} 1_B(u) \, d\left(\frac{1}{Z_\beta^\omega} e^{-\beta \mathcal{H}_\Lambda} \lambda_\Lambda \right)(u|\omega).
\]
Como \(\left(\frac{1}{Z_{\lambda}(\omega)} e^{-\beta H_{\lambda}} \lambda_{\lambda} \right)(\cdot|\omega) \ll \lambda_{\lambda}(\cdot|\omega) \) segue pela unicidade do Teorema de Lebesgue-Radon-Nikodym (Teorema B.7 do Apêndice) que

\[
\left(\frac{1}{Z_{\lambda}} \cdot \rho_{\lambda} \lambda_{\lambda} \right)(B|\omega) = \frac{1}{Z_{\lambda}(\omega)} \cdot \int_{\Omega} 1_{B}(u) \cdot e^{-\beta H_{\lambda}(u)} \, d\lambda_{\lambda}(u|\omega)
\]

Observação 2.3. Como \(\lambda_{\lambda}(\cdot) \triangleq \lambda_{\lambda} \otimes \delta_{\omega_{T}\Lambda} \) temos pelo Teorema de Tonelli (Teorema B.5 do Apêndice) as seguintes identidades:

\[
\left(\frac{1}{Z_{\lambda}} \cdot \rho_{\lambda} \lambda_{\lambda} \right)(B|\omega) = \frac{1}{Z_{\lambda}(\omega)} \cdot \int_{\Omega} \int_{\Omega_{T}\Lambda} 1_{B}(u) \omega_{T}\Lambda(u) \cdot e^{-\beta H_{\lambda}(u)} \, d\lambda_{\lambda}(u|\omega)
\]

Observação 2.4. A observação 2.3 nos proporciona uma forma mais explícita para para a medida de um \(B \in \mathcal{F} \) por \(\lambda(\cdot|\omega) \). Para futuras referências destacamos:

\[
\lambda(B|\omega) = \begin{cases}
\left(\frac{1}{Z_{\lambda}(\omega)} \cdot e^{-\beta H_{\lambda}(\cdot)} \right) \lambda_{\lambda}(B_{T}\Lambda(u_{\omega_{T}\Lambda})) & \text{, se } \omega_{T}\Lambda \in B_{T}\Lambda; \\
0 & \text{, caso contrário.}
\end{cases} \quad (2.9)
\]

Se \(\{\eta\} \in \mathcal{F} \)

\[
\lambda(B|\omega)(\{\eta\}) = \begin{cases}
\left(\frac{1}{Z_{\lambda}(\omega)} \cdot e^{-\beta H_{\lambda}(\cdot)} \right) \lambda_{\lambda}(\{\eta_{\Lambda}\}) & \text{, se } \omega_{T}\Lambda = \eta_{T}\Lambda; \\
0 & \text{, caso contrário.}
\end{cases} \quad (2.10)
\]

Se para todo \(\eta \in B \) verificamos \(\eta \in \mathcal{F} \) então

\[
\lambda(B|\omega) = \sum_{\eta \in B} \lambda(\{\eta\}|\omega) \quad \text{com } B = \bigcup_{\eta \in B} \{\eta\} \quad (2.11)
\]
Sintetizamos as observações 2.2, 2.3, 2.4 na seguinte definição:

Definição 2.4. Seja \(\lambda \) uma medida sobre \((\mathbb{E}, \mathcal{E})\) e \((\rho_A)_{A \in T} = (\rho_A^H)_{A \in T} \) uma \(\lambda \)-modificação onde \(H = \{H_A\}_{A \in T} \) é uma família de funções \(H_A : \Omega \rightarrow \mathbb{R} \) tal como na Proposição 2.2. Chamamos \(\mu_\lambda^H \) de medida medida a volume finito \(\Lambda \) com condição de fronteira \(\omega \) se \(\mu_\lambda^H \) é uma medida de probabilidade sobre \((\Omega, \mathcal{F})\) definida por \(\lambda_A(\cdot | \omega) \).

2.1.3 Hamiltonianos dados por potenciais de interação.

Agora vamos definir \(H_\Lambda \) dependendo unicamente de uma família \(\Phi \) de funções \(\Phi_A : \Omega \rightarrow \mathbb{R} \) indexadas por cada \(A \in T \). O objetivo é explicitar como o estado \(\eta_A \) de cada configuração \(\eta \) em cada parte finita \(A \) interfere no valor de \(H_\Lambda(\eta) \).

Essa relação de dependência obedece às seguintes propriedades:

- Se \(A = \{i\} \) então \(\Phi_A(u_A \omega_{T\setminus A}) \) é o valor da contribuição do estado \(\omega_i \) no sítio \(i \) sobre o valor de \(H_\Lambda(u_A \omega_{T\setminus A}) \).
- Se \(A = \{i_1, \ldots, i_{|A|}\} \) então \(\Phi_A(u_A \omega_{T\setminus A}) \) é o valor da contribuição dos estados \(\omega_i, \ldots, \omega_i_{|A|} \) nos sítios \(i_1, \ldots, i_{|A|} \) de \(A \) na configuração \((u_A \omega_{T\setminus A}) \) sobre o valor de \(H_\Lambda(u_A \omega_{T\setminus A}) \).
- apenas os valores de \(\Phi_A(u_A \omega_{T\setminus A}) \) nas sub-configurações \(u_A \in \Pi_A(\Omega) \) tais que \(\Lambda \cap A \neq \emptyset \) contribuem para o valor de \(H_\Lambda(u_A \omega_{T\setminus A}) \).
- Se \(A = \{i_1, \ldots, i_{|A|}\} \), o valor de \(\Phi_A(u_A \omega_{T\setminus A}) \) não depende dos valores individuais de \(\Phi_{\{i_1\}}(u_A \omega_{T\setminus A}), \ldots, \Phi_{\{i_{|A|}\}}(u_A \omega_{T\setminus A}) \).
- Ainda para \(A = \{i_1, \ldots, i_{|A|}\} \), o valor de \(\Phi_A(u_A \omega_{T\setminus A}) \) não depende do valor de \(\Phi_B(u_A \omega_{T\setminus A}) \) quando \(B \subset A \) ou \(A \subset B \), onde as inclusões são próprias.

Como temos o controle sobre os valores de \(\Phi_A(u_A \omega_{T\setminus A}) \) gostaríamos que essa dependência fosse de modo simples mas não trivial. Parece-nos que a dependência que atende este quesito de forma natural seja a dependência linear.

- \(H_\Lambda(u_A \omega_{T\setminus A}) \) depende linearmente de cada \(\Phi_A(u_A \omega_{A\setminus A}) \). Assim devem existir coeficientes \(a_A \in \mathbb{R} \) com \(A \in T \) tais que

\[
- \beta \cdot H_\beta_A(u_A \omega_{T\setminus A}) = -\beta \cdot \left(\sum_{A \in T} a_A \cdot \Phi_A(u_A \omega_{T\setminus A}) \right).
\]

(2.12)

Necessariamente o somatório acima deve ser convergente e finito, pois a imagem de \(H_\Lambda \) está contida em \(\mathbb{R} \). É conveniente que os coeficientes \(a_A \) sejam incorporados
a cada uma das funções \(\Phi_A \). De modo que tenhamos a igualdade,

\[
- \beta \cdot \mathcal{H}_\beta(u_\Lambda) = -\beta \cdot \left(\sum_{A \in T : A \cap \Lambda \neq \emptyset} \Phi_A(u_\Lambda) \right).
\]
(2.13)

Proposição 2.3. Seja \(\Phi = (\Phi_A)_{A \in T} \) uma família de funções o \(\Phi_A : \Omega \to \mathbb{R} \) tal como em 2.13 satisfazendo:

(a) Para cada \(A \in T \), \(\Phi_A \) é \(\mathcal{F}_A \)-mensurável

(b) \(\mathcal{H}_\Lambda^\Phi(u) \triangleq \sum_{A \in T : A \cap \Lambda \neq \emptyset} \Phi_A(u) \) converge para todo \(u \in \Omega \) e \(\Lambda \in T \).

Então a família de funções \(\left(e^{\mathcal{H}_\Lambda^\Phi(\cdot)} \right)_{\Lambda \in T} \) é uma pré-modificação positiva.

Demonstração. De acordo com a Proposição 2.1 devemos provar primeiro, para todo \(\Lambda \in T \), que \(\mathcal{H}_\Lambda^\Phi \) é \(\mathcal{F} \)-mensurável. Mas isto segue imediatamente do fato de que \(\mathcal{F}_A \subset \mathcal{F} \) para todo \(A \in T \). Segundo, para quaisquer subsystemas \(\Lambda, \Delta \in T \) com \(\Lambda \subset \Delta \) e para quaisquer pontos de estados \(\zeta, \eta \in \mathbb{E} \) com \(\eta_{T\ominus \Lambda} = \zeta_{T\ominus \Lambda} \) temos

\[
\mathcal{H}_\Lambda^\Phi(\zeta) + \mathcal{H}_\Lambda^\Phi(\eta) = \mathcal{H}_\Delta^\Phi(\eta) + \mathcal{H}_\Lambda^\Phi(\zeta).
\]

Observe que

\[
\mathcal{H}_\Delta^\Phi - \mathcal{H}_\Lambda^\Phi = \sum_{A \in \mathcal{F}_\Lambda, A \cap \Delta \neq \emptyset} \Phi_A - \sum_{A \in \mathcal{F}_\Lambda, A \cap \Lambda \neq \emptyset} \Phi_A
\]

\[
= \sum_{A \in \mathcal{F}_\Lambda, A \cap \Delta = \emptyset} \Phi_A + \sum_{A \in \mathcal{F}_\Lambda, A \cap \Lambda = \emptyset} \Phi_A - \sum_{A \in \mathcal{F}_\Lambda, A \cap \Delta \neq \emptyset} \Phi_A - \sum_{A \in \mathcal{F}_\Lambda, A \cap \Lambda \neq \emptyset} \Phi_A
\]

Como \(\Lambda \subset \Delta \) o quarto somatório sobre os \(A \)'s tais que \(A \cap \Lambda \neq \emptyset, A \cap \Delta = \emptyset \) é zero. A diferença entre o segundo e o terceiro também é zero. Logo,

\[
\mathcal{H}_\Delta^\Phi - \mathcal{H}_\Lambda^\Phi = \sum_{A \in \mathcal{F}_\Lambda, A \cap \Delta \neq \emptyset} \Phi_A - \sum_{A \in \mathcal{F}_\Lambda, A \cap \Lambda = \emptyset} \Phi_A
\]
(2.14)

Se \(A \subset S \ominus \Lambda \) então \(\mathcal{F}_A \subset \mathcal{J}_A \). Portanto, \(\mathcal{H}_\Delta^\Phi - \mathcal{H}_\Lambda^\Phi : \mathbb{E} \to \mathbb{R} \) é \(\mathcal{J}_A \)-mensurável. Agora, avaliando \(\zeta = \zeta_{A \cap \mathcal{T} \cap \Lambda} \) e \(\eta = \eta_{A \cap \mathcal{T} \cap \Lambda} \) em (2.14) e substituindo em (2.14) obtemos

\[
\sum_{A \in \mathcal{F}_\Lambda, A \cap \Delta \neq \emptyset} \Phi_A(\zeta_{A \cap \mathcal{T} \cap \Lambda}) = \sum_{A \in \mathcal{F}_\Lambda, A \cap \Lambda = \emptyset} \Phi_A(\eta_{A \cap \mathcal{T} \cap \Lambda})
\]
(2.15)
Pelo Teorema B.1 sabemos que se $\mathcal{H}_A^\Phi - \mathcal{H}_A^\Psi$ é \mathcal{F}_A-mensurável então suas $\zeta_T \setminus A$-secção e $\eta_T \setminus A$-secção são constantes. Como $\eta_T \setminus A = \zeta_T \setminus A$ segue a igualdade (2.14).

Definição 2.5. Seja $(\mathbb{E}, \mathscr{E})$ um espaço mensurável e uma rede enumerável T.

(a) Um potencial de interação sobre (Ω, \mathcal{F}), ou simplesmente uma interação, é uma família $\Phi = (\Phi_A)_{A \in T}$ de funções $\Phi_A : \Omega \to \mathbb{R}$ com as seguintes propriedades:

(i) Para cada $A \subseteq T$, Φ_A é \mathcal{F}_A-mensurável.

(ii) Para todo $\Lambda \subseteq T$ e $\omega \in \Omega$, a série

$$\mathcal{H}_\Lambda^\Phi(\omega) = \sum_{A \subseteq \mathcal{S}, \ A \cap \Lambda \neq \emptyset} \Phi_A(\omega).$$

é convergente.

(b) A função \mathcal{F}-mensurável $\mathcal{H}_\Lambda^\Phi : \Omega \to \mathbb{R}$ é chamada de Hamiltoniano da interação Φ.

(c) $h_\Lambda^\Phi \triangleq \frac{1}{Z_\Lambda} \cdot e^{-\beta \mathcal{H}_\Lambda^\Phi(\omega)}$ é chamado de fator de Boltzmann da interação Φ.

A próxima proposição nos fornece uma maneira de construir especificações dependentes.

Proposição 2.4. Seja λ uma medida a priori sobre o espaço mensurável $(\mathbb{E}, \mathscr{E})$. Seja $(\Phi_A)_{A \in T}$ uma família de potenciais $\Phi_A : \mathbb{E}^T \to \mathbb{R}$ indexada pelo conjunto das partes finitas \mathcal{S} de um conjunto enumerável T. Suponha que

$$Z_\Lambda^\Phi(\omega) \triangleq \int e^{-\beta \mathcal{H}_\Lambda^\Phi(\zeta_\Lambda \omega_{T \setminus \Lambda})} \, d\lambda_\Lambda(\zeta_\Lambda) < +\infty$$

para quaisquer $\omega \in \mathbb{E}^T$ e $\Lambda \subseteq T$. Então a família de funções $(\rho_\Lambda^\Phi)_{A \subseteq T}$ dadas por

$$\rho_\Lambda^\Phi \triangleq \frac{e^{\beta \mathcal{H}_\Lambda^\Phi}}{Z_\Lambda^\Phi}, \quad \Lambda \subseteq T$$

é uma λ-modificação.

Um potencial que satisfaz condição (2.17) é chamado Λ-admissível. Nas definições que se seguem supomos que $(\mathbb{E}, \mathscr{E})$ é um espaço mensurável e $(\Phi_A)_{A \in T}$ é uma família de potenciais $\Phi_A : \mathbb{E}^T \to \mathbb{R}$ indexada nas partes finitas, \mathcal{S}, de um conjunto enumerável T.

Definição 2.6. Dizemos que Φ é absolutamente somável se

$$||\Phi||_i \triangleq \sum_{A \subseteq T} \sup_{\omega \in \mathbb{E}^T} |\Phi_A(\omega)| < +\infty$$

(2.19)
Denotamos por \(\mathcal{B} \) o espaço dos potenciais absolutamente somáveis. Podemos verificar que as funções, \(\| \|_i : \mathcal{B} \to \mathbb{R} \) são semi-normas em \(\mathcal{B} \) e definem em \(\mathcal{B} \) uma topologia metrizável e localmente convexa. Portanto \(\mathcal{B} \) é um espaço de Fréchet.

Definição 2.7 (Potencial uniformemente convergente). Dizemos que \(\Phi \) é uniformemente convergente se para todo \(\Lambda \in \mathcal{T} \) e para toda sequência \(\{\Delta_n\}_{n \in \mathbb{N}} \subset \mathcal{P} \) a sequência

\[
\mathcal{H}_{\Lambda, \Delta_n}^\Phi \triangleq \sum_{\substack{A \in \mathcal{P} \\subset \\Delta_n \\cap \Lambda \neq \emptyset}} \Phi_A
\]

é uniformemente convergente.

Definição 2.8 (Potencial de alcance finito). Dizemos que um potencial \(\Phi \) é de alcance finito se

\[
\sup \{ \text{diam } A : A \in \mathcal{T}, \Phi_A \neq 0 \} < +\infty
\]

e dizemos que \(\Phi \) é de alcance \(R > 0 \) se

\[
\sup \{ \text{diam } A : A \in \mathcal{T}, \Phi_A \neq 0 \} = R.
\]

Claramente, cada potencial de alcance finito \(\Phi \) é uniformemente convergente e temos que \(\Phi \in \mathcal{B} \).

2.2 Grupos de simetrias e especificações de Gibbs

Seja \(\mu \) um campo aleatório sobre uma rede \(\mathcal{T} \) e espaço de estados \((\mathcal{E}, \mathcal{F})\). Seja \(\tau_* \) uma bijeção de \(\mathcal{T} \) em \(\mathcal{T} \) e \(\tau_i \) é uma transformação inversível de \(\mathcal{E} \) em \(\mathcal{E} \) que é mensurável e com inversa mensurável. Indicamos por \(\mathcal{T} \) o conjunto de todas as transformações da forma

\[
\tau : \omega \mapsto (\tau_i \omega \tau^{-1}_i(i))
\]

onde \(\tau_* \) é uma aplicação bijectiva de \(\mathcal{T} \) em \(\mathcal{T} \) e para cada \(i \in \mathcal{T} \), \(\tau_i \) é uma aplicação de \(\mathcal{E} \) em \(\mathcal{E} \). Assim cada \(\tau \) é uma composição de uma transformação espacial \(\tau_* \) (que transporta o spin no sítio \(j \) para o sítio \(\tau_* j \)) com transformações \(\tau_i \) que agem separadamente, para cada \(i \in \mathcal{T} \), em cada espaço de spins \(\mathcal{E} \). É importante notar que vale o diagrama comutativo abaixo para \(\omega \tau_i^{-1}(i) = \omega_j \).

\[
\begin{array}{c}
(\omega_i)_{i \in \mathcal{T}} \xrightarrow{\tau_i^{-1}} (\omega_j)_{j \in \mathcal{T}} \\
\downarrow \tau_i \quad \quad \quad \quad \quad \downarrow \tau_i \\
(\tau_i \omega_i)_{i \in \mathcal{T}} \xrightarrow{\tau_i^{-1}} (\tau_i \omega_j)_{i \in \mathcal{T}}
\end{array}
\]
Proposição 2.5. Seja μ um campo aleatório sobre uma rede T e espaço de estados (E, E). Se τ ∈ T com τᵢ = identidade e B ∈ Fₐ, então

1. τ é F-mensurável.
2. a inversa de τ = (τᵢ : τᵢ, i ∈ S) é τ⁻¹ = (τᵢ⁻¹ : τᵢ⁻¹ᵢ, i ∈ T)
3. T é um grupo sob a operação de composição ◦.
4. se f ∈ Fₐ então f ◦ τ é Fᵣ⁻¹(Λ)-mensurável.

