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Abstract

We consider the system{
−∆u+ V (x)u+K(x)ϕ(x)u = a(x)|u|p−1u, x ∈ R3,

−∆ϕ = K(x)u2, x ∈ R3,
(S)

where 3 < p < 5 and the potentials K(x), a(x) and V (x) has finite limits
as |x| → +∞. By imposing some conditions on the decay rate of the
potentials we obtain the existence of a nonzero weak solution. In the
proof we apply variational methods.

1 Introduction

In this note we are concerned with the existence of a positive solution for the
nonlinear system{

−∆u+ V (x)u+K(x)ϕ(x)u = a(x)|u|p−1u, x ∈ R3,

−∆ϕ = K(x)u2, x ∈ R3,
(S)

where 3 < p < 5 and the potentials K(x), a(x) and V (x) satisfy some basic
assumptions.

∗The three authors were partially supported by CNPq/Brazil. The first two authors were
partially supported by PROEX/CAPES, UnB.
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As quoted in the paper [4], this system arises in many interesting physical
context. According to a classical model, the interaction of a charge particle with
an electromagnetic field can be described by coupling the nonlinear Schrödinger
and the Maxwell’s equations. In particular, if one is looking for electrostatic-
type solutions, it is natural to solve (S). In many papers the potential V
has been supposed constant or radial (see for instance [1, 2, 8] and references
therein). Here, motivated by the recent results by G. Cerami and G. Vaira [6]
we will assume the following hypotheses:

(H1) there exist cK , α > 0 such that

0 ≤ K(x) ≤ cKe−α|x|, for a.e. x ∈ R3;

(H2) a, V ∈ C(R3,R) are positive continuous functions such that

lim
|x|→+∞

V (x) = V∞ > 0, lim
|x|→+∞

a(x) = a∞ > 0. (1.1)

Furthermore, it is necessary to have some control on the asymptotic behavior
of the potentials V and a. So, we also assume that

(H3) there exist cV , ca, γ, θ > 0 such that, for each x ∈ R3, there hold

V (x) ≤ V∞ + cV e
−γ|x|, a(x) ≥ a∞ + cae

−θ|x|, (1.2)

with θ < min{γ, α} ≤ max{γ, α} < 2
√
V∞.

Our main result can be stated as follows:

Theorem 1.1 If (H1) − (H3) hold, then the system (S) has a positive ground
state solution.

For the proof, we use an approach similar to that of [6]. It consists in apply-
ing the Mountain Pass Theorem together with some sort of Splitting Lemma.
This former result enables us to overcome the lack of compactness of the Sobolev
embeddings caused by the fact the the problem is set in whole space RN . Hence,
we need to perform a careful investigation of the behavior of the Palais-Smale
sequences for the energy functional associated with system (S). Actually, we
identify the levels in which the Palais-Smale condition can fail, giving a rep-
resentation theorem for such sequences, and showing that the only obstacle to
prove compactness are the solutions of the limit problem

−∆w + V∞w = a∞|w|p−1w, x ∈ R3. (P∞)

In [6] the authors considered the same problem with V ≡ 1 and some integra-
bility conditions on the function a(x)−a∞. By assuming that the L2-norm of the
weightK is smaller than a number related with the least energy level of two limit
problems, they obtained the existence of a positive ground state solution. On
the other hand, in [10] G. Vaira supposed that V ≡ 1, a(x) → a∞, K(x) → K∞
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as |x| → +∞, with a∞, K∞ > 0. Under some integrability conditions on
a(x)− a∞ and K(x)−K∞, and some other mild conditions on the potentials,
she also obtained a positive solution. Our Theorem 1.1 complements (and is
not comparable with) the existence results of [6, 10].

We finally point out that a slight modification of our approach allows us to
drop condition (H3) by the following one (see Remark 3.3):

(H̃3) there exist cV , ca, γ, θ > 0 such that, for each x ∈ R3, there hold

V (x) ≤ V∞ − cV e
−γ|x|, a(x) ≥ a∞ − cae

−θ|x|,

with γ < min{θ, α} ≤ max{θ, α} < 2
√
V∞.

