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We consider the equation
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(x · ∇u) = f(u) + β|u|2

∗−2u, x ∈ R
N ,

with β > 0, f superlinear and 2∗ := 2N/(N − 2) for N ≥ 3. We prove that, for
each k ∈ N, there exists β∗ = β∗(k) > 0 such that the equation has at least k pairs
of solutions provided β ∈ (0, β∗). In the proof we use variational methods for the
(even) functional associated to the equation.
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1 Introduction

In this paper we consider the equation

(P ) −∆u−
1

2
(x · ∇u) = f(u) + β|u|2

∗−2u, x ∈ R
N ,

where 2∗ := 2N/(N − 2) for N ≥ 3 and f is a superlinear function with
subcritical growth. The number β is a positive parameter whose smallness
provides the existence of multiple solutions for the equation. According to the
function space in which we seek solutions, they are forced to have a rapid
decay at infinity.

Before presenting our main result let us make some comments about known
results and motivations for our study. We first recall that (P ) is closely related
to the study of self-similar solutions for the heat equation as quoted in the
works of Haraux and Weissler [7], and Escobedo and Kavian [6] (see also [3,8]).
In this direction, equations like (P ) arise naturally when one seek for solutions
of the form ω(t, x) := t−1/(p−2)u(t−1/2x) for the evolution equation

ωt −∆ω = |ω|p−2ω, (t, x) ∈ (0,∞)× R
N .

More precisely, ω(t, x) satisfies the previous equation if and only if u : RN → R

is a solution of (P ) with f(u) = 1/(p − 2)u, β = 1 and 2∗ replaced by the
power p.

In what follows we summarize some known results about a related equation,
namely

−∆u−
1

2
(x · ∇u) = λ|u|q−2u+ |u|p−2u, x ∈ R

N .

Although many of the following results can be stated in a more general set-
ting we present only the simplest cases for simplicity. We first consider the
subcritical case with λ = 0 and 2 < p < 2∗. In this case there hold

1. the equation has s a positive solution
2. the equation possesees infinitely many solutions (possibly changing sign)

Concerning the critical case p = 2∗ with q = 2 we have that

3. the only solution for λ ≤ N/4 is u ≡ 0
4. ifN = 4 the problem has a positive solution if, and only if, λ ∈ (N/4, N/2)
5. if N = 3 there is a positive solution for λ ∈ (1, 3/2) and there is no

positive solution for λ ≥ 3/2
6. if N ≥ 4 and λ ≥ N/2 then the problem has a (nodal) nontrivial solution

Even for p = 2∗ but now considering 2 < q < 2∗, the following happen

2



7. if N ≥ 4 the problem has a positive solution for any λ > 0
8. if N = 3 and 2 < q ≤ 4 the problem has a positive solution for large

values of λ; there is no restriction on λ if 4 < q < 2∗

The results 1, 2, 4 and 5 above are proved by Escobedo and Kavian in [6]. As
far we know, they were the first authors to deal with this class of equations
by using variational methods. It is worthwhile to mention that the results in
the subcritical case (items 1 and 2) are proved for a more general class of
nonlinearities, namely for superlinear functions of the Ambrosetti-Rabinowitz
type. All the existence and nonexistence results in [6] are extended to a more
general class of problems in [3]. In particular, the nonexistence result quoted
in item 3 above can be found in this last paper. Finally, items 6, 7 and 8 are
proved in [8], where the authors also deal with a more general equation (like
in [3]).

The results for the critical case above are clearly related to analogous one for
the Brezis and Nirenberg [2] problem

−∆u = λu+ |u|2
∗−2u, in Ω, u ∈ H1

0 (Ω),

where Ω ⊂ R
N is a bounded domain. There are several papers concerning the

solvability of the above equation. The question of the number of solutions was
studied, among others, by Silva and Xavier in [11]. There the authors consider
a variant of the above problem and obtained several solutions depending on
a small parameter on the critical term. In this paper we obtain an analogous
result for the equation (P ) with small values of the parameter β.

In what follows we present our main assumptions on the nonlinearity f .