O principal objetivo desta seção é introduzir o estudo da ação das transformações em T sobre potenciais e hamiltonianos e sobre medidas como passaremos a descrever. Seja (ϕₐ)ₐ uma família de funções ϕₐ : Ω → ℝ então temos uma nova família de funções:

\[τ^{-1}(ϕ) = \left(τ^{-1}(ϕₐ) \right)ₐ∈S = \left(ϕ_{τᵢ^{-1}}(Arabia) τ^{-1} \right)ₐ∈S. \] (2.23)

Note que estas definições se aplicam a potenciais e λ-modificações. Para uma medida μ sobre (Ω, F) e uma transformação mensurável T : Ω → Ω definimos

\[μ ◦ T^{-1}(·) ≜ μ(T^{-1}(·)). \] (2.24)

Seja λ uma medida sobre (E, E). Dizemos que λ é τ invariantes para todo i ∈ T temos que λ é τᵢ invariantes, em outras palavras, λ = λ ◦ τᵢ⁻¹. Unificando o que estabelecemos em (2.23) e (2.24) definimos para uma especificação γ = (γₐ)ₐ∈T

\[τ(γₐ)(A|ω) = γ_{τᵢ⁻¹,ₐ}(τ⁻¹(A)|τ⁻¹(ω)) \] (2.25)

ou equivalentemente

\[τ(γ_{τᵢ,ₐ})(τ(A)|τ(ω)) \] (2.26)

para Λ ∈ T, A ∈ F e ω ∈ Ω. Além disso, a última equação é também equivalente a

\[\left(τ(γ)(τᵢ)A \right) ◦ τ = γₐ(f ◦ τ) \] (2.27)

para todo Λ ∈ T e toda função limitada não negativa f : Ω → ℝ que seja F-mensurável.

Proposição 2.6. Sejam λ uma medida sobre o espaço mensurável (E, E) τ ∈ T invariantes. Então as seguintes afirmações são verdadeira

(a) τ(λ) = λ
(b) Para cada λ-modificação ρ = (ρₐ)ₐ∈T, τ(ρ)λ = τ(ρλ).
(c) Se Φ é um potencial λ-admissível então τ(Φ) é um pontencial λ-admissível e ρₜ(Φ) = τ(ρΦ).
Demonstração. (a) A prova deste item segue diretamente da hipótese de \(\lambda \) ser \(\tau \in \mathcal{T} \) invariante. Para provar (b), sejam \(\Lambda \in \mathcal{T} \) e \(f : \Omega \to \mathbb{R} \) uma função limitada. Então de (2.27) temos

\[
[\tau(\rho \lambda)_{\tau, \Lambda} f] = \lambda_{\Lambda}(\rho_{\Lambda} \cdot f \circ \tau) \\
= \lambda_{\Lambda}(\tau(\rho_{\tau, (\Lambda)} f) \circ \tau) \\
= \left[\lambda_{\tau, (\Lambda)}(\tau(\rho_{\tau, (\Lambda)} f)) \right] \circ \tau \\
= \left[(\tau(\rho))_{\tau, (\Lambda)} f \right] \circ \tau.
\]

A terceira equação vem de (2.27) aplicando \(\gamma \equiv \lambda = \tau(\lambda) \). Como \(\tau \) é inversível e \(\Lambda \) e \(f \) são arbitrários segue (b). Passamos agora para a prova do item (c). Para cada \(\Lambda \in \mathcal{T} \), segue do item (b) e da correspondência um a um entre \(\rho_{\Lambda} \) e \(H_{\Lambda} \) estabelecida na Proposição 2.2 que

\[
H_{\tau, (\Lambda)}^\tau \circ \tau = \sum_{\Lambda \in \mathcal{T}, \Lambda \neq \emptyset} \tau(\Phi)_{\tau, (\Lambda)} \circ \tau = H_{\Lambda}^\Phi
\]
e portanto \(h_{\tau, (\Lambda)}^\tau \circ \tau = h_{\Lambda}^\Phi \). Aplicando 2.27 a \(\gamma \equiv \lambda = \tau(\lambda) \) obtemos

\[
Z_{\tau, \Lambda}^\tau \circ \tau = (\lambda_{\tau, \Lambda} h_{\tau, \Lambda}^\Phi) \circ \tau = \lambda_{\Lambda}(h_{\tau, \Lambda}^\Phi \circ \tau) = Z_{\Lambda}^\Phi.
\]
Isto mostra que \(\tau(\Phi) \) é \(\lambda \)-admissível. Como \(\rho_{\Lambda}^\Phi = h_{\Lambda}^\Phi / Z_{\Lambda}^\Phi \), obtemos

\[
\rho_{\tau, \Lambda}^\Phi \circ \tau = \rho_{\Lambda}^\Phi = \tau(\rho_{\Lambda}^\Phi)_{\tau, \Lambda} \circ \tau.
\]
Portanto segue (c).

Definição 2.9. Seja \(\tau = (\tau_{s}; \tau_{i}, i \in \mathcal{T}) \) e \(I \subseteq \mathcal{T} \).

(a) Uma função \(\varphi : \Omega \to \mathbb{R} \) é dita ser \(\tau \)-invariante se \(\varphi = \varphi \circ \tau \). E uma família de funções \(\varphi = (\varphi)_{\Lambda \in \mathcal{T}} \) é dita ser \(\tau \)-invariante, e neste caso \(\tau \) é chamada simetria de \(\varphi \), se \(\tau(\varphi) = \varphi \), i.e., \(\varphi_{\tau, (\Lambda)} \circ \tau = \varphi_{\Lambda} \) para todo \(\Lambda \). A mesma definição se aplica a potências, hamiltonianos, \(\lambda \)-modificações e pré-modificações.

(b) A uma medida \(\mu \) sobre \((\Omega, \mathcal{F}) \) é dito ser \(\tau \)-invariante, e \(\tau \) é chamada \(\lambda \)-preservante ou uma simetria de \(\mu \), se \(\mu \) é igual a sua \(\tau \)-imagem \(\tau(\mu) = \mu \circ \lambda^{-1} \).

Um especificação \(\gamma \) é dita ser \(\tau \)-invariante, e \(\tau \) é chamada de \(\gamma \)-preservante ou simetria de \(\gamma \), se \(\tau(\gamma) = \gamma \), i.e.,

\[
\gamma_{\tau, (\Lambda)}(\cdot | \tau \omega) = \tau(\gamma_{\Lambda}(\cdot | \omega)), \quad \forall \Lambda \in \mathcal{T}, \quad \forall \omega \in \Omega.
\]

(2.28)

(c) \(\varphi \) (e respectivamente \(\mu \) ou \(\gamma \)) como acima são chamados \(I \)-invariantes se é \(\tau \)-invariante para todo \(\tau \in I \).
(d) O conjunto de todas as simetrias de um objeto \(\varphi \), \(\mu \) ou \(\gamma \) formam um grupo chamado grupo de simetrias deste objeto.

Proposição 2.7. Seja \(\gamma = (\gamma_{\Lambda})_{\Lambda \in T} \) uma especificação e \(\tau : \Omega \to \Omega \) uma transformação. Se \(\mu \in G_\beta(\gamma) \) então \(\tau \mu \in G_\beta(\tau(\gamma)) \) e, em particular, \(G_\beta(\gamma) \) é invariante para todas as simetrias de \(\gamma \).

Demonstração. Para todo \(\Lambda \in T \) nos temos

\[
\tau(\mu)\tau(\gamma_{\Lambda}) = \int_{\Omega} \tau(\gamma_{\Lambda})(\cdot | \omega) \, d\mu(\omega)
\]

\[
= \int_{\Omega} \gamma_{\tau^{-1}\Lambda}(\tau^{-1}(\cdot) | \omega) \, d\mu(\omega)
\]

\[
= \tau(\mu\gamma_{\tau^{-1}\Lambda}) = \tau(\mu).
\]

\(\square \)

Corolário 2.2. Se \(G(\gamma) = \{ \mu \} \) então \(\mu \) é preservado por todos as simetrias de \(\gamma \).
Capítulo 3

Existência de medidas de Gibbs

Sejam \((E, \mathcal{E})\) um espaço métrico e \(\lambda\) uma medida sobre \((E, \mathcal{E})\). Seja ainda \(\Phi = (\Phi_A)_{A \in T}\) uma interação definida na rede \(T\). Quais condições sobre \(\Phi\), \((E, \mathcal{E})\) e \(T\) são suficientes para garantir a existência de uma probabilidade de \(\mu\) sobre \((\Omega, \mathcal{F})\) que seja uma medida de Gibbs? O caso mais simples é quando a rede \(T\) é enumerável, \(\Phi\) é uma interação regular e \(E\) é finito. Neste caso, podemos mostrar que existe \(\mu \in \mathcal{G}(\Phi)\). O caminho que seguimos é equipar \(\mathcal{P}(\Omega, \mathcal{F})\) com uma métrica e em seguida, mostrar que toda sequência \(\mu_{\Lambda_n} = \mu(\cdot | J_{\Lambda_n})(\omega) = \frac{\rho\Phi}{Z_{\Lambda_n}} \lambda^\Lambda \otimes \delta_{\omega \setminus \Lambda_n}\) possui uma subsequência que converge a \(\mu \in \mathcal{P}(\Omega, \mathcal{F})\) e finalmente provar que \(\mu \in \mathcal{G}(\Phi)\).

3.1 Medidas de Gibbs

3.1.1 Especificação de Gibbs

Definição 3.1. Seja \(\lambda\) uma medida a priori sobre o espaço mensurável \((E, \mathcal{E})\). Seja\((\Phi_A)_{A \in T}\) uma família de potenciais \(\Phi_A : E^T \to \mathbb{R}\) indexada pelo conjunto das partes finitas \(\mathcal{F}\) de um conjunto enumerável \(T\). Suponha que \(\Phi\) é \(\Lambda\)-admissível. Considere a medida de probabilidade que se obtém para cada \(\Lambda \in T\) e cada \(\omega \in E^T\),

\[
\gamma^\Phi_{\Lambda}(\cdot | \omega) : E^T \to \mathbb{R} \\
A \mapsto \rho^\Phi_{\Lambda}(A | \omega) \tag{3.1}
\]

com

\[
\rho^\Phi_{\Lambda}(A | \omega) = Z^\Phi_{\Lambda}(\omega)^{-1} \cdot \int e^{-H^\Phi(\zeta_\omega T_{\setminus \Lambda})} \cdot 1_A(\zeta_\omega T_{\setminus \Lambda}) d\lambda_{\Lambda}(\zeta_\Lambda). \tag{3.2}
\]

Então,

(i) \(\gamma^\Phi_{\Lambda}(\cdot | \omega)\) é chamada distribuição de Gibbs em \(\Lambda\) com condição de fronteira \(\omega\), para interação \(\Phi\) com medida a priori \(\lambda\).
(ii) a λ-especificação $\gamma^\Phi = (\gamma^\Phi_\Lambda)_{\Lambda \in T}$ é chamada especificação Gibbsiana para a interação Φ com medida a priori λ.

(iii) Cada campo aleatório $\mu \in \mathcal{G}(\Phi) \triangleq \mathcal{G}(\gamma^\Phi)$ é chamado medida (ou campo aleatório) de Gibbs determinada pela interação Φ e medida a priori λ.

Em honra a Dobrushin, Lanford e Ruelle a medida de Gibbs também é chamada de estado DLR. Outro termo que é usado na literatura física é estado de Gibbs a volume infinito. Como já apontado na introdução, o conjunto $\mathcal{G}(\Phi)$ de todas as medidas de Gibbs para a interação Φ podem, e devem, ser consideradas como uma descrição matemática adequada do conjunto de todos os estados de equilíbrio possíveis para um sistema físico que consiste em um grande número de componentes que são acoplados através da interação Φ. Pensando em estados de equilíbrio de sistemas físicos, como medidas de Gibbs vemos que tais sistemas apresentam uma propriedade de equilíbrio bastante forte no seguinte sentido. Cada subsistema está em um equilíbrio condicional como se o “mundo circundante” estivesse congelado. De acordo com esta interpretação, a não unicidade da medida de Gibbs significa que o sistema faz uma escolha dentre os vários estados possíveis de equilíbrio. Uma tal escolha é uma característica de sistemas físicos que passam por uma transição de fase (do tipo específico que foi considerado na introdução). Estas observações sugerem a seguinte terminologia.

Definição 3.2. Seja λ uma medida a priori sobre o espaço mensurável $(\mathcal{E}, \mathcal{F})$. Seja $(\Phi_\Lambda)_{\Lambda \in T}$ uma família de potenciais $\Phi_\Lambda : \mathcal{E}^T \rightarrow \mathbb{R}$ indexada pelo conjunto das partes finitas \mathcal{I} de um conjunto enumerável T. Suponha que Φ é Λ-admissível. Dizemos que Φ tem transição de fase para a medida regular λ se

$$|\mathcal{G}(\Phi)| = |\{\mu \in \mathcal{P}(\Omega, \mathcal{F}) : \mu(\cdot|J_\Lambda)(\omega) = \gamma^\Phi_\Lambda(\cdot|\omega) \mu - q.t.p\}| > 1$$ (3.3)

Deve-se mencionar que a não unicidade do estado de equilíbrio $\mu \in \mathcal{G}(\Phi)$, i.e., $|\mathcal{G}(\Phi)| > 0$ não é o único fenômeno crítico de interesse físico. Um exemplo é a dita transição de Kosterlitz-Thouless que é caracterizada pela mudança da taxa de decaimento das correlações spin-spin. Pode ser, por exemplo, a mudança de um decaimento exponencial para uma lei de potência, veja Fröhlich and Spencer (1981). Neste texto, iremos concentrar na transição de fase no sentido da definição acima mencionada. Na parte restante desta secção nós iremos introduzir algumas classes e propriedades importantes de potenciais de interação Φ.
3.2 Quase localidade

Sabemos pela Proposição [1.1] que uma função f definida em um espaço produto Ω é \mathcal{F}_Λ-mensurável, se e somente se, é Λ-cilíndrica. Por abuso de notação indicamos que f é Λ-cilíndrica escrevendo $f \in \mathcal{F}_\Lambda$. Uma função $f \in \bigcup_{\Lambda \in \mathcal{T}} \mathcal{F}_\Lambda$ será chamada de função local. Indicaremos por \mathcal{L}_Λ o conjunto das funções $f \in \mathcal{F}_\Lambda$ que sejam limitadas. Uma função arbitrária $f \in \mathcal{L} = \bigcap_{\Lambda \in \mathcal{T}} \mathcal{L}_\Lambda$ será chamada simplesmente de função local.

Definição 3.3. Uma função $f : \Omega \to \mathbb{R}$ é dita ser uma função quase local se existe uma sequência de funções locais $(f_n)_{n \in \mathbb{N}}$ tais que

$$\lim_{n \to \infty} \sup_{\omega \in \Omega} |f(\omega) - f_n(\omega)| = 0. \tag{3.4}$$

Novamente por abuso de notação, usaremos a notação $\overline{\mathcal{L}}$ para designar o espaço vetorial das funções quase locais. Claramente $\overline{\mathcal{L}}$ é o fecho uniforme do espaço vetorial \mathcal{L}.

Lema 3.1. Uma função $f : \Omega \to \mathbb{R}$ é uma função quase local se, somente se,

$$\lim_{n \to \infty} \sup_{\xi,\zeta \in \Omega} |f(\zeta) - f_n(\eta)| = 0 \tag{3.5}$$

para qualquer sequência crescente e exaustiva de volumes finitos Λ_n.

Demonstração. Fixe $\omega \in \Omega$ e considere Λ_n uma sequência crescente e exaustiva de volumes finitos. Para cada $n \in \mathbb{N}$ defina $f_{\Lambda_n}(\zeta) = f(\zeta_{\Lambda_n}\omega_{\Lambda_n})$. A chave da prova está em aplicar convenientemente a igualdade $f_{\Lambda_n}(\zeta) - f_{\Lambda_n}(\eta) = 0$ que se obtém do Corolário B.1 sempre que $\zeta_{\Lambda_n} = \eta_{\Lambda_n}$.

Suponha inicialmente que f satisfaça a equação (3.5). Vamos mostrar que a sequência de funções locais f_{Λ_n} converge uniformemente para f. De fato, para qualquer $\zeta \in \Omega$ temos

$$|f(\zeta) - f_{\Lambda_n}(\zeta)| = |f(\zeta) - f(\zeta_{\Lambda_n}\omega_{\Lambda_n})|$$

$$\leq |f(\zeta) - f(\zeta_{\Lambda_n}\zeta_{\Lambda_n})| + |f(\zeta_{\Lambda_n}\zeta_{\Lambda_n}) - f(\zeta_{\Lambda_n}\omega_{\Lambda_n})|.$$

Claramente a primeira parcela no lado direito da desigualdade acima é zero. Para estimar a segunda basta usar a hipótese, que diz que dado $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que se $n \geq n_0$ então

$$\sup_{\xi,\zeta \in \Omega} |f(\zeta) - f(\eta)| < \varepsilon.$$

Já que pela definição de supremo temos

$$|f(\zeta_{\Lambda_n}\zeta_{\Lambda_n}) - f(\zeta_{\Lambda_n}\omega_{\Lambda_n})| \leq \sup_{\xi,\zeta \in \Omega} |f(\zeta) - f(\eta)|,$$
segue que, independentemente da escolha de ζ, para todo ε > 0 existe n₀ ∈ ℕ tal que se n ≥ n₀ então |f(ζ) − fₐₙ(ζ)| < ε.

Reciprocamente, suponha que f é limite uniforme de uma sequência de funções locais fₐₙ ∈ ℱₐₙ. Observe que

\[|f(ζ) − f(η)| = |(f(ζ) − fₐₙ(ζ)) + (fₐₙ(ζ) − fₐₙ(η)) + (fₐₙ(η) − f(η))| \leq |f(ζ) − fₐₙ(ζ)| + |fₐₙ(ζ) − fₐₙ(η)| + |fₐₙ(η) − f(η)|. \]

Para todo ε > 0 dado, pela convergência uniforme de fₐₙ para f podemos garantir a existência de n₀ ∈ ℕ tal que se n ≥ n₀ então

\[|f(ζ) − f(η)| < 2ε + |fₐₙ(ζ) − fₐₙ(η)|. \] (3.6)

Tomando o supremo em ambos os lados da desigualdade acima segue que

\[\sup_{ξ,ζ ∈ Ω} |f(ζ) − f(η)| < 3ε + \sup_{ξ,ζ ∈ Ω} |fₐₙ(ζ) − fₐₙ(η)| \]

para todo n ≥ n₀. Substituimos o 2ε por 3ε pois ao tomarmos o supremo na desigualdade (3.6) não estaríamos mais garantindo a desigualdade estrita, como escrevemos acima. Agora para obter (3.5) basta aplicar a definição de limite.

Proposição 3.1. Suponha que D seja qualquer métrica em Ω que induza a topologia produto. Se uma função f é uniformemente contínua então f é quase local.