The paper is organized as follows: in the next section we present the vari-
ational setting of the problem and state the compactness lemma that we shall
use. In Section 3 we prove the main theorem.

2 The variational setting

Throughout the paper we write
∫
u instead of

∫
R3 u(x)dx. For each u ∈ W 1,2(R3)

we define

∥u∥ :=

(∫
(|∇u|2 + V (x)u2)

)1/2

.

It follows from (H2) that ∥ · ∥ is a norm which is equivalent to the usual one of
W 1,2(R3). For anyA ⊂ R3 and u ∈ Lp(A) we denote ∥u∥Lp(A) := (

∫
A
|u|pdx)1/p.

If A = R3 we write only ∥u∥p. Moreover, in what follows, without any loss of
generality, we assume that a∞ = 1.

Since K ∈ L2(R3), a straightforward application of the Lax-Milgram theo-
rem implies that, for any given u ∈ W 1,2(R3), there exists a unique ϕ = ϕu ∈
D1,2(R3) such that∫

∇ϕu · ∇v =

∫
K(x)u2v, for all v ∈ D1,2(R3).

Actually, the function ϕu weakly solves −∆ϕ = K(x)u2 and we can construct
the application ϕ : W 1,2(R3) → D1,2(R3) which associates to each u ∈ W 1,2(R3)
the function ϕ(u) as above. From simplicity we write only ϕu to denote ϕ(u).
We collect below some properties of the map ϕ (see [6, Lemma 2.1]).

Lemma 2.1 The following hold:

1. ϕ is continuous and maps bounded sets into bounded sets;

2. ϕtu = t2ϕu, for any u ∈ W 1,2(R3), t > 0;

3. if un ⇀ u weakly in W 1,2(R3) then ϕun ⇀ ϕu weakly in D1,2(R3).

We shall use the following technical result.
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Lemma 2.2 If (un) ⊂ W 1,2(R3) is such that un ⇀ u weakly in W 1,2(R3), then

lim
n→∞

∫
K(x)ϕunu

2
n =

∫
K(x)ϕuu

2

and

lim
n→∞

∫
K(x)ϕununφ =

∫
K(x)ϕuuφ, for all φ ∈ W 1,2(R3).

Proof. We have that∫
K(x)(ϕunu

2
n − ϕuu

2) =

∫
K(x)ϕun(u

2
n − u2) +

∫
K(x)u2(ϕun − ϕu).

It follows from Lemma 2.1 that ϕun
⇀ ϕu weakly in D1,2(R3), and therefore

the last term above goes to zero. Hence, in order to prove the first statement of
the lemma, it suffices to check that

lim
n→+∞

∫
K(x)ϕun(u

2
n − u2) = 0. (2.1)

By using Hölder and Sobolev inequality we get∣∣∣∣∫ K(x)ϕun(u
2
n − u2)

∣∣∣∣ ≤ ∥ϕun∥6
(∫

K(x)
6
5 |u2

n − u2| 65
)5/6

≤ S∥un∥D1,2

(∫
K(x)

6
5 |u2

n − u2| 65
)5/6

,

(2.2)

where S is related with the embedding D1,2(R3) ↪→ L6(R3).
For any given ρ > 0, we can use Hölder inequality twice to obtain∫

R3\Bρ(0)

K(x)
6
5 |u2

n − u2| 65 dx ≤ ∥K∥6/5L2(R3\Bρ(0))

(∫
|u2

n − u2|3
)2/5

.