(f0) f ∈ C(R,R) is odd
(f1) there exists a1, a2 ∈ R and p ∈ (2, 2∗) such that

|f(s)| ≤ a1 + a2|s|
p−1

(f2) lim
s→0

f(s)

s
= l ∈ R

(f3) there exists θ > 2 such that

0 < θF (s) := θ
∫ s

0
f(τ)dτ ≤ f(s)s

The main result of this paper can be stated as follows.

Theorem 1.1 For any given k ∈ N there exists β∗ = β∗(k) > 0 such that the
equation (P ) has at leat k pairs of solutions provided β ∈ (0, β∗).

According to condition (f0) the functional associated to the equation in (P ) is
even. Thus, we can apply a version of the Symmetric Mountain Pass Theorem
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to get our solutions. Since the equation has critical growth and the domain
is unbounded, the main problem here is the handling of the Palais-Smale
sequences. We try to adapt the argument presented in [11]. However, since
there the authors worked in a bounded domain, some convergence arguments
do not apply. We overcome this new difficulty by using ideias introduced by
Bianchi, Chabrowski and Szulkin [5,4], namely some kind of concentration-
compactness principle at infinity (see also [12] for a related application).

We would like to emphasize that our result can be proved with many other
assumptions on the subcritical term. For instance, we may suppose that f
satisfies conditions analogous to that presented in [11], which are different
(and not comparable) to the usual Ambrosetti-Rabinowitz condition. We also
could consider p-laplace type operator like in [9] with some minor modifications
in our arguments. However, we prefer to consider the simplest case in order to
emphasize the new ideas related with the proof of the Palais-Smale condition.

Throughout the paper we write
∫
u instead of

∫
RN u(x)dx.

The paper is organized as follows. In the next section we present the variational
framework to deal with (P ) and state a compactness result for the associated
functional. By assuming this result we prove the main theorem. In the final
Section 3 we prove the compactness result.

2 Proof of the main theorem

We start this section by noticing that the equation in (P ) can be rewritten in
a divergence form. Indeed, if we set

K(x) := exp(|x|2/4), x ∈ R
N ,

a straightforward calculation shows that the equation in (P ) is equivalent to

−div(K(x)∇u) = K(x)f(u) + βK(x)|u|2
∗−2u, x ∈ R

N . (2.1)

We shall denote by X the Hilbert space obtained as the completion of C∞
c (RN)

with respect to the norm

‖u‖ :=
(∫

K(x)|∇u|2
) 1

2

which is induced by the inner product

(u, v) :=
∫
K(x)(∇u · ∇v).
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For each q ∈ [2, 2∗] we denote by Lq
K the following space

Lq
K :=

{
u measurable in R

N : ‖u‖q :=
(∫

K(x)|u|q
)1/q

<∞

}
.

Due to the rapid decay at infinity of the functions belonging to X we have the
following embedding result proved in [6].

Proposition 2.1 The embedding X →֒ Lq
K is continuous for all q ∈ [2, 2∗]

and it is compact for all q ∈ [2, 2∗).

By using the above result we can prove that is well defined the functional
Iβ : X → R given by

Iβ(u) :=
1

2

∫
K(x)|∇u|2 −

∫
K(x)F (u)−

β

2∗

∫
K(x)|u|2

∗

,

where F (s) :=
∫ s
0 f(τ)dτ . Standard calculations and Proposition 2.1 show that

Iβ ∈ C1(X,R) and the derivative of Iβ at the point u is given by

I ′β(u)v =
∫
K(x)∇u · ∇v −

∫
K(x)f(u)v − β

∫
K(x)|u|2

∗−2uv,

for any v ∈ X . Hence, the critical points of Iβ are precisely the weak solutions
of equation (2.1).

For future reference we remark that the compactness of the embedding X →֒
L2
K and standard spectral theory for compact operators shows that the linear

problem

(LP ) −div(K(x)∇u) = λK(x)u, x ∈ R
N ,

has a sequence of positive eigenvalues (λn)n∈N such that limn→∞ λn = +∞.
Moreover, if we denote by ϕn a normalized eigenfunction associated to λn, the
following variational inequality holds

λj+1

∫
K(x)u2 ≤

∫
K(x)|∇u|2, ∀ u ∈ span{ϕ1, . . . , ϕj}

⊥. (2.2)

Let E be a real Banach space and I ∈ C1(E,R). We say that I satisfies the
Palais-Smale condition at level c ∈ R ((PS)c for short) if every sequence (un) ⊂
E such that I(un) → c and I ′(un) → 0 possesses a convergent subsequence.
In order to prove our main results we shall use the following version of the
Symmetric Mountain Pass Theorem (see [1]).