Demonstração. Como f é uniformemente contínua, dado ε > 0 existe δ > 0 tal que todo par η, ζ ∈ Ω que realiza d(η, ζ) < δ realiza |f(η) − f(ζ)| < ε. Por definição da topologia produto, existe um volume finito Λ tal que ζₐₙ = ηₐₙ implica d(η, ζ) < δ. Portanto o resultado segue de (3.5) □

Corolário 3.1. Se E é um espaço métrico compacto então toda função f : Ω → ℝ contínua é uma função quase local.

Corolário 3.2. Se E é um conjunto finito equipado com a topologia discreta 2^E então uma função f : Ω → ℝ é contínua se, e somente se, é uma função quase local.

Demonstração. Pelo Corolário 3.1 basta verificarmos que toda função quase local é contínua. Observe que para toda contagem T ⊃ i → n(i) ∈ ℕ temos que

\[d(η, ζ) = \sum_{i ∈ T} \frac{1}{2^{n(i)}} \cdot 1_{i,ζ}(i) \] (3.7)
é uma métrica bem definida que gera a topologia produto de \(\Omega \). Seja \(\Lambda_n \) uma sequência crescente e exaustiva de volumes finitos e \((\eta_n)_{\Lambda_n} = (\eta_n)_{\Lambda_n} \). Segue do Lema 3.1 que \(\lim_{n \to \infty} d(\eta_n, \zeta_n) = 0 \), implica

\[
\lim_{n \to \infty} |f(\eta_n) - f(\zeta_n)| = 0.
\]

Portanto, \(f \) é contínua.

\[\square\]

3.3 Topologia da convergência local

Seja \((E, \mathcal{E})\) um espaço mensurável arbitrário, \(T\) um conjunto enumerável, \((\Omega, \mathcal{F}) = (E^T, \mathcal{E}^T)\), e \(\mathcal{P}(\Omega, \mathcal{F})\) o conjunto das medidas de probabilidade sobre \((\Omega, \mathcal{F})\). O objetivo é escolher a topologia uma topologia \(\mathcal{L}\) para \(\mathcal{P}(\Omega, \mathcal{F})\) tal que:

3.7.1. O conjunto \(\overline{\gamma(\Phi)}^\mathcal{L} - \gamma(\Phi)\) dos pontos de aderência de que não moram em \(\gamma(\Phi)\) é não vazio. Isto é o mesmo que pedir que os pontos de aderência \(\mu\) satisfaçam o equação (DLR) seja diferente de qualquer \(\gamma(\cdot | \omega) \in \gamma(\Phi)\).

3.7.2. Se \(\overline{\gamma(\Phi)}^\mathcal{L} - \gamma(\Phi)\) cvx é o fecho convexo de \(\overline{\gamma(\Phi)}^\mathcal{L} - \gamma(\Phi)\) (fecho convexo no sentido topológico) então \(\overline{\gamma(\Phi)}^\mathcal{L} - \gamma(\Phi)\) cvx = \(\mathcal{G}(\Phi)\). A necessidade do fecho convexo, é por que a combinação convexa de um número finito de pontos de aderência \(\nu_i \in \mathcal{G}(\Phi_i)\) de especificações \(\gamma_i\)'s é especificado pela combinação convexa das especificações \(\gamma_i\)'s.

3.7.3. Seja \(\tau_{loc}\) é a menor topologia que construiremos (na ordem parcial da inclusão) que satisfaz as propriedades 3.7.2 e 3.7.3.

Para cada \(\Lambda \in T\) fixado e dado \(\mu \in \partial^\mathcal{L} \gamma(\Phi)\) nos temos apenas informações do comportamento de \(\mu\) para eventos em \(\mathcal{F}_\Lambda\). Nada sabemos para os eventos em \(\mathcal{J}_\Lambda = \mathcal{F}_{T \setminus \Lambda}\). Portanto, precisamos de uma topologia em \(\mathcal{P}(\Omega, \mathcal{F})\) que dependa apenas do comportamento local das medidas de probabilidade.

3.4 Podemos identificar as topologias da convergência local e da convergência fraca-\(\ast\)?

Aqui discutiremos a existência de medida de Gibbs para uma rede enumerável \(T\) e uma espaço de estados \(E\) finito. Para modelos com rede \(T\) não enumerável e /ou espaço de estados contínuo veja \[21\] e referências.
Em qualquer das situações acima para a rede T e o espaço de estados E o fundamental é que o conjunto dos pontos de aderência de $\gamma(\Phi)$ seja não vazio. Uma maneira de garantir isto, é provar que podemos equipar $\Omega = E^T$ com uma topologia produto que se obtém de alguma topologia de E tal que $\mathcal{P}(\Omega, \mathcal{F})$ seja compacto na topologia da convergência local. Um exemplo de sucesso dessa estratégia ocorre quando E é um espaço métrico. Na referência [20] existe uma caracterização da compactidade de $\mathcal{P}(E^T, \mathcal{F} = \text{Borel} (\mathcal{L}))$ que diz que $\mathcal{P}(E^T, \mathcal{F} = \text{Borel} (\mathcal{L}))$ é um espaço métrico compacto se, e somente se, E é um espaço métrico compacto.

Sejam d_Ω uma métrica em Ω e $\mathcal{B}(d_\Omega)$ a σ-álgebra de Borel gerada pela topologia induzida em Ω por d_Ω.

3.5 A topologia da convergência local é metrizável?

No caso de E veremos que sim. Sem perda de generalidade podemos supor que $E \subseteq \mathbb{R}$. Se E é finito temos uma maneira natural de definir funções polinomiais em Ω. São todas as funções que podem ser obtidas como combinações lineares com coeficientes reais de finitos produtos de projeções de Ω em E.

Lema 3.2. Seja Ω o espaço métrico acima com métrica $\sup_{t \in T} |(\cdot)_t - (\cdot)_t|$ que o torna compacto. Seja ainda $C(\Omega)$ o espaço métrico das funções contínuas equipado com a métrica $d(f, g) = \sup_{\omega \in \Omega} |f(\omega) - g(\omega)|$. Se a enumeração $\mathbb{N} \ni n \mapsto t \in T$ é uma bijeção então o conjunto dos polinômios em $C(\Omega)$ com coeficientes racionais

$$\mathcal{P}(\Omega) \triangleq \left\{ p(\omega) \triangleq \sum_{0 \leq k \leq N} a_k \cdot \psi(\omega_{t(k)})^k : a_k \in \mathbb{Q} \right\}$$

é um conjunto enumerável denso em $C(\Omega)$.

Demonstração. Basta provar que $\mathcal{P}_Q(\Omega)$ é uma álgebra de funções contínuas em $C(\Omega)$ que separa pontos e contém as constantes que a densidade de $\mathcal{P}_Q(\Omega)$ segue do Teorema de Stone-Weierstrass. A enumerabilidade segue evidentemente do fato de que E é finito. □

Sejam $\overline{B} = \overline{B}_C(0, 1)$ a bola fechada unitária de $C = C(\Omega)$, isto é, $\overline{B} = \overline{B}_C(0, 1) = \{ f \in C(\Omega, \mathcal{F}) : \|f\|_\infty \leq 1 \}$ e $\{ p_1, p_2, \ldots \} \subset \overline{B} \cap \mathcal{P}_Q(\Omega)$ um subconjunto denso em $\overline{B}(0, 1)$.

Teorema 3.1. Seja $C(\Omega)$ onde $\Omega = E^T$, com E finito e T enumerável, equipado com a norma do supremo. Defina $d : M(\Omega, \mathcal{F}) \times M(\Omega, \mathcal{F}) \to \mathbb{R}$ por

$$d(\mu, \nu) = \sum_{n=1}^\infty \frac{1}{2^n} \left| \int_\Omega p_n \, d\mu - \int_\Omega p_n \, d\nu \right|.$$

Afirmamos que d é uma métrica em $M(\Omega, \mathcal{F})$.
Demonstração. Uma vez que \(\mu, \nu \in \mathcal{M}(\Omega, \mathcal{F}) \) e para todo \(n \in \mathbb{N}, p_n \in \overline{B_c}(0,1) \), segue que \(d(\mu, \nu) \leq 2 \). Claramente \(d \) é uma função simétrica. Para quaisquer \(\mu, \nu, \gamma \in \mathcal{M}(\Omega, \mathcal{F}) \) temos

\[
\begin{align*}
d(\mu, \gamma) &= \sum_{n=1}^{\infty} \frac{1}{2^n} \left| \int_{\Omega} p_n \, d\mu - \int_{\Omega} p_n \, d\gamma \right| \\
&= \sum_{n=1}^{\infty} \frac{1}{2^n} \left| \int_{\Omega} p_n \, d\mu - \int_{\Omega} p_n \, d\nu + \int_{\Omega} p_n \, d\nu - \int_{\Omega} p_n \, d\gamma \right| \\
&\leq \sum_{n=1}^{\infty} \frac{1}{2^n} \left| \int_{\Omega} p_n \, d\mu - \int_{\Omega} p_n \, d\nu \right| + \sum_{n=1}^{\infty} \frac{1}{2^n} \left| \int_{\Omega} p_n \, d\nu - \int_{\Omega} p_n \, d\gamma \right| \\
&= d(\mu, \nu) + d(\nu, \gamma).
\end{align*}
\]

Portanto a desigualdade triangular é satisfeita. Para terminar a prova de que \(d \) é realmente uma métrica resta verificar apenas que \(d(\mu, \nu) = 0 \) se, e somente se, \(\mu = \nu \). Para provar este fato vamos invocar o Teorema de Riesz-Markov.

Assumindo que \(d(\mu, \nu) = 0 \), segue da definição de \(d \), que para todo \(n \in \mathbb{N} \)

\[
\left| \int_{\Omega} p_n \, d\mu - \int_{\Omega} p_n \, d\gamma \right| = 0.
\]

Isto significa que os funcionais lineares positivos

\[
F_1(f) = \int_{\Omega} f \, d\mu \quad \text{e} \quad F_2(f) = \int_{\Omega} f \, d\nu
\]

coincidem em todos os pontos do conjunto \(\{p_1, p_2 \ldots\} \) que é subconjunto denso de \(B(0,1) \subset C(\Omega, \mathcal{F}) \). Seja \(g \in B(0,1) \) uma função arbitrária. Por densidade, sabemos que existe uma subseqüência \((p_{n_j})_{j \in \mathbb{N}} \) tal que \(\|p_{n_j} - g\|_{\infty} \to 0 \), quando \(j \to \infty \). Já que a esta sequência \((p_{n_j})_{j \in \mathbb{N}} \) podemos aplicar o Teorema da Convergência Dominada temos

\[
F_1(g) = \int_{\Omega} \lim_{j \to \infty} p_{n_j} \, d\mu = \lim_{j \to \infty} \int_{\Omega} p_{n_j} \, d\mu = \lim_{j \to \infty} \int_{\Omega} p_{n_j} \, d\nu = \int_{\Omega} \lim_{j \to \infty} p_{n_j} \, d\nu = F_2(g).
\]

Assim concluímos que \(F_1 \) coincide com \(F_2 \) em todo elemento de \(\overline{B}(0,1) \). Já que uma função arbitrária \(f \in C(\Omega) \setminus \{0\} \) pode ser escrita como \(\|f\|_{\infty} \|f\|_{\infty} \) e que \(\|f\|_{\infty} \in \overline{B}(0,1) \) segue da linearidade de \(F_1 \) e \(F_2 \) e das igualdades logo acima que ambos coincidem em todo \(C(\Omega) \). Finalmente pela unicidade garantida pelo Teorema de Riesz-Markov temos \(\mu = \nu \) e isto encerra a prova de que \(d \) é uma métrica.

Há uma belíssima caracterização sobre compacidade do espaço \(\mathcal{P}(\Omega, \mathcal{F}) \) cuja a prova pode ser encontrada na íntegra em [20] página 45.

Teorema 3.2. \(\mathcal{P}(\Omega, \mathcal{F}) \) é um espaço métrico compacto se, e somente se, \(\Omega \) é um espaço métrico compacto.
3.6 O limite Termodinâmico

Definição 3.4. Seja $\gamma = \{\gamma_{\Lambda}\}_{\Lambda \in T}$ uma especificação de Gibbs. Chamamos os pontos de acúmulo da sequência $\{\gamma_{\Lambda,n}\}_{\{\Lambda_n:n \in \mathbb{N}, \Lambda_n \in T\}}$ em T na topologia da convergência local de limite termodinâmico se tais pontos de acúmulo são medidas de Gibbs em $G(\gamma)$. Em caso afirmativo, denotamos

$$\text{loc-lim}_{\Lambda_n \uparrow T} \gamma_{\Lambda_n}$$

e no caso da topologia da convergência local em $\mathcal{P}(\Omega, \mathcal{F})$ coincidir com a topologia da convergência fraca escrevemos

$$\text{w-lim}_{\Lambda_n \uparrow T} \gamma_{\Lambda_n}.$$

Dos resultados das última seção nos provamos o seguinte teorema.

Teorema 3.3. Seja λ uma medida σ-finita sobre o espaço mensurável $(\mathcal{E}, \mathcal{E})$. Seja Φ uma interação $\Phi_{\Lambda} : \mathcal{E}^T \rightarrow \mathbb{R}$ sobre uma rede T e $\Lambda \in T$. Se \mathcal{E} é finito e a rede T é enumerável então existe uma medida de Gibbs $\mu \in G(\Phi)$. E além disso μ é especificada por

$$\left\{ \frac{e^{\mathcal{H}_T}}{Z} \lambda^\Lambda \otimes \delta_{\omega-T\setminus \Lambda} \right\}_{\Lambda \in T}.$$

(3.8)

onde, a menos de uma subsequência,

$$\mu = \text{w-lim}_{\Lambda_n \uparrow T} \left(\frac{e^{\mathcal{H}_T}}{Z} \lambda^\Lambda \otimes \delta_{\omega-T\setminus \Lambda} \right)$$

(3.9)
Parte II

Modelo de Ising
Capítulo 4

Circuitos e Propriedades Extremais das Medidas de Gibbs

4.1 Métricas em redes.

Definição 4.1. Definimos as seguintes métricas em \mathbb{Z}^2:

1. $d^{\oplus}(s_1, s_2) = |x^1 - x^2| + |y^1 - y^2|$
2. $d^{\otimes}(s_1, s_2) = \max\{|x^1 - x^2|, |y^1 - y^2|\}$
3. $d^\otimes(s_1, s_2) = \mathcal{X}(s_1, s_2)d^{\oplus}(s_1, s_2) + [1 - \mathcal{X}(s_1, s_2)]d^{\otimes}(s_1, s_2)$

onde

$$\mathcal{X}(s_1, s_2) = \begin{cases} 1, & \text{se } (x^1 - x^2)(y^1 - y^2) \geq 0 \\ 0, & \text{caso contrário} \end{cases}$$

Figura 4.1: Bolas em \mathbb{Z}^2 nas métricas d

As demais redes que iremos trabalhar são:

- a rede dual $\mathbb{Z}^2\dual \triangleq \{(x + \frac{1}{2}, y + \frac{1}{2}) : (x, y) \in \mathbb{Z}^2\}$,
- o grafo $G = (\mathbb{Z}^2, \mathcal{A}_d)$ cujos os vértices são os pontos de \mathbb{Z}^2 e o conjunto de arestas \mathcal{A}_d é dado por $\{c, c' \in \mathbb{Z}^2, d^\oplus(c, c') = 1\}$.

41
4.2 Caminhos em redes

Definição 4.2. Fixada uma métrica \(d \) em \(\mathbb{Z}^2 \) e um subconjunto \(I \subset \mathbb{N} \) chamamos de um \((I,d)\)-caminho uma aplicação
\[I \ni i \mapsto \{c_i\}_{i \in I}, \tag{4.1} \]
onde \(c_i \in \mathbb{Z}^2 \) para todo \(i \in I \) e além do mais \(d(c_{ik}, c_{ik+1}) = 1 \) para todo \(\{i_k, i_{k+1}\} \) consecutivo em \(I \).

Fixada uma configuração \(\omega \in \{-1,1\}^{\mathbb{Z}^2} \) dizemos que um \((I,d)\)-caminho \(\{c_i\} \) é um \((I,d,+/-)\)-caminho, com respeito a \(\omega \), se \(\omega_{c_i} = +1 \), para todo \(i \in I \). De maneira análoga definimos um \((I,d,-)\)-caminho.

Notação 4.1. Seja \(d \) uma métrica em \(\mathbb{Z}^2 \). Fixado \(e \in \{-1,1\} \) e \(I \subset \mathbb{N} \), definimos:
- \(\mathcal{W}(I,d,e) \triangleq \{ \omega \in \Omega : \exists \text{ um } (I,d,e)\)-caminho com respeito a \(\omega \} \).
- \(\Upsilon_{I,d}^{+}(\mathbb{Z}^2) \triangleq \{ \gamma \in 2^{\mathbb{Z}^2} : \gamma \text{ é um } (I,d)\)-caminho \}.
- \(\Upsilon_{I,d,e}^{+}(\omega) \triangleq \{ \gamma \text{ é um } (I,d,e)\)-caminho com respeito a } \omega \}.

4.3 Mergulhos de \(\mathbb{Z}^2 \) em \(\mathbb{C} \)

Podemos mergulhar o grafo \(G = (\mathbb{Z}^2, \mathcal{A}_d) \) em \(\mathbb{C} \) de maneira natural. Cada vértice \((x,y)\) de \(G \) pode ser identificado como o número complexo \(x+iy \). Esta identificação nos permite definir o seguinte mergulho:
\[\Psi : \mathbb{Z}^2 \rightarrow \mathbb{C} \quad (x,y) \mapsto x+iy \tag{4.2} \]
A noção de \((I,d)\)-caminho em \(G \) corresponde, via o mergulho definido acima, a caminhos suaves por partes em \(\mathbb{C} \) formados por segmentos de reta paralelos aos eixos real e imaginário.

4.4 Conexidade em redes

4.4.1 Clusters

Seja \(d \in \{d^{\oplus}, d^{\otimes}, d^{\circ}\} \), uma das três métricas que definimos acima. Um cluster \(C \) no grafo \(G = (\mathbb{Z}^2, \mathcal{A}_d) \) é simplesmente um subconjunto \(C \subset \mathbb{Z}^2 \) tal que para todo \(i, j \in C \) existe um \((I,d)\)-caminho possuindo os vértices \(i \) e \(j \), com \(I \) finito.

A fim de facilitar a discussão que segue definimos também o seguinte conjunto de configurações. Fixado \(e \in \{-1,1\} \) e a métrica \(d \) em \(\mathbb{Z}^2 \) definimos
\[\mathcal{C}^{d,e}(\Omega) \triangleq \{ \omega \in \Omega : \exists \text{ um cluster } C \subset \mathbb{Z}^2 \text{ tal que } \forall i \in C \text{ temos } \omega_i = e \}. \]
4.4.2 Circuitos

Fixada uma das métricas como na seção anterior, dizemos que \{c_i\}_{i \in I}, com \(I = \{1, \ldots, n\}\) é um circuito no grafo \(G = (\mathbb{Z}^2, A_d)\) se \(c_i \neq c_j\) para todo \(1 < i < j < n\), \(c_1 = c_n\) e \(d(c_i, c_{i+1}) = 1\), para \(1 \leq i \leq n - 1\).