Hölder inequality and the boundedness of (un) in L6(R3) provide c1 > 0 such
that (∫

|u2
n − u2|3

)2/5

≤ ∥un − u∥6/56 ∥un + u∥6/56 ≤ c1. (2.3)

Moreover, since the condition (H1) implies K ∈ L2(R3), we can choose ρ > 0
large in such a way that ∥K∥L2(R3\Bρ(0)) < ε. Thus, we infer from the above
inequalities that ∫

R3\Bρ(0)

K(x)
6
5 |u2

n − u2| 65 dx ≤ c1ε. (2.4)

For any M > 0 we define the set ΩM := {x ∈ Bρ(0) : K(x) ≥ M}. Since
K ∈ L2(R3), the Lebesgue measure of ΩM goes to zero as M → ∞. So, for
some M > 0 sufficiently large, we have that(∫

ΩM

K(x)2dx

)3/5

≤ ε.
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Then we can use Hölder inequality and (2.3) again to get∫
Bρ(0)

K(x)
6
5 |u2

n − u2| 65 dx =

∫
ΩM

K(x)
6
5 |u2

n − u2| 65 dx

+

∫
Bρ(0)\ΩM

K(x)
6
5 |u2

n − u2| 65 dx

≤ c2ε+M
6
5

∫
Bρ(0)\ΩM

|u2
n − u2| 65 dx.

(2.5)

On the other hand∫
Bρ(0)\ΩM

|u2
n − u2|

6
5 dx ≤ ∥un + u∥6/5

L12/5(Bρ(0))
∥un − u∥6/5

L12/5(Bρ(0))
.

Since un → u strongly in L
12
5 (Bρ(0)), we obtain

lim
n→∞

∫
Bρ(0)\ΩM

|u2
n − u2| 65 dx = 0,

and therefore it follows from (2.5) that∫
Bρ(0)

K(x)
6
5 |u2

n − u2| 65 dx ≤ c2ε+ on(1),

where on(1) stands for a quantity approaching zero as n → ∞. The above
expression, (2.4) and (2.2) imply (2.1) and the proof of the first statement of
the lemma is concluded. The second one can be proved in the same way. We
omit the details. �

The main interest in function ϕ comes from the fact that it enables us dealing
with system (P ) as a single equation. Actually, it can be proved that (u, ϕ) ∈
W 1,2(R3) × D1,2(R3) is a solution of (P ) if, and only if, u ∈ W 1,2(R3) is a
non-negative critical point of the C1-functional I : W 1,2(R3) → R given by

I(u) :=
1

2
∥u∥2 +

∫
K(x)ϕu(x)u

2 − 1

p+ 1

∫
a(x)(u+)p+1,

where u+(x) := max{u(x), 0}. Since we intend to apply critical point theory to
find such critical points, we need to prove some kind of compactness properties
for the functional I. In this setting, the limit problem (P∞) plays an important
role. We observe that weak solutions of (P∞) are precisely the critical points of
the functional

I∞(w) :=
1

2

∫
(|∇w|2 + V∞w2)− 1

p+ 1

∫
(w+)p+1, w ∈ W 1,2(R3).

Let N∞ be the Nehari manifold of I∞, that is

N∞ := {w ∈ W 1,2(R3) \ {0} : I ′∞(w)w = 0}
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and consider the related minimization problem

c∞ := inf
w∈N∞

I∞(w).

The proof of the next result can be found in Berestycki-Lions [5].

Proposition 2.3 Problem (P∞) has a positive and radially symmetrical solu-
tion ω ∈ W 1,2(R3) such that I∞(ω) = c∞. Moreover, for any 0 < δ <

√
V∞,

there exists a constant C = C(δ) > 0 such that

ω(x) ≤ Ce−δ|x|, for all x ∈ R3. (2.6)

In order to prove that the functional I satisfies a local Palais-Smale condition
we shall use the following version of a result due to Struwe [9] (see also [3]).