Theorem 2.2 Let E = V ⊕ W be a real Banach space with dimV < ∞.
Suppose I ∈ C1(E,R) is an even functional satisfying I(0) = 0 and
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(I1) there are constants ρ, α > 0 such that I|Bρ(0)∩W ≥ α ;

(I2) there is a subspace Ṽ of E with dimV < dim Ṽ <∞ such that max
u∈Ṽ

I(u) ≤
M for some constant M > 0;

(I3) considering M > 0 given by (I2), I satisfies (PS)c for 0 < c < M .

Then I possesses at least dim Ṽ − dim V pairs of nontrivial critical points.

As we will see the geometric conditions imposed by the above theorem are
easily checked for superlinear functionals like ours. The difficulty in proving
our main theorem is related with the compactness condition. So, the next
result is the key point of our proof.

Proposition 2.3 Suppose f satisfies (f1) and (f2). Then, for any given M >
0, there exists β∗ = β∗(M) > 0 such that, for any β ∈ (0, β∗), the functional
Iβ satisfies the (PS)c condition for any c ≤M .

We postpone the proof of the above result for the next section. In what follows,
we show how it can be used to prove our main theorem.

Proof of Theorem 1.1. Since the sequence of eigenvalues λj of (LP ) goes to
infinity there exists j ∈ N such that l < λj+1, where l ∈ R is given by (f2).
We set

V := span{ϕ1, . . . , ϕj}, W := V ⊥,

in such way that X = V ⊕W .

Given ε > 0 satisfying 0 < l+ ε < λj+1, it follows from (f1) and (f2) that, for
some c1 > 0, there holds

|F (s)| ≤
(l + ε)

2
s2 + c1|s|

p, ∀ s ∈ R.

Hence, we can use the variational inequality (2.2) and the embedding X →֒ Lq
K

to get, for any u ∈ W ,

Iβ(u) ≥
1

2
‖u‖2 −

1

2
(l + ε)

∫
K(x)u2 − c1‖u‖

p
p −

β

2∗
‖u‖2

∗

2∗

≥
1

2

(
1−

(l + ε)

λj+1

)
‖u‖2 − c2‖u‖

p − c3‖u‖
2∗ .

Since (l+ ε) < λj+1 and 2 < p < 2∗, a straightforward computations provides
α, ρ > 0 such that Iβ(u) ≥ α whenever u ∈ Bρ(0) ∩ W , and therefore the
functional Iβ verifies the condition (I1) of Theorem 2.2.

Given k ∈ N we set m := k + dimV , consider {ψi}
m
i=1 ⊂ C∞

0 (RN ) a collection
of smooth function with disjoint supports and define

Ṽ := span{ψ1, . . . , ψm}.
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Notice that dim Ṽ = m and that, for some R > 0, the support of any functions
belonging to Ṽ is contained in BR(0) ⊂ R

N . Moreover, in view of (f3),

F (s) ≥ c4|s|
θ − c5, ∀ s ∈ R,

with c4, c5 > 0. Then, for any u ∈ Ṽ , we have that

Iβ(u) ≤
1

2
‖u‖2 − c6‖u‖

θ − c5|BR(0)| → −∞, as ‖u‖ → +∞,

where we have used the fact that all the norms in Ṽ are equivalent. Since
dim Ṽ <∞ the above expression providesM > 0 such that max

u∈Ṽ
I(u) ≤M ,

that is, I satisfies (I2).

We now apply Proposition 2.3 to to obtain β∗ ∈ R such that Iβ verifies (PS)c
for any c ≤M , provided β ∈ (0, β∗). For such β, it follows from Theorem 2.2
that Iβ has at least k = dim Ṽ −dim V pairs of nontrivial critical points. This
concludes the proof of the theorem. ✷

3 The local Palais-Smale condition

We devote this section to the proof of Proposition 2.3. It will be done in several
steps. From now on we denote by M(RN) the Banach space of finite Radon
measures over R

N and we shall assume that (un) ⊂ X a (PS)c sequence at
level c ≤M for Iβ , namely

Iβ(un) → c ≤M and I ′β(un) → 0.