Definimos também a noção de circuito quando \(I = \mathbb{N}\). Seja \(\{c_i\}_{i \in I}\) um \((I, d)\)-caminho tal que \(c_i \neq c_j\) se \(i \neq j\). Seja \(\gamma\) a união dos segmentos suavês por partes em \(\mathbb{C}\) obtidos pela imagem do mergulho \(\Psi\) deste \((I, d)\)-caminho. Se \(\gamma\) formar uma curva fechada na esfera de Riemann \(\mathbb{C}_\infty\), dizemos que \(\{c_i\}_{i \in I}\) é um circuito infinito.

4.5 Medidas extremais

Vamos precisar de duas propriedades importantes das medidas de Gibbs: A primeira afirma que uma medida de Gibbs extremal é caracterizada por seus valores na \(\sigma\)-álgebra caudal \(J\).

Lema 4.1. Seja \(\mu_\beta\) e \(\nu_\beta\) duas medidas de Gibbs com uma mesma especificação \(\{\mu_{\beta, \Lambda}^{(\cdot)}\}_{\Lambda \in \mathcal{T}}\). Suponhamos que para todo \(A \in \mathcal{J}\) verifica-se \(\mu_\beta(A) = \nu_\beta(A)\). Então \(\mu_\beta = \nu_\beta\), ou seja, \(\mu_\beta(F) = \nu_\beta(F)\) para todo \(F \in \mathcal{F}\).

Demonstração. Usemos novamente as equações DLR: \(\mu_{\beta, \Gamma}^{(\cdot)} * \mu_{\beta, \Lambda}^{(\cdot)} = \mu_{\beta, \Lambda \cup \Gamma}^{(\cdot)}\) se \(\Lambda \subset \Gamma\). Seja \(\Lambda\) qualquer e \(f\) qualquer função local. Então

\[
\begin{align*}
\mu_\beta(f) &= \mu_\beta \left(\mu_{\beta, \Lambda}^{(f)} \right) \\
\nu_\beta(f) &= \nu_\beta \left(\mu_{\beta, \Lambda}^{(f)} \right)
\end{align*}
\]

(4.3) e (4.4)

e a proposição está provada se \(\lim_{\Lambda \uparrow \mathbb{Z}^2} \mu_{\beta, \Lambda}^{(\cdot)}\) é mensurável com respeito a \(\mathcal{J}\). Mas por definição \(\mu_{\beta, \Lambda}^{(\cdot)}\) é mensurável com respeito a \(\mathcal{J}_\Lambda = \mathcal{F}_{\mathbb{Z}^2 \setminus \Lambda}\). Então o limite \(\lim_{\Lambda \uparrow \mathbb{Z}^2} \mu_{\beta, \Lambda}^{(\cdot)}\) é mensurável com respeito a \(\bigcap_{\Lambda \in \mathcal{T}} \mathcal{J}_\Lambda\), i.e. com respeito a \(\mathcal{J}\). \(\square\)

A segunda propriedade é uma propriedade interessante do condicionamento de uma medida de Gibbs a um evento.

Lema 4.2. Seja \(\mu\) uma medida de Gibbs especificada por \(\{\mu_{\beta, \Lambda}^{(\cdot)}\}_{\Lambda \in \mathcal{T}}\). Suponhamos que para \(A \in \mathcal{J}\) tenhamos \(\mu(A) > 0\). Então \(\mu(\cdot | A)\) é uma medida de Gibbs para a mesma especificação.

Demonstração. Consideremos novamente uma função local \(f\). Então,

\[
\mu(f | A) = \frac{\mu(1_A \cdot f)}{\mu(A)} = \frac{\mu \left(\mu_{\beta, \Lambda}^{(1_A \cdot f)} \right)}{\mu(A)} = \frac{\mu \left(1_A \cdot \mu_{\beta, \Lambda}^{(f)} \right)}{\mu(A)}
\]
Aqui a primeira igualdade decorre diretamente da definição de probabilidade condicional. A segunda igualdade decorre das equações DLR. A terceira igualdade decorre de $A \in J$. E portanto, $\mu(f|A) = \mu(1_A) \cdot \mu(\mu_{\beta,A}^{(i)}(f))$.

A primeira igualdade deve-se a 1_A ser J-mensurável, $\mu_{\beta,A}$ ser F_Λ-mensurável e J e F_Λ serem σ-álgebras independentes. A segunda igualdade é imediata. □

Lema 4.3. Uma medida de Gibbs μ_β é uma medida extremal se, e somente se, é uma medida trivial na σ-álgebra caudal J, i.e. se para todo $A \in J$ temos $\mu_\beta(A) \in \{0, 1\}$.

Demonstração. Assuma que $\mu_\beta(A) \in \{0, 1\}$ para qualquer $A \in J$. Sabemos pelo teorema de Krein Milman que qualquer elemento em $G_\beta(\Phi)$ é combinação convexa de elementos extremais. Então para algum $A \in J$ temos

$$\mu(A) = p_1 \cdot \mu^1(A) + \cdots + p_n \cdot \mu^n(A) \in \{0, 1\}$$

onde $\mu^1, \ldots, \mu^n \in \text{Extremal}G_\beta(\Phi)$ e $p_1 + \cdots + p_n = 1$. Suponha que $\mu^1(A), \ldots, \mu^n(A)$ não são todos identicamente iguais a 1 então $\mu_\beta(A) < 1$. E só nos resta concluir que $\mu_\beta(A) = 0$. Mas isto só pode ocorrer se $\mu^1(A), \ldots, \mu^n(A)$ são identicamente nulos. Portanto, μ^1, \ldots, μ^n são medidas triviais e iguais em J. Como $p_1 + \cdots + p_n = 1$ temos que $\mu = \mu^1 = \cdots = \mu^n$. Portanto, por definição, μ_β é extremal.

Provamos agora a recíproca. Assuma que μ_β não é uma medida trivial na σ-álgebra caudal J. Então, existe $A \in J$ tal que $\mu(A) = p \in (0, 1)$. Logo $\mu(\cdot|A) \in G_\beta(\Phi)$. Pelas propriedades básicas de probabilidade condicional temos

$$\mu(\cdot) = p \cdot \mu(\cdot|A) + (1 - p) \cdot \mu(\cdot|A^c)$$

Usando o lema anterior podemos afirmar que $\mu(\cdot|A), \mu(\cdot|A^c) \in G_\beta(\Phi)$ e que são mediadas distintas. Logo, μ não é extremal. □

Corolário 4.1. Sob as mesmas hipóteses do lema 4.3 $\mu \otimes \mu(A) \in \{0, 1\}$ para todo $A \in J \times J$.

Seja $\theta : \Omega \to \Omega$ o shift $(\theta \sigma)_{(x,y)} = \sigma_{(x,y+1)}$. Definimos $\overline{\mu}(\cdot) = \mu(\theta^{-1}(\cdot))$.

Corolário 4.2. Sob as mesmas hipóteses do lema 4.3 $\mu \otimes \overline{\mu}(A) \in \{0, 1\}$ para todo $A \in J \times J$.
Capítulo 5

Propriedades Estocásticas

5.1 Modelo de Ising em \mathbb{Z}^d

5.1.1 Preliminares

Definição 5.1. O modelo de Ising na rede em \mathbb{Z}^d é um campo aleatório $\sigma : \Omega \rightarrow \mathbb{E}$,
dado por uma especificação Gibbssiana

$$\left\{ \left(\frac{e^{-\beta H_{\Lambda}^{\omega}}}{Z_{\Lambda}^{\omega}} \right) \lambda^{\Lambda} \otimes \delta_{\omega^{\Lambda}} \right\}_{\Lambda \in \mathbb{Z}^d, \omega \in \Omega}$$
satisfazendo três condições:

(i) A rede T é o espaço métrico \mathbb{Z}^d, com $d \in \mathbb{N}^*$, cuja métrica é $d_T(u, v) = \sum_{k=1}^{d} |u_k - v_k|$, para todo $u, v \in \mathbb{Z}^d$.

(ii) O conjunto $\mathbb{E} = \{-1, 1\}$, equipado com a topologia discreta, é o espaço de estados. Assim, cada configuração $\omega = (\omega_x)_{x \in \mathbb{Z}^d}$ é caracterizada pelo estado $\omega_x \in \mathbb{E}$ de cada sítio $x \in \mathbb{Z}^d$.

(iii) A medida λ em \mathbb{E} é a medida de contagem. Consequentemente, para todo Λ a medida λ^{Λ} é uma medida de contagem sobre \mathbb{E}^{Λ}.

(iv) A interação Φ é dada por

$$\Phi_{A}(\omega) = \begin{cases} -J_{ij}\omega_i \omega_j, & \text{se } A = \{i, j\} \\ 0, & \text{caso contrário}, \end{cases}$$

onde J_{ij} são constantes reais.

Observação 5.1. O ideal é que a topologia da convergência local seja metrizável. E quando \mathbb{E} é finito a topologia da convergência local é metrizável. De fato, \mathbb{E} é
trivialmente compacto e metrizável qualquer que seja sua topologia pois é finito. Pelo Teorema de Tychonov \(\Omega = \mathbb{E}^Z \) é também é compacto. Portanto podemos aplicar o Teorema da metrização de Urysohn para obtermos a métrica produto em \(\Omega = \mathbb{E}^Z \) a partir da métrica do espaço de estados \(\mathbb{E} \). Evidentemente, que devemos escolher (se é que existe) uma métrica em \(\mathbb{E} \) de tal forma que a topologia da métrica produto seja igual a topologia da convergência local. Afirmamos que tal métrica é

\[
d_{\Omega}(\omega, \eta) = \sum_{n(x)=1}^{\infty} \frac{1}{2^{n(x)}} \cdot 1_{\eta_n \neq \omega_n}(\omega, \eta).
\]

Para ver isto, basta verificar que uma função \(f : \Omega \to \mathbb{R} \) é \(F_\Lambda \)-mensurável se, e somente se, é uniformemente contínua quando \(\Omega \) está equipado com a métrica \(d_\Omega \).

5.1.2 O Modelo de Ising em \(\mathbb{Z}^2 \) de primeiros vizinhos

Seja um espaço de estados \(\mathbb{E} = \{-1, +1\} \), \(\lambda \) a medida de contagem em \(\mathbb{E} \) e \(T = \mathbb{Z}^2 \). Defina o potencial de interação

\[
\Phi_A(\omega) = \begin{cases}
-J_{ij} \omega_i \omega_j, & \text{se } A = \{i, j\} \text{ e } |i - j| = 1, \\
0, & \text{caso contrário}
\end{cases}
\]

Por definição temos \(H_\Lambda^{\Phi}(\eta) = \sum_{0 < |A| < \infty} \Phi_A(\eta_{A \cap \Lambda}) \). Observe que o modelo de Ising de primeiros vizinhos é um modelo de alcance 1, assim temos que

\[
H_\Lambda^{\Phi}(\eta) = \sum_{\{u, v\} \subseteq \Lambda \neq \emptyset} \Phi_{\{u, v\}}(\eta_{A \cap \Lambda}) = \frac{1}{2} \sum_{(u, v) \subseteq \Lambda \neq \emptyset} \Phi_{\{u, v\}}(\eta_{A \cap \Lambda}).
\]

Mais especificamente para o modelo de Ising na temperatura \(\beta \),

\[
H_\beta^{\Phi}(\eta) = \sum_{(u, v) \subseteq \Lambda \neq \emptyset} \Phi_{\{u, v\}}(\eta_{A \cap \Lambda}) + \beta \sum_{(u, v) \subseteq \Lambda \neq \emptyset} \Phi_{\{u, v\}}(\eta_{A \cap \Lambda})
\]

\[
= \beta \sum_{(u, v) \subseteq \Lambda \neq \emptyset} -J_{uv} \omega_u \cdot \omega_v + \beta \sum_{(u, v) \subseteq \Lambda \neq \emptyset} -J_{uv} \omega_u \cdot \omega_v
\]

Apresentamos agora uma estimativa para o Hamiltoniano \(H_\beta^{\Phi} \). Como \(|A \times A| = |\Lambda| \cdot |\Lambda|, |A \times \partial \Lambda| = |\Lambda| \cdot |\partial \Lambda| \) e \(\max_{u, v} -J_{uv} \cdot \eta_u \cdot \eta_v \leq \max_{u, v} -J_{uv} \) então,

\[
|H_\beta^{\Phi}(\eta_{A \cap \Lambda})| \leq \beta \cdot |\Lambda| \cdot \max_{u, v} |J_{uv}| \left(\frac{1}{2} |\Lambda| + |\partial \Lambda| \right)
\]
Observação 5.2. A forma explícita da função de normalização do modelo de Ising em \mathbb{Z}^2 é dada por:

$$Z_\beta^\Phi(\omega) = \int_{\Omega_\Lambda} \exp \left[-\beta H_\Lambda^\Phi(\eta_\Lambda \omega_T \Lambda) \right] d\lambda^\Lambda(\eta_\Lambda) = \sum_{\omega_\Lambda \in \Omega_\Lambda} \exp \left[-\beta H_\Lambda^\Phi(\eta_\Lambda \omega_T \Lambda) \right]$$

Agora tratando $Z_\beta^\Phi(\omega)$ como a constante de normalização de $\exp \left[-\beta \cdot H_\Lambda^\Phi \right]$ i.e. $Z_\beta^\Phi = Z_\beta^\Phi(\omega)$ temos

$$Z_\beta^\Phi(\omega) = \sum_{\omega_\Lambda \in \Omega_\Lambda} \exp \left[\frac{\beta}{2} \sum_{(u,v) \in \Lambda \times \Lambda, |u-v|=1} J_{uv} \omega_u \cdot \omega_v + \frac{\beta}{2} \sum_{(u,v) \in \Lambda \times \partial \Lambda, |u-v|=1} J_{uv} \omega_u \cdot \omega_v \right]$$

Já que $|\Omega_\Lambda| = |\mathbb{E}^{|\Lambda|} = 2^{|\Lambda|}$,

$$|Z_\beta^\Phi(\omega)| \leq 2^{|\Lambda|} \cdot \exp \left[|H_\beta^\Phi(\eta_\Lambda \omega_L \Lambda^c)| \right] \leq 2^{|\Lambda|} \cdot \exp \left[\beta \cdot |\Lambda| \cdot \max_{u,v} |J_{uv}| \left(\frac{1}{2} |\Lambda| + |\partial \Lambda| \right) \right]$$

Observação 5.3. A forma explícita de uma λ-especificação definida por um Hamiltoniano H_Λ^Φ de uma medida μ que satisfaz a condição DLR para sua versão a volume finito é dada por:

$$\mu_\beta^\Phi^\omega(B) \triangleq \int_{B \times \{\omega_{\Lambda^c}\}} \frac{\exp \left[-\beta H_\Lambda^\Phi(\eta_\Lambda \omega_{\Lambda^c}) \right]}{Z_\beta^\Phi(\omega)} d\lambda^\Lambda(\eta_\Lambda)$$

Explicitando a constante de normalização Z_β^Φ:

$$\mu_\beta^\Phi^\omega(B) = \frac{\int_{B \times \{\omega_{\Lambda^c}\}} \exp \left[-\beta H_\Lambda^\Phi(\eta_\Lambda \omega_{\Lambda^c}) \right] d\lambda^\Lambda(\eta_\Lambda)}{\int_{\zeta_\Lambda \in \Omega_\Lambda} \exp \left[-\beta H_\Lambda^\Phi(\zeta_\Lambda \omega_{\Lambda^c}) \right] d\lambda^\Lambda(\zeta_\Lambda)}$$

Usando o fato de que λ^Λ é uma medida de contagem em Ω_Λ, podemos reescrever as integrais acima, usando a definição de integral de Lebesgue de uma função simples, como

$$\mu_\beta^\Phi^\omega(B) = \frac{\sum_{\eta_\Lambda \in B, \omega_{\Lambda^c} = \omega_{\Lambda^c}} \exp \left[-\beta H_\Lambda^\Phi(\eta_\Lambda \omega_{\Lambda^c}) \right]}{\sum_{\zeta_\Lambda \in \Omega_\Lambda} \exp \left[-\beta H_\Lambda^\Phi(\zeta_\Lambda \omega_{\Lambda^c}) \right]}.$$
Somando e subtraindo o mínimo de $H_{\beta,\Lambda}^{\Phi}$ no denominador do lado direito da igualdade acima obtemos a seguinte estimativa, que iremos usar mais tarde, para todo $A \in \mathcal{F}$ temos

$$
\mu_{\beta,\Lambda}^{\Phi}(A) \leq \frac{1}{2|\Lambda|} \cdot \exp \beta \cdot |\Lambda| \cdot \max_{u,v} |J_{uv}| \left(\frac{1}{2} |\Lambda| + |\partial \Lambda| \right)
$$

$$
\leq \frac{1}{2|\Lambda|} \exp \left[\beta \cdot \max_{u,v} |J_{uv}| \cdot |\Lambda|^2 \right]
$$

5.2 A Desigualdades de FKG

As demonstrações que se seguem consistem em considerar $\xi, \eta \in [-1, +1]^Z$ afim de que possamos estudar a variação da função $[-1, +1] \ni \eta_a \mapsto \mu_{\beta,\Lambda}^{\eta}(A)$ em termo de sua derivada $(\partial/\partial \eta_a) \mu_{\beta,\Lambda}^{\eta}(A)$. Mais precisamente nós escolhemos um sitio $a \in Z^2$, fixamos $\eta_a' = -1, \eta_a'' = +1$ e fazemos η_a variar em $[-(1 + \epsilon), +(1 + \epsilon)]$.

Suponha que $\eta', \eta'' \in \{-1, +1\}^Z$ difiram apenas por um sitio $a \in Z^2$ digamos $\eta_a' = -1$ e $\eta_a'' = +1$. Procedendo como no parágrafo anterior podemos tratar o hamiltoniano do modelo de Ising de primeiros vizinhos

$$
\mathcal{H}_\Lambda^{\eta}(\sigma) = - \sum_{d(u,v)=1, u,v \in \Lambda} J_{uv} \sigma_u \cdot \sigma_v - \sum_{d(u,w)=1, u \in \Lambda, w \in \partial \Lambda} J_{uw} \sigma_u \cdot \eta_w
$$

como uma função diferenciável com respeito a variável $\eta_a \in [-(1 + \epsilon), +(1 + \epsilon)]$.

Lema 5.1. Seja $\mathcal{H} : \Omega \to \mathbb{R}$ o hamiltoniano do modelo de Ising Ferromagnético de alcance um. Então dado $\Lambda \in \mathcal{T}(Z^2)$ e $\eta \in \Omega$,

$$
\frac{\partial}{\partial \eta_a} \mathcal{H}_\Lambda^{\eta}(\sigma) = - \sum_{d(u,a)=1} J_{ua} \sigma_u
$$

Lema 5.2. Seja μ_{β} uma medida de Gibbs. Seja $\eta', \eta'' \in \Omega$ acima. Se $\eta_a \in [-1 - \epsilon, +1 + \epsilon]$ então para toda função local $f \in \mathcal{F}_\Lambda$,

$$
(\partial/\partial \eta_a) \mu_{\Lambda,\beta}^{\eta}(f) = \sum_{\sigma_{\Lambda} \in \Omega_{\Lambda}} f(\sigma_{\Lambda,\eta_a'}) (\partial/\partial \eta_a) \left(\mu_{\beta}(\{\sigma_{\Lambda,\eta_a'}\}) \right) \quad (5.2)
$$

Demonstração. Vamos provar o lema inicialmente para funções indicadoras locais
i.e. \(1_A\) com \(A \in \mathcal{F}_\Lambda\).

\[
(\partial/\partial \eta_a)\mu^n_{\Lambda,\beta}(1_A) = (\partial/\partial \eta_a)\mu_{\beta}(1_A(\cdot, \eta_{\Lambda^c}))
\]

\[
= (\partial/\partial \eta_a) \left(\sum_{\sigma_\Lambda \in \Omega_\Lambda} 1_A(\sigma_{\Lambda} \eta_{\Lambda^c}) \mu_{\beta}(\{\sigma_{\Lambda} \eta_{\Lambda^c}\}) \right)
\]

\[
= \sum_{\sigma_\Lambda \in \Omega_\Lambda} \left[(\partial/\partial \eta_a) \left(1_A(\sigma_{\Lambda} \eta_{\Lambda^c}) \right) \cdot \mu_{\beta}(\{\sigma_{\Lambda} \eta_{\Lambda^c}\}) \right]
\]

\[
+ 1_A(\sigma_{\Lambda} \eta_{\Lambda^c}) \cdot (\partial/\partial \eta_a) \left(\mu_{\beta}(\{\sigma_{\Lambda} \eta_{\Lambda^c}\}) \right)
\]

\[
= \sum_{\sigma_\Lambda \in \Omega_\Lambda} 1_A(\sigma_{\Lambda} \eta_{\Lambda^c})(\partial/\partial \eta_a) \left(\mu_{\beta}(\{\sigma_{\Lambda} \eta_{\Lambda^c}\}) \right)
\]

A prova para \(f \in \mathcal{F}_\Lambda\) mensurável é completamente análoga. \(\square\)

Definição 5.2. Dizemos que uma função \(f : \Omega \to \mathbb{R}\) é crescente se para todo \(\eta \geq \Omega \xi\), isto é \(\eta_i \geq \xi_i\) para todo \(i \in \Omega\), temos \(f(\eta) \geq f(\xi)\).

Analogamente, definimos funções decrescentes.

Definição 5.3. Dizemos que um evento \(A\) é crescente se a função indicadora de \(A\) é crescente no sentido da definição acima.

Teorema 5.1 (Desigualdade de FKG). Considere o modelo de Ising de primeiros vizinhos onde para todo \(i, j \in \mathbb{Z}^d\) temos \(J_{ij} \geq 0\). Sejam \(f, g : \Omega \to \mathbb{R}\) funções crescentes, segundo a definição acima. Então para todo \(\Lambda \in \mathcal{L}\) e para qualquer \(\eta \in \Omega\) e \(\beta > 0\) temos que

\[
\mu^\eta_{\beta,\Lambda}(fg) - \mu^\eta_{\beta,\Lambda}(f)\mu^\eta_{\beta,\Lambda}(g) \geq 0.
\]

Observamos que a conclusão deste teorema permanece válida se supormos que ambas \(f\) e \(g\) são decrescentes. Outra observação importante é que a desigualdade também permanece verdadeira no limite termodinâmico, isto é, para toda \(\mu_{\beta}\), ponto de acumulação na topologia fraca-* de uma sequência \(\mu^\eta_{\beta,\Lambda_n}\), com \(\Lambda_n \uparrow \mathbb{Z}^d\) temos

\[
\mu_{\beta}(fg) - \mu_{\beta}(f)\mu_{\beta}(g) \geq 0.
\]

Proposição 5.1. Seja \(\mu_{\beta}\) uma medida de Gibbs do modelo de Ising de primeiros vizinhos tal que as constantes de acoplamento \(J_{ij}\) são não negativas. Sejam \(\xi, \eta \in \Omega\). Se \(\eta \geq_{\Omega} \xi\) então \(\mu^\eta_{\beta,\Lambda} \succeq_{FKG} \mu^\xi_{\beta,\Lambda}\) isto é, para todo evento crescente \(A \in \mathcal{F}\) temos \(\mu^\eta_{\beta,\Lambda}(A) \geq \mu^\xi_{\beta,\Lambda}(A)\).
Demonstração. Seja $a \in \Lambda^c$ e considere $\eta_a \in [-1,1]$. A estratégia da prova consiste em usar (FKG) para mostrar que $(\partial/\partial \eta_a) \mu_{\beta,\Lambda}^\eta (1_A) \geq 0$, para todo $A \in \mathcal{F}$ evento crescente.

Para cada $\Lambda \in \mathcal{L}$ e $A \in \mathcal{F}$ temos que a função $\mu_{\beta,\Lambda}^\eta (A)$ depende diferenciavelmente da variável η_a. Aplicando a regra da quociente e usando o Lema 5.1 temos que

$$\frac{\partial}{\partial \eta_a} \mu_{\beta,\Lambda}^\eta (1_A) = \mu_{\beta,\Lambda}^\eta \left(1_A \cdot \sum_{u \in A : d(u,a) = 1} J_{ua} \sigma_u \right) - \mu_{\beta,\Lambda}^\eta (1_A) \mu_{\beta,\Lambda}^\eta \left(1_A \cdot \sum_{u \in \Lambda : d(u,a) = 1} J_{ua} \sigma_u \right).$$

Já que $J_{ij} \geq 0$ para todo $i,j \in \mathbb{Z}^d$ a função

$$\sigma \mapsto \sum_{u \in A : d(u,a) = 1} J_{ua} \sigma_u$$

é crescente. Como por hipótese temos que 1_A também é crescente segue diretamente da desigualdade de FKG que $(\partial/\partial \eta_a) \mu_{\beta,\Lambda}^\eta (1_A) \geq 0.$ \qed
Parte III

Transição de fase
Capítulo 6

O Teorema de Aizenman-Higuchi

6.1 Resultados Clássicos

6.1.1 O Lema de Messager e Miracle-Sole

Lema 6.1 (Messager and Miracle-Sole, [18] Proposição 1). Seja \(\Phi \) a interação definida pelo modelo de Ising de primeiros vizinhos ferromagnético, isto é, \(J_{ij} \equiv J \geq 0 \). Seja \(\Lambda_n \) uma sequência de volumes finitos que são simétricos com respeito a transformação

\[\mathbb{Z}^2 \ni (x,y) \mapsto (x,1-y) \in \mathbb{Z}^2. \]

tal que \(\Lambda_n \uparrow \mathbb{Z}^2 \). Para todo \(\beta > 0 \) existem os seguintes limites, com respeito a topologia fraca- *

\[\mu^\pm = \text{w-lim}_{\Lambda_n \uparrow \mathbb{Z}^2} \mu_{\beta,\Lambda_n}^{\Phi,\pm} \in \mathcal{G}_\beta(\Phi). \]

Além do mais temos

\[\text{w-lim}_{\Lambda_n \uparrow \mathbb{Z}^2} \mu_{\beta,\Lambda_n}^{\Phi,\eta} = \frac{1}{2} \mu^+ + \frac{1}{2} \mu^-, \quad \text{onde} \quad \eta(x,y) = \begin{cases} -1, & \text{se } y \leq 0; \\ +1, & \text{caso contrário}. \end{cases} \]

6.1.2 Método dos clusters infinitos

Proposição 6.1. Seja \(\mu^-, \mu^+ \in \mathcal{G}_\beta(\Phi) \). Se \(\beta > \beta_c \) então

\[\begin{align*}
(i) \quad & \mu^+(C^-) \triangleq \mu^+ \left(\left\{ \omega \in \Omega \left| \text{existe em } \omega \text{ um } (d^\circ,+)\text{cluster infinito} \right. \right\} \right) = 0, \\
(ii) \quad & \mu^-(C^+) \triangleq \mu^- \left(\left\{ \omega \in \Omega \left| \text{existe em } \omega \text{ um } (d^\circ,-)\text{cluster infinito} \right. \right\} \right) = 0.
\end{align*} \]
6.1.3 Identificação de Interfaces

Proposição 6.2 (Aizenman [3] Proposição 4). Sejam \(\beta > 0 \) e \(\mu \in G_\beta(\Phi) \), onde \(\Phi \) é a interação do modelo de Ising ferromagnético de primeiros vizinhos com \(J_{ij} \equiv J > 0 \). Se \(\mu \)-q.t.p. \(\omega \in \Omega \) não existe um contorno infinito \(\{ c_i \}_{i \in \mathbb{N}} \) em \(\mathbb{Z}^2 \) tal que \(\omega_{c_i} = \pm 1 \) para todo \(i \in \mathbb{N} \) então \(\mu \in \text{span}\{\mu^-, \mu^+\} \).

Lema 6.2 (Russo [19] Lema 13, Aizenman [3] Lema 1). Sejam \(\beta > 0 \) e \(\mu \in G_\beta(\Phi) \), onde \(\Phi \) é a interação do modelo de Ising ferromagnético de primeiros vizinhos com \(J_{ij} \equiv J > 0 \). Se \(\mu(C^\pm) = 0 \) então \(\mu = \mu^\pm \).

6.2 Preliminares

O principal objetivo deste capítulo é demonstrar o teorema seguinte.

Teorema 6.1. Seja \(\Phi \) o potencial de interação do modelo de Ising bidimensional ferromagnético de primeiros vizinhos. Se \(\beta > \beta_c \) então \(\Phi \) admite transição de fase, i.e. \(|G_\beta(\Phi)| > 1 \). Mais especificamente para todo \(\mu \in G_\beta(\Phi) \), com \(\beta > \beta_c \), existe \(t \in [0, 1] \) tal que

\[
\mu = (1 - t) \cdot \mu^\Phi|_- + t \cdot \mu^\Phi|_+ \quad (6.1)
\]

Nós também iremos trabalhar com uma classe de transformações de \(\Omega \) que preservam o Hamiltoniano \(H = \sum_{A \cap \Lambda \neq \emptyset} \Phi_A \Lambda \) do modelo de Ising e que portanto preservam a classe de medidas de Gibbs \(G(\Phi) \) do modelo. As transformações são as seguintes:

1. A transformação \(\text{flip} \) \(\Omega \ni (\omega(x))_{x \in \mathbb{Z}^2} \mapsto (-\omega(i))_{i \in \mathbb{Z}^2} \)
2. As translações \(\vartheta_x, x \in \mathbb{Z}^2 \), que são definidas por \(\vartheta_y(\Omega)(j) = \omega(j - x) \) para \(y \in \mathbb{Z}^2 \), e em particular temos as translações vertical e horizontal \(\vartheta_{\text{hor}} = \vartheta_{(0, 1)} \) e \(\vartheta_{\text{vert}} = \vartheta_{(1, 0)} \) respectivamente.
3. As reflexões em linhas \(\ell \) ao longo da rede: para cada \(k \in \mathbb{Z} \) nós escrevemos

\[
R_{k, \text{hor}} : \mathbb{Z}^2 \ni x = (i_x, i_y) \mapsto (i_x, 2k - i_y) \in \mathbb{Z}^2
\]

para a reflexão na linha horizontal \(\{ i_y = k \} \), e similarmente \(R_{k, \text{vert}} \) para a reflexão ao longo da reta \(\{ i_x = k \} \). Para \(k = 0 \) nós simplesmente escrevemos \(R_{\text{hor}} = R_{0, \text{hor}} \) e \(R_{\text{vert}} = R_{0, \text{vert}} \). Todas estas reflexões agem canonicamente em \(\Omega \).

Vamos investigar o comportamento geométrico das configurações típicas em semi-planos de \(\mathbb{Z}^2 \). Estes são conjuntos da forma

\[
\pi_k = \{ i \in \mathbb{Z}^2 : i_x, i_y \leq k \}
\]

com \(k \in \mathbb{Z} \) ou com “≥”. A linha \(\{ i \in \mathbb{Z}^2 : i_x, i_y = k \} \) chamada a linha de fronteira associada. Em particular, iremos considerar o seguinte:
1. O semi-plano superior $\pi_{sup} = \{ i = (i_x, i_y) \in \mathbb{Z}^2 : i_y \leq 0 \}$.

2. Analogamente definimos semi-plano inferior π_{inf}, semi-plano esquerdo π_{esq} e direito π_{dir}.

3. O semi eixo direito $\ell_{dir} = \{ i \in \mathbb{Z}^2 : i_y = 0, i_x \leq 0 \}$

4. Analogamente, definimos o semi eixo esquerdo $\ell_{esq} = \{ i \in \mathbb{Z}^2 : i_y = 0, i_x \geq 0 \}$

6.3 Instabilidade de faces singulares

Seja Ω_1 o conjunto de todas as configurações $\sigma \in \Omega$ para as quais existe exatamente um contorno infinito $\gamma(\sigma)$ na rede dual $(\mathbb{Z} + \frac{1}{2}) \times (\mathbb{Z} + \frac{1}{2})$ com a propriedade de ter interseção não-vazia, e no máximo um número finito vezes, com cada uma das retas verticais $l_{x_o} = \{ (x, y) \in \mathbb{Z}^2 : x = x_o \}$ com $x_o \in \mathbb{Z}$.

A definição deste conjunto tem um apelo intuitivo em termos de “zoom” como descrevemos a seguir. Considere a parte do contorno $\gamma(\sigma)$ dentro caixa $\Lambda_n \triangleq ([-n, +n] \cap \mathbb{Z}) \times ([-n, +n] \cap \mathbb{Z})$ com $n \in \mathbb{N}$. Dar um “zoom” significa aumentar o tamanho da caixa, i.e aumentar $n \in \mathbb{N}$. Assim, para n suficientemente grande os contornos $\gamma(\sigma)$, com $\sigma \in \Omega_1$, e as retas horizontais ficam indistinguíveis. Como tal contorno é único então configuração σ tem apenas duas fases distintas. Uma acima da linha horizontal, i.e. do contorno $\gamma(\sigma)$ e outra abaixo do contorno. Iremos provar que tal configuração é instável, i.e. sempre evolui para uma outra configuração. O sentido preciso desta afirmação é dada pela proposição abaixo.

Proposição 6.3 (Aizenman [3] Proposição 5). Para qualquer medida $\mu \in \bigcup_{\beta > 0} G_\beta(\Phi)$ temos

$$\mu(\Omega_1) = 0.$$

A estratégia para demonstrar a Proposição 6.3 é observar que pelo Lema 4.3, $\mu(\Omega_1) \in \{0, 1\}$ pois pelo Corolário B.1 $\Omega_1 \in \mathcal{J}_\infty$. Assim se supormos que $\mu(\Omega_1) \neq 0$ só nos resta admitir que $\mu(\Omega_1) = 1$. Assumindo esta igualdade vamos usar os lemas técnicos abaixo para chegar a um absurdo.

A demonstração dos próximos dois lemas se baseia no método das “flutuações no infinito”. E se referem a espaços de configurações duplicados $\Omega \times \Omega$. Considere os conjuntos seguintes em $\Omega_1 \times \Omega_1$. Fixaremos agora uma série de conjuntos nas redes afim de podermos definir adequadamente certos conjuntos de configurações duplas.

(i) $\pi_{\pm} \triangleq \{ i = (i_x, i_y) \in (\mathbb{Z} + \frac{1}{2})^2 : i_x = \pm |i_x| \ \forall i_x \in \mathbb{Z} \}$

(ii) $[\gamma \cap \gamma'] = \{(i, j) \in (\mathbb{Z} + \frac{1}{2})^2 \times (\mathbb{Z} + \frac{1}{2})^2 : i = j \in \gamma(\sigma) \cap \gamma(\sigma')\}$
Figura 6.1: Ilustração de uma configuração $\sigma \in \Omega_1$ e do seu único contorno infinito $\gamma_\infty(\sigma)$ em (\mathbb{Z}^2, d^ω) interceptando a reta vertical l_{x_0} um número finito de vezes.

Figura 6.2: Uma figura experimental

Figura 6.3: Outra figura experimental

(iii) $[\gamma \geq \gamma']_y = \{(i, j) \in (\mathbb{Z} + \frac{1}{2})^2 \times (\mathbb{Z} + \frac{1}{2})^2 : i \in \gamma, j \in \gamma', i_y \geq j_y\}$ Notação análoga vale para $>, \geq, \leq e =$,

(iv) $[d(\gamma, \gamma') = n] = \{(i, j) \in (\mathbb{Z} + \frac{1}{2})^2 \times (\mathbb{Z} + \frac{1}{2})^2 : d(i, j) = n\}$ $d \in \{d^{\oplus}, d^{\otimes}, d^\odot\}$ e $n \in \mathbb{N}$

Definição 6.1. Seja μ uma medida de probabilidade sobre um espaço mensurável (Ω, \mathcal{F}). Chamamos a uma família $\{A_\alpha\}_{\alpha \in I}$ de conjuntos \mathcal{F}-mensuráveis exaus-
vos de uma \(\mu\)-quase partição de \(\Omega\) se \(\mu(A_\alpha \cap A_\beta) = 0\) para quaisquer \(\alpha, \beta \in I\) com \(\alpha \neq \beta\).