Since K ≥ 0 and f satisfies (f3), it is standard to check that (un) is bounded
in X . Hence, we may suppose that, for some u ∈ X , there hold





un ⇀ u weakly in X,

un → u strongly in Lq
K , for any 2 ≤ q < 2∗,

un(x) → u(x) a.e. in R
N .

(3.1)

Since C∞
0 (RN ) is dense in X we can easily check that I ′β(u) = 0.

In what follows we denote by SK the best constant for the embedding X →֒
L2∗

K , namely

SK := inf
u∈X\{0}

{∫
K(x)|∇u|2,

∫
K(x)|u|2

∗

= 1
}
.
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The above inequality implies that SK(
∫
K(x)|u|2

∗

)2/2
∗

≤
∫
K(x)|∇u|2, for any

u ∈ X . Since C∞
c (RN) is dense in X we can argue along the same lines of

the proof the classical concentration-compactness principle due to Lions [10,
Lemma I.1], by using this last weighted inequality instead of the usual Sobolev
one, to obtain two measures µ, ν ∈ M(RN) such that,

K(x)|∇un|
2 dx ⇀ µ ≥ K(x)|∇u|2dx+

∑

j∈J

µjδxj
, (3.2)

K(x)|un|
2∗dx ⇀ ν = K(x)|u|2

∗

dx+
∑

j∈J

νjδxj
, (3.3)

with the above convergence holding weakly in the sense of measures, J being
an at most countable family, {xj}j∈J a family of points in R

N and {µj}j∈J ,
{νj}j∈J families of nonnegative numbers verifying SK(νj)

2/2∗ ≤ µj, for each
j ∈ J .

Lemma 3.1 For each j ∈ J we have either νj = 0 or νj ≥ (SK/β)
N/2.

Proof. Let φ ∈ C∞
0 (RN) be such that 0 ≤ φ ≤ 1, φ ≡ 1 in B1(0) and φ ≡ 0 in

B2(0)
c. For any fixed j ∈ K, we set φε

j(x) := φ ((x− xj)/ε), where ε > 0. We
have that

I ′β(un)(unφ
ε
j) =

∫
K(x)|∇un|

2φε
j +

∫
K(x)(∇un · ∇φ

ε
j)un

−
∫
K(x)f(un)unφ

ε
j − β

∫
K(x)|un|

2∗φε
j.

(3.4)

Since φ has compact support, the strong convergence in (3.1), the definition
of φ and the Lebesgue Theorem imply that

lim
ε→0

lim sup
n→∞

∫
K(x)f(un)unφ

ε
j = 0. (3.5)

By using Hölder’s inequality and a change of variables we get

∣∣∣∣
∫
K(x)(∇un · ∇φ

ε
j)un

∣∣∣∣ ≤ ‖∇φ‖L∞(RN )‖un‖

( ∫

B2ε(xj)
K(x)|un|

2 dx

)1/2

.

Since (un) is bounded in X and un → u strongly in L2(B2ε(xj)), we infer from
the above inequality that

∣∣∣∣
∫
K(x)(∇un · ∇φ

ε
j)un

∣∣∣∣ ≤ c1

(∫

B2ε(xj)
ψ(x)2

)1/2

,

for some c1 > 0 and ψ ∈ L2(B2ε(xj)) independent of ε. It follows from
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Lebesgue Theorem that

lim
ε→0

lim sup
n→∞

∫
K(x)(∇un · ∇φ

ε
j)un = 0.

Since I ′β(un) → 0 and (unφ
ε
j) is bounded in X , we can take the lim sup as

n→ +∞ and the limit as ε → 0 in the expression (3.4), and use all the above
statements to get

0 = lim
ε→0

(∫
φε
j dµ− β

∫
φε
j dν

)
≥ µj − βνj,

and therefore µj ≤ βνj . Recalling that SKν
2/2∗

j ≤ µj we conclude that, if

νj > 0, then νj ≥ (SK/β)
N/2. The lemma is proved. ✷

Lemma 3.2 If

β < β∗ :=


S

N/2
K

NM




2/(N−2)

then νj = 0 for any j ∈ J .