Seja,

\[
A'_\pm \triangleq \left\{ (\sigma, \sigma') \in \Omega_1 \times \Omega_1 \right\} \quad \left| \begin{array}{l}
\|[\gamma \cap \gamma'] \cap \pi_\pm\| = \infty \\
\|[\gamma \cap \gamma']_y \cap \pi_\pm\| = \infty \\
\|[\gamma > \gamma']_y \cap \pi_\pm\| = \infty
\end{array} \right.
\]

\[
A''_\pm \triangleq \left\{ (\sigma, \sigma') \in \Omega_1 \times \Omega_1 \right\} \quad \left| \begin{array}{l}
\|[\gamma \cap \gamma'] \cap \pi_\pm\| = \infty \\
\|[\gamma < \gamma']_y \cap \pi_\pm\| < \infty \\
\|[\gamma > \gamma']_y \cap \pi_\pm\| = \infty
\end{array} \right.
\]

\[
A'''_\pm \triangleq \left\{ (\sigma, \sigma') \in \Omega_1 \times \Omega_1 \right\} \quad \left| \begin{array}{l}
\|[\gamma \cap \gamma'] \cap \pi_\pm\| = \infty \\
\|[\gamma < \gamma']_y \cap \pi_\pm\| = \infty \\
\|[\gamma > \gamma']_y \cap \pi_\pm\| < \infty
\end{array} \right.
\]

Afirmamos que \(\{A'_\pm, A''_\pm, A'''_\pm\}\) é uma \(\mu \otimes \mu\)-quase partição de \(\Omega_1 \times \Omega_1\). De fato, \(A''_\pm \cap A'_\pm = \emptyset\) e \(A'''_\pm \cap A'_\pm = \emptyset\). E como supomos \(\mu(\Omega_1) = 1\) temos \(\mu(\Omega_1 \times \Omega_1) = 1\) e necessariamente \(\mu \otimes \mu(A''_\pm \cap A'''_\pm) = 0\) pois \((\Omega_1 \times \Omega_1)^c = A''_\pm \cap A'''_\pm\). Para não carregar a notação denotamos \(\mu \otimes \mu\) por \(\nu\).

Lema 6.3 (Aizenman [3] Lema 2). Seja \(\mu \in \bigcup_{\beta > 0} \text{Extremal}\mathcal{G}_\beta(\Phi)\). Se \(\mu(\Omega_1) = 1\) então \(\mu \otimes \mu(A'_\pm) = 1\).

Demonstração. Pelo Corolário 6.1 é fácil verificar que \(A'_\pm, A''_\pm, A'''_\pm \in \mathcal{J}_\infty\). Portanto pelo Lema 6.3 \(\nu(A'_\pm), \nu(A''_\pm), \nu(A'''_\pm) \in \{0, 1\}\). Pelo fato de \(\{A'_\pm, A''_\pm, A'''_\pm\}\) ser uma \(\nu\)-quase partição de \(\Omega_1 \times \Omega_1\) e \(\nu(\Omega_1 \times \Omega_1) = 1\) temos

\[
\nu(A'_\pm) + \nu(A''_\pm) + \nu(A'''_\pm) = 1.
\]

Seja \(T : \Omega_1 \times \Omega_1 \to \Omega_1 \times \Omega_1\) a transformação \(T(\sigma, \sigma') = (\sigma', \sigma)\). Claramente \(T(A''_\pm) = A''_\pm\) e \(T(A'''_\pm) = A''_\pm\). Sendo \(\hat{\nu}(\cdot) = \nu(T(\cdot))\) temos que \(\nu\) e \(\hat{\nu}\) coincidem na álgebra dos cilindros contidos em \(\Omega_1 \times \Omega_1\). Portanto, pelo Teorema da Extensão de Carathéodory, temos \(\nu = \hat{\nu}\). E além disso, \(\nu(A''_\pm) = \hat{\nu}(A''_\pm) = \nu(T(A''_\pm)) = \nu(A''_\pm)\). E a última equação fica

\[
\nu(A''_\pm) = \nu(A''_\pm) = \frac{1}{2} \left[1 - \nu(A'_\pm) \right].
\]

Portanto \(\nu(A''_\pm) = \nu(A''_\pm) \leq \frac{1}{2}\). Da extremalidade de \(\nu\), que segue da extremalidade de \(\mu\), temos então \(\nu(A''_\pm) = \nu(A''_\pm) = 0\) e portanto \(\nu(A'_\pm) = 1\). \(\square\)
Demonstraçao. Considere os semi-planos \(\pi \) e \(\tau \) onde \(\tau : \Omega \rightarrow \Omega \) é definida por \(\sigma_1 = (\tau \sigma)_{i+1} \) ou \(\sigma_1 = (\tau \sigma)_{i-1} \). Então \(\nu(A_\pm^\prime) = \nu\left(T\left(T^{-1}(A_\pm^\prime)\right)\right) = \nu\left(T^{-1}(A_\pm^\prime)\right) \). Note que

\[
T(A_{\pm n}^\prime) = \left\{ (\sigma, \sigma') \in \Omega_1 \times \Omega_1 \mid \begin{array}{l}
|d^\circ(i, j) = 1] \cap \pi_{\pm n} | = \infty \\
|i_y \leq j_y \cap \pi_{\pm n} | = \infty \\
|i_y \geq j_y \cap \pi_{\pm n} | = \infty
\end{array} \right\}.
\]

e \(\hat{\mu}(\cdot) = \mu(\cdot) \) então \(\hat{\nu} = \mu \otimes \hat{\mu} \).

Lema 6.4 (Aizenman Lema 3). Seja \(\mu \in \bigcup_{\beta > 0} \text{Extremal} \mathcal{G}_\beta(\Phi) \) e \(\hat{\mu} \) como acima.

Se \(\mu(\Omega_1) = 1 \) então \(\mu \otimes \hat{\mu}(A_\pm^\prime) = 1 \).

Demonstraçao. Como \(\mu \) é extremal \(\hat{\nu} = \mu \otimes \hat{\mu} \) também é. Portanto \(\hat{\nu}(A_\pm^\prime) \in \{0, 1\} \). Suponha \(\hat{\nu}(A_\pm^\prime) = 0 \). Então \(\hat{\nu}(A_\pm^{C}) = 1 \) onde

\[
A_\pm^{C} \triangleq \left\{ (\sigma, \sigma') \in \Omega_1 \times \Omega_1 \mid \begin{array}{l}
|d^\circ(i, j) = 0] \cap \pi_{\pm n} | < \infty \\
|i_y \leq j_y \cap \pi_{\pm n} | = \infty \\
|i_y \geq j_y \cap \pi_{\pm n} | = \infty
\end{array} \right\}.
\]

Considere os semi-planos \(\pi_{\pm n} \triangleq \{ i = (i_x, i_y) \in \mathbb{Z}^2 : \pm i_x \geq n \} \) e defina

\[
A_{\pm n}^{C} \triangleq \left\{ (\sigma, \sigma') \in \Omega_1 \times \Omega_1 \mid \begin{array}{l}
|d^\circ(i, j) = 0] \cap \pi_{\pm n} | < \infty \\
|i_y \leq j_y \cap \pi_{\pm n} | = \infty \\
|i_y \geq j_y \cap \pi_{\pm n} | = \infty
\end{array} \right\}.
\]

Note que se \(\mu \otimes \hat{\mu}(A_\pm^\prime) = 1 \) então

\[
\pi_\pm = \pi_{\pm 0} \supset \pi_{\pm 1} \supset \pi_{\pm 2} \supset \ldots \supset \pi_{\pm n} \downarrow \emptyset
\]

\[
A_\pm^{C} = A_\pm^{C} \supset A_\pm^{C} \supset A_\pm^{C} \supset \ldots \supset A_\pm^{C} \downarrow \emptyset
\]

(6.2)

\[
\mu(A_\pm^{C}) = \hat{\nu}(A_\pm^{C}) \leq \hat{\nu}(A_\pm^{C}) \leq \ldots \leq \hat{\nu}(A_\pm^{C}) \downarrow 0
\]

Logo dado qualquer \(\epsilon > 0 \) existe \(N_o = N_o(\delta) \) tal que \(n > N \) implica

\[
\hat{\nu}(A_\pm^{C}) < \epsilon.
\]

(6.3)

Faremos agora outra estimativa para \(\hat{\nu}(A_\pm^{C}) \). Considere a ordem lexicográfica em \(\mathbb{Z}^2 \). Defina a aplicação \(i_{\pm n} : A_{\pm n}^{C} \rightarrow \pi_{\pm n} \) como

\[
i_{\pm n}(\sigma, \sigma') \triangleq \min_{\sigma \in \mathbb{Z}^2} \left\{ (\pm i_x, i_y) \in \mathbb{Z}^2 \mid i \in \pi_{\pm n} \right. \begin{array}{l}
B_{\mathbb{Z}^2}[i, 10] \cap \gamma(\sigma') \neq \emptyset \\
B_{\mathbb{Z}^2}[i, 10] \cap \gamma(\sigma) \neq \emptyset
\end{array} \right\}
\]
Figura 6.4: Ilustração da caixa B de centro $i_{±n}(σ, σ')$

onde $B = B[i, 10] ⊂ \mathbb{Z}^2$ é a bola fechada de centro em $i ∈ \mathbb{Z}^2$ e raio 10 na métrica do supremo d^∞, isto é, $B[i, 10] = \{j ∈ \mathbb{Z}^2 : d^\infty(i, j) ≤ 10\}$. Note que i_n está bem definida para $ν$-quase todos $σ, σ' ∈ \Omega_1 × \Omega_1$ pois $ν(T^{-1}(A'_n)) = 1$. Para cada bola B_n fixe a transformação local

$$T : \Omega_1 × \Omega_1 \rightarrow \Omega_1 × \Omega_1$$

$$\begin{array}{ccc}
(σ, σ') & \mapsto & (η, η')
\end{array}$$

(6.4)

com a propriedade de que

- Os contornos $γ(η)$ e $γ(η')$ podem diferir dos contornos $γ(σ)$ e $γ(σ')$ dentro da bola $B[i_{±n}(σ, σ'), 10]$.

- os caminhos $γ(η)$ e $γ(η')$ não têm componentes conexas finitas fora da bola $B[i_{±n}(σ, σ'), 10]$.

Além disso, devemos observar que:

$$d^* \left(i_{±n}(σ, σ') - i_{±n}(η, η') \right) ≤ 2.10, \quad ν - g.t.p.(σ, σ') ∈ Ω_1 × Ω_1, \quad (6.5)$$

e

$$|R_{±n}^{-1}(σ, σ')| ≤ (10 · 10)^2 · 2^{10·10} \equiv g, \quad ν - g.t.p.(σ, σ') ∈ Ω_1 × Ω_1. \quad (6.6)$$
Figura 6.5: Uma figura experimental

Agora vamos fazer uma majoração da medida $\mu \otimes \hat{\mu}$ do conjunto mensurável $R^{-1}(A)$ com $A \in \Omega_1 \times \Omega_1$,

$$\mu \otimes \hat{\mu}(R^{-1}(A)) = \int_{\Omega_1 \times \Omega_1} 1_{(R^{-1}(A))(\sigma,\sigma')} \, d\mu \otimes \hat{\mu}(\sigma,\sigma') \quad (6.7)$$

Primeiro notemos que $1_{R^{-1}(A)}(\sigma,\sigma') = 1_{[R^{-1}(A)]_{\Omega_1}}(\sigma) \cdot 1_{[R^{-1}(A)]_\sigma}(\sigma')$ onde $[R^{-1}(A)]_{\Omega_1}$ é a imagem da projeção $(\sigma,\sigma') \mapsto \sigma'$ e $[R^{-1}(A)]_\sigma$ é secção mensurável de $R^{-1}(A)$ com respeito a σ. Aplicando o Teorema de Fubini temos

$$\mu \otimes \hat{\mu}(R^{-1}(A)) = \int_{[R^{-1}(A)]_{\Omega_1}} \left[\int_{[R^{-1}(A)]_\sigma} d\hat{\mu}(\sigma') \right] d\mu(\sigma) \quad (6.8)$$

Sem perda de generalidade podemos supor que $\eta' = \sigma'$. Logo, $[A]_\sigma = [R^{-1}(A)]_\sigma$ para todo σ. E além disso, temos $[A]_\sigma \subset [A]_{\Omega_1}$ implica

$$\mu \otimes \hat{\mu}(R^{-1}(A)) \leq \int_{[R^{-1}(A)]_{\Omega_1}} \left[\int_{[A]_{\Omega_1}} d\hat{\mu}(\sigma') \right] d\mu(\sigma) \leq \hat{\mu}([A]_{\Omega_1}) \cdot \mu([R^{-1}(A)]_{\Omega_1}) \leq \hat{\mu}([A]_{\Omega_1}) \cdot \mu([A]_{\Omega_1}) \quad (6.9)$$
Como a transformação T só altera as configurações σ e σ' dentro de $B \cup T_{Z^2}(B)$,

$$(\mu \otimes \hat{\mu})(B \cup T_{Z^2}B) \leq \hat{\mu}(B \cup T_{Z^2}B) [A]_{\Omega_1} \cdot \mu(B \cup T_{Z^2}B) [A]_{\Omega_1}. \quad (6.10)$$

Aplicando a forma explícita da medida de Gibbs a volume finito,

$$(\mu \otimes \hat{\mu})(B \cup T_{Z^2}B) \leq \frac{1}{2|B \cup T_{Z^2}B|} \exp \left[\beta \cdot \max_{u,v} |J| \cdot |B \cup T_{Z^2}B|^2 \right] \cdot \mu(B \cup T_{Z^2}B) [A]_{\Omega_1}. \quad (6.11)$$

A cota uniforme (6.5) e o fato de que $R_{\pm n}$ muda (σ, $\hat{\sigma}$) somente em $B[i_{\pm n}(\sigma, \sigma'), 10]$ implica (pela condição DLR) que $\forall A \subset \Omega_1 \times \Omega_1$

$$\mu \otimes \hat{\mu}(R_{\pm n}) < \epsilon^{-1} \mu([A]_{\Omega_1}) \quad (6.12)$$

com

$$\epsilon^{-1} = g \exp \left[4 \cdot (10 \cdot 10) \cdot \beta \right].$$

Por (6.5) e por $\hat{\nu}(T(A'^{C}_{\pm n})) = 1$ a imagem de $R_{\pm n}$ está contida em $A'^{C}_{\pm n}$, logo

$$\hat{\nu}(R^{-1}(A'^{C}_{\pm n})) = 1 \quad (6.13)$$

e por (6.7),

$$\hat{\nu}(A'^{C}_{\pm n}) > \epsilon. \quad (6.14)$$

e (6.14) contradiz (6.3). E isto prova a afirmação. \qed

Lema 6.5. [3, Lema 4] Se $\mu(\Omega_1) = 1$ então μ é invariante por translação.

Prova do lema 6.5. Seja μ satisfazendo as hipóteses acima e $\hat{\mu} = T\mu$. Sem perda de generalidade podemos assumir que os spins imediatamente abaixo de γ são μ quase certamente +.

Note que se para algum $(\gamma, \hat{\gamma}) \in \Omega_1 \times \Omega_1$ existe um cluster infinito sobre o qual $\sigma = -1$ e $\hat{\sigma} = +1$ então, pela unicidade do contorno infinito em Ω_1 este cluster tem de morar “acima” de $\gamma(\sigma)$ e “abaixo” de $\gamma(\sigma)$. Isto contudo não é possível se $\gamma(\sigma)$ e $\gamma(\hat{\sigma})$ se intersectam um número infinito de vezes em ambas as direções.

O Lema 3 implica, portanto, que para $\mu \otimes \hat{\mu}$-q.t.p. $(\sigma, \hat{\sigma})$ não existe cluster infinito tal que $\sigma > \hat{\sigma}$.

Seja agora Λ uma caixa finita. Então, pela conclusão acima, $\mu \times \hat{\mu}$ quase certamente existe um *cluster que contorna completamente Λ sobre o qual $\sigma < \hat{\sigma}$.

Para qualquer conjunto finito $\bar{\Lambda} \supset \Lambda$ seja $\alpha_{\bar{\Lambda}}(\sigma, \hat{\sigma})$ o *cluster mais externo em $\bar{\Lambda}$ quando tal conjunto existe e $\alpha_{\bar{\Lambda}}(\sigma, \hat{\sigma}) = \emptyset$ caso contrário.
Denotamos por $\hat{\alpha}_{\Lambda}$ o complemento, em Λ da região contornada por α_{Λ}. A observação chave aqui é que $\forall \Lambda \subset \bar{\Lambda}$

$$\{(\sigma, \hat{\sigma}) \in \Omega \times \Omega | \hat{\alpha}_{\Lambda}(\sigma, \hat{\sigma}) = V \} \in \mathcal{F}_{\times V}$$ \hspace{1cm} (6.15)

Portanto a esperança condicional de qualquer medida ν sobre $\Omega \times \Omega$ satisfaz:

$$\nu\left(\cdot \big| \hat{\alpha}_{\Lambda}(\sigma, \hat{\sigma}) \neq \emptyset \right) \cdot \nu\left(\hat{\alpha}_{\Lambda}(\sigma, \hat{\sigma}) \neq \emptyset \right) = \sum_{V \subset \Lambda} \sum_{(\sigma, \hat{\sigma}) | \hat{\alpha}_{\Lambda}(\sigma, \hat{\sigma}) = V} \nu\left(\cdot \big| (\sigma, \hat{\sigma})_{V \times V} \right) \cdot \nu_{V \times V}\left(\{(\sigma, \hat{\sigma})_{V \times V} \} \right).$$ \hspace{1cm} (6.16)

Considere agora $f \in \mathcal{F}$ a qual é limitada e monótona no sentido (FKG). Para o caso em que $\nu = \mu \otimes \hat{\mu}$ a fatoração e a propriedade de Markov da condição DLR implica para cada termo na soma acima que:

$$\mu \otimes \hat{\mu}\left(\cdot \big| (\sigma, \hat{\sigma})_{V \times V} \right) = \mu_{\Lambda}\left(\cdot \big| \sigma_{\hat{\alpha}_{\Lambda}} \right) \cdot \hat{\mu}_{\Lambda}\left(\cdot \big| \hat{\sigma}_{\alpha_{\Lambda}} \right)$$ \hspace{1cm} (6.17)

Como apenas termos com $\alpha_{\Lambda} \leq \hat{\sigma}_{\alpha_{\Lambda}}$ contribuem no somatória, segue da desigualdade de FKG que para qualquer função monótona f vale a seguinte desigualdade:

$$\mu \otimes \mu\left(f(\sigma) \big| \alpha_{\Lambda} \neq \emptyset \right) \leq \mu \otimes \mu\left(f(\hat{\sigma}) \big| \alpha_{\Lambda} \neq \emptyset \right).$$ \hspace{1cm} (6.19)

Logo

$$\mu(f(\cdot)) \equiv \mu \otimes \hat{\mu}(f(\sigma)) \equiv \lim_{\Lambda \nearrow 2^\mathbb{Z}} \mu \otimes \hat{\mu}\left(f(\sigma) \big| \alpha_{\Lambda} \neq \emptyset \right) \cdot \mu \otimes \hat{\mu}\left(\{\alpha_{\Lambda} \neq \emptyset \} \right)$$

$$= \lim_{\Lambda \nearrow 2^\mathbb{Z}} \mu \otimes \hat{\mu}\left(f(\hat{\sigma}) \big| \alpha_{\Lambda} \neq \emptyset \right) \cdot \mu \otimes \hat{\mu}\left(\{\alpha_{\Lambda} \neq \emptyset \} \right)$$

$$= \mu \otimes \hat{\mu}(f(\cdot)) \equiv \hat{\mu}(f(\cdot)).$$ \hspace{1cm} (6.20)

Pela generalidade de f e pela desigualdade de FKG temos

$$\hat{\mu} \geq_{FKG} \mu.$$ \hspace{1cm} (6.21)

Argumento de maneira análoga mostramos que

$$\mu \geq_{FKG} \hat{\mu}.$$ \hspace{1cm} (6.22)

Logo $\mu = \hat{\mu}$ o que prova que μ é invariante pela translação T. \hspace{1cm} \square
Prova da Proposição [6.3]. Seja μ uma medida de Gibbs extremal e assuma que (4.1) não é satisfeita. Como $\Omega_1 \in \mathcal{F}$ segue-se que

$$\mu(\Omega_1) = 1. \quad (6.23)$$

Em particular, se $\ell_o(\sigma)$ é o menor nível de interseção de $\gamma(\sigma)$ com $\{i_x = 0\}$, é bem definido para μ quase todo ponto σ e para alguma distribuição de probabilidade sobre \mathbb{R} dada por $\mu(\{\sigma|\ell_o(\sigma) \leq y\})$. Isto contudo não é possível pois pelo Lema 3 a distribuição acima é invariante por translação.

6.4 Redução do Caso Geral

Seja $\Omega_2 = \{\sigma \in \Omega | \text{em } \sigma \text{ existe ao menos um contorno infinito}\}$. Nesta seção, o caso geral será provado reduzindo-o aos casos estudados nas duas seções previas provando:

Proposição 6.4. $\forall \mu \in \Omega$,

$$\mu(\Omega_2 \setminus \Omega_1) = 0 \quad (6.24)$$

Embora os resultados obtidos até agora sejam baseados essencialmente na desigualdade FKG, e além disso é claro, nas características básicas do sistema que fazem a noção de contornos muito útil, a nossa análise a partir de agora exigirá uma propriedade adicional do modelo de Ising ferromagnético.

Proposição 6.5. Seja Φ a interação definida pelo modelo de Ising de primeiros vizinhos ferromagnético com $J_{ij} \equiv J \geq 0$. Seja Λ_n uma sequência de volumes finitos que são simétricos com respeito a transformação

$$\mathbb{Z}^2 \ni (x, y) \mapsto (x, 1 - y) \in \mathbb{Z}^2.$$

tal que $\Lambda_n \uparrow \mathbb{Z}^2$. Para todo $\beta > 0$ existem os seguintes limites, com respeito a topologia fraca-*$

$$\mu^\pm = \text{w-lim}_{\Lambda_n \uparrow \mathbb{Z}^2} \mu_{\beta, \Lambda_n}^\Phi \in \mathcal{G}_\beta(\Phi).$$

Além do mais temos

$$\text{w-lim}_{\Lambda_n \uparrow \mathbb{Z}^2} \mu_{\beta, \Lambda_n}^\Phi = \frac{1}{2}\mu^+ + \frac{1}{2}\mu^-, \quad \text{onde } \eta(x, y) = \begin{cases} 1, & \text{se } y \leq 0; \\ 1, & \text{caso contrário.} \end{cases}$$

A partir de agora vamos tomar $\Lambda_n = [-n, +n] \times [-n, +n] \cap \mathbb{Z}^2$. Um corolário usual das Proposições 7 e 3 é:
Lema 6.6. Seja
\[\theta_{n,m} = \{ \sigma \in \Omega \mid \sigma \text{ tem um -cluster que conecta } \Lambda_n \text{ com } \Lambda_m^c \} \]
Então \(\forall n, \epsilon > 0 \exists m(n, \epsilon) < \infty, \) tal que
\[\mu_\theta^+ (\theta_{m,n}) \geq \frac{1}{2} + \epsilon \] (6.25)
para qualquer conjunto simétrico \(V \supset \Lambda_m. \)

Usando a Proposição 6.5, Lucio Russo provou que :

Lema 6.7. [vide [13] combinando Lema 13 e Proposição 4] Seja \(\mu \in \text{Ext} \mathcal{G} \setminus \{\mu^+, \mu^-\}_\beta. \) Então \(\mu \) quase certamente existe um contorno infinito em \(\pi_- \).

Prova da Proposição 6.4. É suficiente provar (6.24) para \(\mu \in \text{Ext} \mathcal{G} \setminus \{\mu^+, \mu^-\}_\beta. \) Seja \(\mu \) uma tal medida. Nós iremos provar (6.24) mostrando que
\[\mu(\Omega_2 \setminus \Omega_1) \leq 3/4. \] (6.26)

Isto de fato é suficiente para obtermos nossa conclusão uma vez que \(\Omega_2 \setminus \Omega_1 \in \mathcal{J} \) e são satisfeitas as hipóteses da Proposição 1.

O argumento é o seguinte. Pelo Lema 6.4, \(\mu \) quase certamente cada configuração \(\sigma \) está associada a um único contorno \(\gamma(\sigma) \) em \(\mathbb{Z}^2 \) que tem uma componente infinita conexa no semi-plano “esquerdo”
\[\pi_0 \triangleq \{(i_x, i_y) \in \mathbb{Z}^2 : i_x \leq 0\}. \]
Nós denotamos esta componente por \(\delta(\sigma) \) e as duas regiões sobre o lado + e o lado − por \(D_+(\sigma), D_-(\sigma) \subset \mathbb{Z}^2. \)

Afirmação 6.4.1. A probabilidade, segundo \(\mu, \) de existir outro contorno infinito em \(D_+ \) dado:
\[(i) \text{ a posição de } \delta(\sigma) \]
\[(ii) \mathcal{J}_{D_-(\sigma)} \] (6.27)
é uniformemente menor que 1/2.

Prova da Afirmação. Sem perda de generalidade, podemos supor que os spins “abaixo” \(\delta(\sigma) \) têm sinal positivo \(\mu \)-quase certamente.

Seja \(n, \epsilon > 0 \) e \(m = m(n, \epsilon). \) Pela unicidade expressa no Lema 6.4 para \(\mu \) quase todo \(\sigma \) existe +cluster em \(D_+(\sigma) \cap \pi_- \setminus \Lambda_m \) e −cluster em \(D_-(\sigma) \cap \pi_- \setminus \Lambda_m \) que conecta \(\delta(\sigma) \) com a linha \(\{i_x = 0\}. \) Portanto para \(h \geq m, \) suficientemente grande com probabilidade menor ou igual a \(1 - \epsilon \) podemos garantir que existem clusters
infinitos de $-e+$ em $\pi_\cap \Lambda_h$. Vamos denotar os contornos mais externos que estão em $\pi_\cap \Lambda_h$ por τ_+ e τ_-, incluindo em τ_+ o menor conjunto fechado por τ_-, τ_+ e a linha $\{i_x = 0\}$.

Considere agora a probabilidade μ de que em D_+ existe um $-\text{cluster}$ conectando Λ_n a Λ_m condicionado a:

1. a posição de $\delta(\sigma)$
2. $\mathcal{J}_{D_-(\sigma)}$
3. $\mathcal{J}_{\Lambda_n^c}$
4. a posição de τ_+.

$$\text{(6.28)}$$

Figura 6.6: Ilustração da notação usada na prova da Proposição 6.4

Pela desigualdade FKG e a propriedade de Markov, esta probabilidade apenas cresce quando fronteira $+1$ provida pelos spins ao longo $\delta(\sigma)$ é trocado pela condição de fronteira $+1$ ao longo de τ_- que é posteriormente retirado em $D_-\sigma$ e -1 ao longo da reflexão de $\tau_+ \cup \tau_-$, com respeito a linha $\{i_x = \frac{1}{2}\}$. A probabilidade acima é portando uniformemente menor que $\mu_{\leftarrow}(\theta_{n,m})$, onde V é o volume limitado por $\tau_+ \cup \tau_-$ e sua reflexão.

Usando o Lema 6.6, fazendo a média entre $D_+ \setminus \Lambda$ e τ_+, e fazendo $\epsilon \to 0$ podemos concluir que a probabilidade de existir um cluster ∞ em D_+, condicionando a (6.27) é pelos $\frac{1}{2}$. Assim a afirmação está provada. \Box
Uma consequência direta é que a probabilidade \(\mu \) de \(\delta(\sigma) \) dar origem a apenas um contorno \(\infty \) em \(\sigma \) é pelo menos \(\frac{11}{22} = \frac{1}{4} \). Contudo, o número de contornos infinitos é um evento caudal, assim usando a extremalidade de \(\mu \) temos que

\[
\mu(\{\sigma \in \Omega \mid \sigma \text{ tem exatamente um contorno } \infty\}) = 1. \tag{6.29}
\]

Seja agora \(k \in \mathbb{Z} \). Pelo Lema 6.4 para \(\mu \) quase todo \(\sigma \) existe exatamente um contorno \(\infty \) em cada uma das regiões \(\{i_x \geq 2|k|\}, \{i_x \leq -2|k|\} \subset \mathbb{Z}^2 \). Se tal \(\sigma \) tem exatamente um único contorno infinito então as duas partes acima destas regiões são conectadas por um contorno finito. Pela continuidade de \(\mu \), para \(\mu \)-quase todo \(\sigma \) a propriedade acima é verdadeira para todo \(k \in \mathbb{Z} \) o que implica (6.24).

Prova do Teorema 6.1 Seja \(\mu \in \text{Extremal}\mathcal{G}_\beta \). Usando a Proposição 6.3 e a Proposição 6.4 temos que

\[
\mu(\Omega_2) \leq \mu(\Omega_2 \setminus \Omega_1) + \mu(\Omega_1) = 0. \tag{6.30}
\]

Aplicando a Proposição 6.2 e o Teorema de Choquet concluímos finalmente que

\[
\mu \in \text{span}\{\mu^+ , \mu^-\}.
\]
Parte IV

Apêndices
Apêndice A

Topologia Geral

Neste apêndice revisitamos de maneira rápida alguns conceitos e resultados topológicos afim de fundamentar a construção do chamado Limite Termodinâmico. As demonstrações de cada uma das proposições da primeira parte deste apêndice são consequências tanto das proposições que as precedem e de resultados simples de teoria dos conjuntos e funções que relacionamos a seguir.

A.1 Espaço Topológico.

Teorema A.1. Sejam \(f : X \rightarrow Y \) uma função, \(I \) um conjunto de índices arbitrário e \(\{Y_{\alpha}\}_{\alpha \in I} \) uma família de subconjuntos de \(Y \). Então:

1. \(f^{-1}(Y)^c = f^{-1}(Y^c) \) para todos \(X \subset X \) e \(Y \subset Y \);

2. \(f \left(\bigcup_{\alpha \in I} X_{\alpha} \right) = \bigcup_{\alpha \in I} f(X_{\alpha}) \) e \(f^{-1} \left(\bigcup_{\alpha \in I} Y_{\alpha} \right) = \bigcup_{\alpha \in I} f^{-1}(Y_{\alpha}) \);

3. \(f \left(\bigcap_{\alpha \in I} X_{\alpha} \right) \subset \bigcap_{\alpha \in I} f(X_{\alpha}) \) e \(f^{-1} \left(\bigcap_{\alpha \in I} Y_{\alpha} \right) = \bigcap_{\alpha \in I} f^{-1}(Y_{\alpha}) \).

Definição A.1. Seja \(X \) um conjunto não vazio. Chama-se espaço topológico a um par \((X, \mathcal{X}) \), onde \(\mathcal{X} \) é uma coleção de subconjuntos da coleção das partes de \(X \), notação \(2^X \), satisfazendo as seguintes propriedades:

1. \(\emptyset, X \in \mathcal{X} \);

2. Para toda família \(\{X_i\}_{i \in I} \), \(\bigcup_{i \in I} X_i \in \mathcal{X} \);

3. Para toda família finita \(\{X_i\}_{i \in F} \), \(\bigcap_{i \in F} X_i \in \mathcal{X} \).

A coleção \(\mathcal{X} \) é chamada topologia. Os elementos em \(\mathcal{X} \) chamam-se abertos e seus complementares em \(X \) chamam-se fechados.
A.2 Topologia gerada.

Todo conjunto X pode ser equipado com pelo menos duas topologias. A topologia minimal $\mathcal{X} = \{\emptyset, X\}$ e a topologia maximal $\mathcal{X} = 2^X$. Minimal e maximal se referem a ordem parcial dada pela relação de continência na coleção de todas as topologias de X. Se $\{\mathcal{X}_i\}_{i \in I}$ é uma família de topologias de X então $\bigcap_{i \in I} \mathcal{X}_i$ é uma topologia de X. Se $\mathcal{X}', \mathcal{X}''$ são topologias de X então diz-se que \mathcal{X}' mais fraca ou mais grossa que \mathcal{X}'' se $\mathcal{X}' \subset \mathcal{X}''$.

A.2.1 Base e sub-base.

Proposição A.1. As seguintes afirmações sobre uma topologia \mathcal{X} de X são equivalentes:

1. Sejam $\mathcal{A} = \{A_\alpha\}_{\alpha \in I}$ uma coleção de subconjuntos de X. A topologia \mathcal{X} é a topologia mais grossa que satisfaz a propriedade $A \subset T$, i.e.

\[\mathcal{X} = \bigcap_{A \subset T} \mathcal{T}. \]

(A.1)

2. Seja $\mathcal{F} = \{F = \cap_{i \in N} A_{\alpha_i} : N \text{ é finito, } A_{\alpha_i} \in \mathcal{A}\}$ a coleção das interseções finitas em \mathcal{A}. A topologia \mathcal{X} é a topologia mais grossa com a propriedade $\mathcal{F} \subset T$ i.e.

\[\mathcal{X} = \bigcap_{\mathcal{F} \subset T} \mathcal{T}. \]

(A.2)

3. Seja $\mathcal{U} = \{\cup_{j \in J} F_j : F \in \mathcal{F}, J \text{ é arbitrário, } A_{\alpha_i} \in \mathcal{A}\}$ a coleção das reuniões arbitrárias em \mathcal{F}. A topologia \mathcal{X} é a topologia mais grossa com a propriedade $\mathcal{U} \subset T$ i.e.

\[\mathcal{X} = \bigcap_{\mathcal{U} \subset T} \mathcal{T}. \]

4. A coleção \mathcal{U} do item 3 coincide com \mathcal{X}, i.e.

\[\mathcal{X} = \left\{ \bigcup_{j \in J} \bigcap_{i \in N_j} A_{\alpha_i} \mid N_j \text{ é finito, } J \text{ é arbitrário, } A_{\alpha_i} \in \mathcal{A} \right\}. \]

Definição A.2. Seja \mathcal{X} uma topologia de um conjunto X. Uma coleção $\mathcal{A} \subset 2^X$ que satisfaz a igualdade A.1 é chamada uma sub-base da topologia \mathcal{X} a qual é chamada topologia gerada por \mathcal{A}. Uma coleção $\mathcal{F} \subset 2^X$ que satisfaz a igualdade A.2 é chamada base da topologia \mathcal{X}.
A.2.2 Topologia induzida e convergência.

Para as definições abaixo seguimos a referência [10].

Definição A.3. Um espaço topológico (X, \mathcal{X}) é chamado: Hausdorff se para quaisquer pontos $x', x'' \in X$ existem abertos $B', B'' \in \mathcal{X}$ tais que $x' \in B', x'' \in B''$ e $B' \cap B'' = \emptyset$; é chamado separável se possui um subconjunto enumerável denso.

Definição A.4. Seja (X, \mathcal{X}) um espaço topológico Hausdorff e separável. Uma sequência $\{x_n\}_{n \in \mathbb{N}} \subset X$ converge para um ponto $x \in X$ se dado qualquer aberto $B \in \mathcal{X}$ contendo $x \in B$ existe $N_B \in \mathbb{N}$, que depende do aberto B, tal que $n > N_B$ implica $x_n \in B$.

Definição A.5. Seja $\Phi = \{\varphi_i\}_{i \in I}$ uma família de funções $\varphi_i : X \rightarrow Y_i$ onde cada Y_i está equipado com uma topologia τ_i. A topologia induzida por Φ, denotada por τ_Φ, é a topologia mais grossa em X que torna todas as funções φ_i contínuas.

Proposição A.2. A topologia induzida por Φ é aquela gerada pela coleção

$$\{\varphi_i^{-1}(B) \in 2^X : B \in Y_i\}.$$

Demonstração. Segue imediatamente das definições de topologia e das propriedades de imagens inversas de funções.

Proposição A.3. Seja $\{x_n\}_{n \in \mathbb{N}}$ uma sequência de pontos em X. Se $\tau = \tau_\Phi$, onde Φ é uma topologia em X induzida por uma família de funções $\varphi_i : X \rightarrow Y_i$, então $x_n \rightarrow x$ em τ se, e somente se, $\varphi_i(x_n) \rightarrow \varphi_i(x)$ em τ_i para todo i.

Proposição A.4. Seja (Z, \mathcal{Z}) um espaço topológico. Uma aplicação $f : X \rightarrow Z$ é contínua em τ_Φ se, e somente se, $\varphi_i \circ f : X \rightarrow Y_i$ é contínua para todo $i \in I$.

A.3 Comapacidade

Definição A.6. Diz-se que uma família $\{X_i\}_{i \in I} \subset 2^X$ cobre um conjunto A se $A \subset \bigcup_{i \in I} X_i$. E neste caso a família é dita ser uma cobertura de A. Além disso, uma outra família $\{X_j\}_{j \in J} \subset \{X_i\}_{i \in I}$ é chamada de subcobertura de A em $\{X_i\}_{i \in I} \subset 2^X$ se $\{X_j\}_{j \in J} \subset \{X_i\}_{i \in I}$ e $A \subset \bigcup_{j \in J} X_j$. Chama-se conjunto compacto na topologia \mathcal{X} ou simplesmente conjunto compacto a um conjunto X para o qual toda cobertura $\{X_i\}_{i \in I} \subset \mathcal{X}$ de X admite uma subcobertura finita.

Teorema A.2 (Tychonoff). Seja um (X, \mathcal{X}) um espaço topológico compacto. Para qualquer conjunto I o produto cartesiano, X^I, é compacto na topologia produto.

Proposição A.5. Se (X, \mathcal{X}) é um espaço métrico compacto então toda sequência $\{x_n\}_{n \in \mathbb{N}}$ possui uma subsequência convergente.
Teorema A.3 (Banach-Alaoglu). Seja X um espaço vetorial sobre \mathbb{R}. Então a bola unitária em X^* é compacta na topologia fraca-*.

Definição A.7 (Sub-Álgebra de Funções). Um subconjunto $\mathcal{A} \subset C(X)$ é chamado de sub-álgebra de funções de $C(X)$ se para toda $f, g \in \mathcal{A}$ e $\lambda \in \mathbb{R}$, temos que $f \cdot g \in \mathcal{A}$ e $f + \lambda g \in \mathcal{A}$.

Definição A.8. Dizemos que uma sub-álgebra $\mathcal{A} \subset C(X)$ separa pontos, se para quaisquer $x', x'' \in X$ distintos, existe pelo menos uma função $f \in \mathcal{A}$ tal que $f(x') \neq f(x'')$.