Proof. It follows from (f3) and θ > 2 that

c+ on(1) = Iβ(un)−
1

2
I ′β(un)un

≥
∫
K(x)

(
1

θ
f(un)un − F (un)

)
+ β

(
1

2
−

1

2∗

) ∫
K(x)|un|

2∗

≥
β

N

∫
K(x)|un|

2∗ .

(3.6)
If νj 6= 0 for some j ∈ J then, taking the limit in the above expression and
using the last lemma, we obtain

M ≥ c ≥
β

N
νj ≥

β

N

(
SK

β

)N/2

> M,

which does not make sense. ✷

In view of the above lemma and (3.2) we conclude that

K(x)|un|
2∗dx ⇀ K(x)|u|2

∗

dx weakly in the sense of measures. (3.7)

Hence, we have the following convergence result, which is the keystone for the
proof of the main result of this section.
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Lemma 3.3 If

β < β∗ :=


S

N/2
K

NM




2/(N−2)

then, up to a subsequence,

lim
n→∞

∫
K(x)|un|

2∗ =
∫
K(x)|u|2

∗

.

Proof. The pointwise convergence in (3.1) and Fatou’s Lemma provide

∫
K(x)|u|2

∗

≤ lim inf
n→∞

∫
K(x)|un|

2∗ ,

and therefore it suffices to prove that

lim sup
n→∞

∫
K(x)|un|

2∗ ≤
∫
K(x)|u|2

∗

. (3.8)

By assuming that β > 0 satisfies the hypothesis of the lemma we first prove
that, for any R > 0, there holds

lim
n→∞

∫

BR(0)
K(x)|un|

2∗dx =
∫

BR(0)
K(x)|u|2

∗

dx. (3.9)

Indeed, for any fixed k ∈ N we consider ϕk ∈ C∞
0 (RN) such that 0 ≤ ϕk ≤ 1,

ϕk ≡ 1 in BR−(1/k)(0) and ϕk ≡ 0 in BR(0)
c. It follows from (3.7) that

lim inf
n→∞

∫

BR(0)
K(x)|un|

2∗dx ≥ lim inf
n→∞

∫
ϕk(x)K(x)|un|

2∗dx

=
∫
ϕk(x)K(x)|u|2

∗

dx.

By taking k → ∞ and using Lebesgue’s Theorem we conclude that

lim inf
n→∞

∫

BR(0)
K(x)|un|

2∗dx ≥
∫

BR(0)
K(x)|u|2

∗

dx.

A dual argument with ϕk ∈ C∞
0 (RN) such that 0 ≤ ϕk ≤ 1, ϕk ≡ 1 in BR(0)

and ϕk ≡ 0 in BR+(1/k)(0)
c proves that

lim sup
n→∞

∫

BR(0)
K(x)|un|

2∗dx ≤
∫

BR(0)
K(x)|u|2

∗

dx

and therefore (3.9) holds.
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In view of the convergence in (3.9) we have that

lim sup
n→∞

∫
K(x)|un|

2∗ = lim sup
n→∞

(∫

|x|≥R
+
∫

BR(0)

)

= lim sup
n→∞

∫

|x|≥R
K(x)|un|

2∗dx+
∫

BR(0)
K(x)|u|2

∗

dx.

Letting R → +∞ we conclude from Lebesgue’s Theorem that

lim sup
n→∞

∫
K(x)|un|

2∗ = ν∞ +
∫
K(x)|u|2

∗

, (3.10)

where
ν∞ := lim

R→∞
lim sup
n→∞

∫

|x|≥R
K(x)|un|

2∗dx.

Claim. we have either ν∞ = 0 or ν∞ ≥ (SK/β)
N/2

By assuming the claim let us show that the second alternative above does not
occurs. As in (3.6), for any R > 0 we have that

c+ on(1) ≥
β

N

∫
K(x)|un|

2∗ ≥
β

N

∫

|x|≥R
K(x)|un|

2∗dx

and therefore

M ≥ c ≥ lim
R→∞

lim sup
n→∞

β

N

∫

|x|≥R
K(x)|un|

2∗dx =
β

N
ν∞.