Teorema A.4 (Stone-Weierstrass). Se X é um espaço métrico compacto e \mathcal{A} uma sub-álgebra de $C(X)$ que possui pelo menos uma função constante não-nula. Então \mathcal{A} é um conjunto denso em $(C(X), \| \cdot \|_\infty)$ se, e somente se, \mathcal{A} separa pontos.
Apêndice B

Teoria da Medida

B.1 Mensurabilidade

Sejam S um conjunto enumerável, $V \subset S$ e \mathcal{F}_V a σ-álgebra de X^S gerada pela coleção dos cilindros de base finita contida em X^V.

Teorema B.1. Sejam $f : X^S \rightarrow [-\infty, +\infty]$ uma função e $V \subset S$ não vazio. Então f é \mathcal{F}_V-mensurável se, e somente se, vale $f(x_Vy_{V^c}) = f(x_Vz_{V^c})$, $\forall x, y, z \in X^S$.

Corolário B.1. Seja $A \subset X^S$. Então $A \in \mathcal{F}_V$ se, e somente se, $x = x_Vy_{V^c} \in A$ implica $x = x_Vy_{V^c} \in A$ para todo $y_{V^c} \in X^{V^c}$.

B.2 Teoremas de convergência.

Teorema B.2 (Convergência Monótona). Sejam (X, \mathcal{X}, μ) um espaço de medida e $f, f_1, f_2, \ldots : X \rightarrow [0, +\infty]$ funções mensuráveis. Se $f_n \uparrow f \mu$-q.t.p. então

$$\int_X f_n d\mu \uparrow \int_X f d\mu.$$

Teorema B.3 (Convergência Dominada). Sejam (X, \mathcal{X}, μ) um espaço de medida e $f, f_1, f_2, \ldots : X \rightarrow \mathbb{R}$ funções mensuráveis tais que $f_n \rightarrow f \mu$-q.t.p.. Se existe uma função integrável $g : X \rightarrow [0, +\infty]$ tal que $|f_n(x)| \leq |g(x)| \mu$-q.t.p. então

$$\int_X f_n d\mu \rightarrow \int_X f d\mu.$$
B.3 Teoremas de integração multipla.

Teorema B.4 (Cavalieri-Tonelli). Suponhamos que \((\mathbb{Z}, \mathcal{Z}, \mu \otimes \nu)\) seja o espaço produto que se obtém dos espaços de medida \((X, \mathcal{X}, \mu)\) e \((Y, \mathcal{Y}, \nu)\). Para todo \(C \in \mathcal{Z}\) e para quaisquer \(x \in X\) e \(y \in Y\):

(a) A seccção de \(C \in \mathcal{Z}\) no ponto \(x\), \(C_x \overset{\Delta}{=} \{y \in Y : (x, y) \in C\}\) é um subconjunto de \(Y\) que é \(\mathcal{Y}\)-mensurável. Analogamente, a seccção de \(C \in \mathcal{Z}\) no ponto \(y\), \(C_y \overset{\Delta}{=} \{x \in X : (x, y) \in C\}\) é um subconjunto de \(X\) que é \(\mathcal{X}\)-mensurável.

(b) A função \(x \mapsto \mu(C_x)\) é \(\mathcal{X}\)-mensurável. Analogamente, a função \(y \mapsto \mu(C_y)\) é \(\mathcal{Y}\)-mensurável.

(c) A medida \(\mu \otimes \nu(C)\) de qualquer \(C \in \mathcal{Z}\) coincide com qualquer das integrais \(\int_Y \mu(C_y) d\nu\) e \(\int_X \nu(C_x) d\mu\).

Teorema B.5 (Tonelli). Suponhamos que \((\mathbb{Z}, \mathcal{Z}, \mu \otimes \nu)\) seja o espaço produto que se obtém dos espaços de medida \(\sigma\)-finitos \((X, \mathcal{X}, \mu)\) e \((Y, \mathcal{Y}, \nu)\). Se \(f : X \times Y \to [0, +\infty)\) é \(\mathcal{Z}\)-mensurável então para quaisquer \(x \in X\) e \(y \in Y\):

(a) A função \(f(x, \cdot) : Y \to [0, +\infty)\) é \(\mathcal{Y}\)-mensurável para todo \(x \in X\) e a função \(f(\cdot, y) : X \to [0, +\infty)\) é \(\mathcal{X}\)-mensurável para todo \(y \in Y\).

(b) A função \(X \ni x \mapsto \int_X f(x, v) d\nu(v)\) é \(\mathcal{Z}\)-mensurável e a função \(Y \ni y \mapsto \int_X f(u, y) d\mu(u)\) é \(\mathcal{Y}\)-mensurável.

(c) A integral \(\int_{X \times Y} f(u, v) d\mu \otimes \nu(u, v)\) é idêntica a qualquer das integrais: \(\int_Y \left[\int_X f(u, v) d\mu(u) \right] d\nu(v)\) e \(\int_X \left[\int_Y f(u, v) d\nu(v) \right] d\mu(u)\).

Teorema B.6 (Fubini-Tonelli). Suponha que \(f \in L^1(\mu \otimes \nu)\), onde \(\mu \otimes \nu\) é uma medida no espaço produto que se obtém dos espaços de medida \(\sigma\)-finitos \((X, \mathcal{X}, \mu)\) e \((Y, \mathcal{Y}, \nu)\). Então:

(a) Para todo \(x \in X\) e todo \(y \in Y\) \(f(x, \cdot) \in L^1(\nu)\) e \(f(\cdot, y) \in L^1(\mu)\).

(b) A função \(X \ni x \mapsto \int_X f(x, v) d\nu(v)\) pertence a \(L^1(\mu)\) e a função \(Y \ni y \mapsto \int_Y f(u, y) d\mu(u)\) pertence a \(L^1(\mu)\).

(c) A integral \(\int_{X \times Y} f(u, v) d\mu \otimes \nu(u, v)\) é idêntica a qualquer das integrais: \(\int_Y \left[\int_X f(u, v) d\mu(u) \right] d\nu(v)\) e \(\int_X \left[\int_Y f(u, v) d\nu(v) \right] d\mu(u)\).
B.4 Derivadas de Radon-Nikodym

Teorema B.7 (Lebesgue-Radon-Nikodym). Seja ν uma medida σ-finita sinalada e μ uma medida positiva σ-finita ambas definidas no espaço mensurável $(\mathcal{X}, \mathcal{F})$. Então existe um único par de medidas σ-finitas sinaladas λ e ρ em $(\mathcal{X}, \mathcal{F})$ tais que

$$\lambda \perp \mu, \quad \rho \ll \mu, \quad e \quad \nu = \lambda + \rho. \quad (B.1)$$

Além disso, existe uma função $f : \mathcal{X} \to [\infty, +\infty]$, μ-integrável tal que para todo $X \in \mathcal{F}$ temos

$$\rho(X) = \int_X f \, d\mu \quad (B.2)$$

e f é única μ-q.t.p..

Definição B.1. A função f que se obtém em [B.2] acima é denotada por $d\rho/d\mu$ e é chamada de derivada de Radon-Nikodym de ρ com respeito a μ.

Corolário B.2. Suponha que ν é uma medida sinalada σ-finita e μ e λ são medidas σ-finitas em $(\mathcal{X}, \mathcal{F})$.

(a) se $\nu \ll \mu$ e $g \in L^1(\nu)$ então $g \cdot (d\nu/d\mu) \in L^1(\mu)$ e

$$\int g \, d\nu = \int g \frac{d\nu}{d\mu} \, d\mu;$$

(b) se $\nu \ll \mu$ e $\mu \ll \lambda$ então $\nu \ll \lambda$ e

$$\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda} \quad \lambda$-quase certamente.

Corolário B.3. Para $j = 1, 2$; sejam μ_j, ν_j medidas σ-finitas sobre $(\mathcal{X}_j, \mathcal{F}_j)$ tais que $\nu_j \ll \mu_j$. Então $\nu_1 \otimes \nu_2 \ll \mu_1 \otimes \mu_2$ e

$$\frac{d(\nu_1 \otimes \nu_2)}{d(\mu_1 \otimes \mu_2)}(x_1, x_2) = \frac{d\nu_1}{d\mu_1}(x_1) \frac{d\nu_2}{d\mu_2}(x_2).$$

Teorema B.8 (Mudança de variáveis versão mensurável). Seja $(\mathcal{X}, \mathcal{F}, \mu)$ um espaço de medida, $(\mathcal{Y}, \mathcal{G})$ um espaço mensurável e $T : \mathcal{X} \to \mathcal{Y}$ uma aplicação $(\mathcal{F}, \mathcal{G})$-mensurável. Se $g : \mathcal{Y} \to [0, +\infty]$ é uma função \mathcal{G}-mensurável, então $g \circ T : \mathcal{X} \to [0, +\infty]$ é \mathcal{F}-mensurável e

$$\int_{\mathcal{Y}} g \, d(\mu \circ T^{-1}) = \int_{\mathcal{X}} g \circ T \, d\mu.$$

Teorema B.9 (Mudança de variáveis versão integrável). Seja $(\mathcal{X}, \mathcal{F}, \mu)$ um espaço de medida, $(\mathcal{Y}, \mathcal{G})$ um espaço mensurável e $T : \mathcal{X} \to \mathcal{Y}$ uma aplicação $(\mathcal{F}, \mathcal{G})$-mensurável. Então $g : \mathcal{Y} \to \mathbb{R}$ é $(\mu \circ T^{-1})$-integrável se, e somente se, $g \circ T : \mathcal{X} \to \mathbb{R}$ é μ-integrável e

$$\int_{\mathcal{Y}} g \, d(\mu \circ T^{-1}) = \int_{\mathcal{X}} g \circ T \, d\mu.$$
Apêndice C

Análise Funcional

C.1 Representação de Riez-Markov

Definição C.1 (Mensurabilidade de Borel). A σ-álgebra de Borel de um espaço topológico \((X, \tau)\), denotada por \(\mathcal{B}(\tau)\), é a σ-álgebra gerada por \(\tau\).

Definição C.2 (Medida de Radon). Seja \((X, \tau)\) um espaço topológico equipado com a σ-álgebra de Borel \(\mathcal{B}(\tau)\). Qualquer medida \(\mu\) definida em \(\mathcal{B}(\tau)\) é chamada de medida de Borel. Adicionalmente,

(a) Chamamos \(\mu\) de medida de Borel regular se

\[
\mu(E) = \inf\{\mu(U) : U \supset E \text{ e } U \text{ é aberto}\}
\]
\[
\mu(E) = \sup\{\mu(K) : K \subset E \text{ e } K \text{ é compacto}\}.
\]

(b) Uma medida de Borel regular \(\mu\) é chamada de medida de Radon, se \(\mu(K) < \infty\) para todo compacto \(K\).

Teorema C.1 (Representação de Riesz-Markov). Seja \((X, \tau)\) um espaço topológico Hausdorff e compacto. Se \(L\) é um funcional linear positivo definido no conjunto das funções contínuas \(C(X)\), então existe uma única medida de Radon \(\mu \in \mathcal{M}(X, \mathcal{B})\) tal que

\[
L(f) = \int_X f \, d\mu, \quad \forall f \in C(X).
\]
C.2 Convexidade e Decomposição extremal

Definição C.3 (Pontos Extremais). Seja \mathbb{E} é um espaço vetorial topológico localmente convexo, $X \subset \mathbb{E}$ um conjunto compacto não vazio e m uma medida de probabilidade de Borel regular sobre $X \subset \mathbb{E}$. Dizemos que um ponto x é representado por m se para todo funcional linear contínuo f sobre \mathbb{E} vale a igualdade

$$f(x) = \int_{X} f(u) \, dm(u)$$ (C.1)

Quando não houver perigo de confusão escrevemos simplesmente $m(f)$ para denotar $\int_{X} f(u) \, dm(u)$.

Definição C.4. Sejam m é uma medida regular não negativa de Borel sobre um espaço de Hausdorff compacto X e $S \subset X$ um boreliano. Dizemos que m é suportada em S se $\mu(X/S) = 0$.

Proposição C.1. Seja X um subconjunto compacto de um espaço vetorial topológico localmente convexo \mathbb{E}. Um ponto x de \mathbb{E} está no fecho convexo de X se, e somente se, existe uma medida de probabilidade μ sobre X que representa x.

Teorema C.2 (Choquet). Seja X um subconjunto compacto e convexo de um espaço vetorial topológico \mathbb{E} localmente convexo e $x_0 \in X$. Então existe uma medida de probabilidade sobre X que representa x_0 e é suportada pelos elementos extremais de X.
Apêndice D

Probabilidade

D.1 Probabilidade e esperança Condicional

Definição D.1. Seja (\mathbb{X}, X, μ) um espaço de probabilidade e \mathcal{B} uma sub-σ-álgebra de X. Seja $f : \mathbb{X} \to \mathbb{R}$ uma função X-mensurável. A esperança condicional de f com respeito a \mathcal{B}, denotada por $\mu(f|\mathcal{B})$, é definida como a derivada de Radon-Nikodym da medida $f\mu(\cdot) = \int_X f(u) \cdot 1_{\mathcal{B}}(u) d\mu(u)$ com respeito a medida $\mu|_{\mathcal{B}}$, i.e. a função \mathcal{B}-mensurável $\mu(f|\mathcal{B}) = \frac{d(f\mu)}{d\mu|_{\mathcal{B}}}$ tal que

$$\int_X f d\mu = \int_X \frac{d(f\mu)}{d\mu|_{\mathcal{B}}} d\mu|_{\mathcal{B}} = \int_X \mu(f|\mathcal{B}) d\mu|_{\mathcal{B}}. \quad (D.1)$$

E além disso, $\mu(f|\mathcal{B}) = \frac{d(f\mu)}{d\mu|_{\mathcal{B}}}$ é μ-q.t.p. única no sentido de que se g é outra função tal que

$$\int_X f d\mu = \int_X g d\mu|_{\mathcal{B}}, \quad (D.2)$$

então

$$g(x) = \mu(f|\mathcal{B})(x) = \frac{d(f\mu)}{d\mu|_{\mathcal{B}}}(x), \quad \mu|_{\mathcal{B}}-q.t.p.. \quad (D.3)$$

Observação D.1. No caso particular de probabilidades condicionais temos que $\mu(A|\mathcal{B})$ é definida como a única função satisfazendo

$$\mu(A \cap B) = \int_B \mu(A|\mathcal{B})(x) d\mu|_{\mathcal{B}}(x),$$

no sentido de que se g é outra função tal que

$$\mu(A \cap B) = \int_B g(x) d\mu|_{\mathcal{B}}(x), \quad (D.4)$$

para todo $B \in \mathcal{B}$, então

$$g(x) = \mu(A|\mathcal{B})(x), \quad \mu|_{\mathcal{B}}-q.t.p.. \quad (D.5)$$
D.2 Kolmogorov: extensões de medidas de probabilidade

Teorema D.1 (Extensão de Carathéodory). Seja ν uma pré-medida sobre uma álgebra \mathcal{A} de conjuntos de X. Então existe uma medida de probabilidade μ sobre σ-álgebra \mathcal{F} gerada por \mathcal{A} com a propriedade de que $\mu|_{\mathcal{A}} = \nu$.

Definição D.2 (Consistência de Kolmogorov). Seja uma família de medidas de probabilidade $\{\mu^\Lambda\}_{\Lambda \in \mathcal{T}} \subset \mathcal{P}(\mathbb{E}^\Lambda, \mathcal{E}^\Lambda)$. A propriedade

$$\mu^\Lambda(\cdot) = \mu^\Gamma(\Pi_{\Gamma,\Lambda}^{-1}(\cdot)), \quad \forall \Lambda \subset \Gamma \in \mathcal{T}$$

é chamada condição de consistência de Kolmogorov.

Teorema D.2 (Extensão de Kolmogorov). Sejam $(\mathbb{E}, \mathcal{F}) = (\mathbb{E}^i, \mathcal{E}^i)$ espaços de medida. Se $(\mu^\Gamma)_{\Gamma \in \mathcal{T}}$ é uma família de medidas de probabilidade sobre $(\mathbb{E}^\Gamma, \mathcal{E}^\Gamma)$, satisfazendo a condição de consistência de Kolmogorov então existe uma única medida de probabilidade μ sobre $(\mathbb{E}^\Gamma, \mathcal{E}^\Gamma)$ tal que

$$\mu^\Lambda = \mu(\Pi_{\Gamma,\Lambda}^{-1}(\cdot)).$$

Teorema D.3 (Lei 0-1 de Kolmogorov). Seja $(X_i)_{i \in \mathcal{T}}$, com \mathcal{T} infinito enumerável, uma família de variáveis aleatórias independentes sobre um espaço de probabilidade $(\Omega, \mathcal{F}, \mu)$. Sejam Λ_n uma sequência crescente de subconjuntos de \mathcal{T} tal que $\Lambda_n \uparrow \mathcal{T}$ e \mathcal{F}_{Λ_n} a σ-álgebra gerada pelas variáveis aleatórias X_i com $i \in \Lambda_n$. Para todo

$$E \in \bigcap_{n=1}^{\infty} \mathcal{F}_{\Lambda_n}$$

temos que $\mu(E) \in \{0, 1\}$.

D.3 Convergência e convergência fraca

Teorema D.4 (Vitali-Hahn-Saks). Seja $\{\mu_n\}_{n \in \mathbb{N}}$ uma sequência de medidas de probabilidade sobre o espaço mensurável $(\mathbb{A}, \mathcal{A})$ e uma função de conjuntos $\mu : \mathcal{A} \rightarrow [0, 1]$. Se para todo mensurável $A \in \mathbb{A}$ a sequência numérica $\{\mu_n(A)\}_{n \in \mathbb{N}}$ converge para $\mu(A)$ então μ é uma medida de probabilidade.

Teorema D.5 (Portmanteau). Seja $\{\mu_n\}_{n \in \mathbb{N}}$ uma sequência de medidas de probabilidade definidas na σ-álgebra de Borel de um espaço métrico (\mathbb{M}, d). Então são equivalentes:

1. $\lim_{n \rightarrow \infty} \left(\int_A f \, d\mu_n \right) = \int_A f \, d\mu$ para toda função $f : \mathbb{M} \rightarrow \mathbb{R}$ limitada e uniformemente contínua.
2. \(\limsup_{n \to \infty} \mu_n(F) \leq \mu(F) \) para todo \(F \subset \mathcal{M} \) fechado.

3. \(\liminf_{n \to \infty} \mu_n(A) \geq \mu(A) \) para todo \(A \subset \mathcal{M} \) aberto.

4. \(\lim_{n \to \infty} \mu_n(E) = \mu(E) \), para todo mensurável \(E \subset \mathcal{M} \) tal que \(\mu(\partial E) = 0 \).
Referências Bibliográficas