Since β < (S
N/2
K N−1M−1)2/(N−2) we can argue as in the the proof of Lemma

3.2 to conclude that ν∞ = 0. Thus, (3.8) follows from (3.10) and the lemma
is proved.

It remains to prove the claim. In order to achieve this objective we adapt
some arguments of [4,5] (see also [13]) by introducing another quantity which
measures the loss of mass at infinity, namely

µ∞ := lim
R→∞

lim sup
n→∞

∫

|x|≥R
K(x)|∇un|

2dx

Following the same arguments of [13, Lemma 1.40] and the weighted inequality
SK(

∫
K(x)|u|2

∗

)2/2
∗

≤
∫
K(x)|∇u|2 for u ∈ X , we can prove that SKν

2/2∗

∞ ≤
µ∞.

For R > 0 fixed we consider a cut-off function ψR such that 0 ≤ ψR ≤ 1,
ψR ≡ 0 in BR(0) and ψR ≡ 1 in BR+1(0)

c. Since (unψR) is bounded in X we
have that I ′β(un)(unψR) = on(1), and therefore

−An +
∫
K(x)f(un)unψR = Cn − βDn + on(1),
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where

An :=
∫
K(x)(∇un · ∇ψR)un, Cn :=

∫
ψRK(x)|∇un|

2,

Dn :=
∫
ψRK(x)|un|

2∗ .

By taking the lim sup as n→ ∞ and recalling the strong convergence in (3.1)
we obtain

lim sup
n→∞

(−An) +
∫
K(x)f(u)uψR = lim sup

n→∞
(Cn − βDn)

≥ lim sup
n→∞

Cn − β lim sup
n→∞

Dn.

By Lebesgue Theorem we have that limR→∞

∫
K(x)f(u)uψR = 0, and there-

fore the above expression can be rewritten as

lim sup
n→∞

(−An) ≥ lim sup
n→∞

Cn − β lim sup
n→∞

Dn + oR(1), (3.11)

with oR(1) denoting a quantity approaching zero as R → ∞.

By Hölder’s inequality,

−An ≤ ‖un‖




∫

BR+1(0)\BR(0)

K(x)|un|
2|∇ψR|

2




1/2

≤ c1




∫

BR+1(0)\BR(0)

K(x)|un|
2dx




1/2

,

and therefore the local convergence in (3.1) implies that

lim sup
n→∞

(−An) ≤ c1




∫

BR+1(0)\BR(0)

K(x)|u|2dx




1/2

.

We infer from the above inequality and Lebesgue Theorem that

lim sup
R→∞

lim sup
n→∞

(−An) ≤ 0. (3.12)

Moreover, since

∫

RN\BR+1(0)
K(x)|∇un|

2 dx ≤ Cn ≤
∫

RN\BR(0)
K(x)|∇un|

2 dx,

we have that
lim
R→∞

lim sup
n→∞

Cn = µ∞. (3.13)
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The same argument implies that

lim
R→∞

lim sup
n→∞

Dn = ν∞. (3.14)

Hence, by taking the lim sup as R → ∞ in (3.11) and using (3.12)-(3.14) we
conclude that µ∞ ≤ βν∞. Since SKν

2/2∗

∞ ≤ µ∞ we conclude that, if ν∞ > 0,
then ν∞ ≥ (SK/β)

N/2. The claim is proved. ✷

We are now ready to prove the main result of this section.

Proof of Proposition 2.3. Since I ′β(un)un = on(1), the strong convergence in
(3.1) and Lemma 3.3 imply that

on(1) = ‖un‖
2 −

∫
K(x)f(un)un − β

∫
K(x)|un|

2∗

= ‖un‖
2 −

∫
K(x)f(u)u− β

∫
K(x)|u|2

∗

+ on(1)

= ‖un‖
2 − ‖u‖2 + I ′β(u)u+ on(1).

(3.15)

Since I ′β(u) = 0 we infer that ‖un‖ → ‖u‖. This and the weak convergence of
un in X implies that un → u strongly in X and proves the proposition. ✷

Acknowledgement: The authors thank the referee for pointing us a little
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