Lemma 2.4 Let (un) ⊂ W 1,2(R3) be such that

I(un) → c, I ′(un) → 0

and un ⇀ u weakly in W 1,2(R3). Then I ′(u) = 0 and we have either

(a) un → u strongly in W 1,2(R3), or

(b) there exists k ∈ N, (yjn) ∈ R3 with |yjn| → ∞, j = 1, . . . , k, and nontrivial
solutions w1, . . . , wk ∈ W 1,2(R3) of the problem (P∞), such that

I(un) → I(u) +
k∑

j=1

I∞(wj) (2.7)

and ∥∥∥∥∥∥un − u−
k∑

j=1

wj(· − yjn)

∥∥∥∥∥∥→ 0.

Proof. To prove this result one can use Lemma 2.2 and similar arguments to
that of [6]. Hence we omit the details. �

Corollary 2.5 If (un) ⊂ W 1,2(R3) is such that I(un) → c < c∞ and I ′(un) →
0, then (un) has a convergent subsequence.

Proof. Let (un) ⊂ W 1,2(R3) be as in the previous statement. Since p > 3 by a
standard argument it follows that (un) is bounded. Hence, up to a subsequence,
un ⇀ u0 weakly in W 1,2(R3). By Lemma 2.4 we have I ′(u0) = 0 and therefore

I(u0) = I(u0)−
1

2
I ′(u0)u0 =

(
1

2
− 1

p+ 1

)∫
a(x)(u+

0 )
p+1 ≥ 0.

If un ̸→ u0 in W 1,2(R3), we can invoke Lemma 2.4 again to obtain k ∈ N and
nontrivial solutions w1, . . . , wk of (P∞) satisfying

lim
n→∞

I(un) = c = I(u0) +
k∑

j=1

I∞(wj) ≥ kc∞ ≥ c∞,

contrary to the hypothesis. Hence un → u0 strongly in W 1,2(R3). �
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3 The proof of Theorem 1.1

We devote this section to the proof of our main theorem. The idea is looking
for critical points of the functional I by considering the following minimization
problem

c0 := inf
u∈N

I(u),

where N is the Nehari manifold of I, namely

N :=
{
u ∈ W 1,2(R3) \ {0} : I ′(u)u = 0

}
.

From now on we denote by ω a positive ground state solution of the problem
(P∞). For xn := (0, · · · , n) we also set

ωn(x) := ω(x− xn).

Since p > 3 we can easily check that, for each n ∈ N, there exists tn > 0 such
that tnωn ∈ N . Moreover, the following holds

Lemma 3.1 The sequence (tn) satisfies lim
n→+∞

tn = 1.

Proof. Since I ′(tnωn)(tnωn) = 0, we can use item 2 of Lemma 2.1 to get

0 = t2n

∫
(|∇ωn|2 + V (x)ω2

n) + t4n

∫
K(x)ϕωnω

2
n − tp+1

n

∫
a(x)ωp+1

n . (3.1)

By using (1.1), a change o variables and Lebesgue Theorem we get

lim
n→∞

∫
V (x)ω2

n = lim
n→∞

∫
V (x+ xn)ω

2 =

∫
V∞ω2

and

lim
n→∞

∫
a(x)ωp+1

n = lim
n→∞

∫
a(x+ xn)ω

p+1 =

∫
ωp+1.

Moreover, by item 1 of Lemma 2.1, we also have that∣∣∣∣∫ K(x)ϕωn(x)ω
2
n

∣∣∣∣ ≤ ∥K∥2∥ϕωn∥6∥ω∥6 ≤ c1,

for some c1 > 0.
We claim that (tn) is bounded. Indeed, if this is not the case, we can divide

equation (3.1) by tp+1
n , take the limit as n → ∞ and use p + 1 > 4 and the

above statements to conclude that
∫
ωp+1 = 0, which is a contradiction. Hence

(tn) is bounded. Moreover, for some t̄ > 0, there holds tn ≥ t̄ > 0. Otherwise,
since ∥tnωn∥W 1,2(R3) = tn∥ω∥W 1,2(R3), we would have dist(N , 0) = 0, which is
impossible.

The above reasoning shows that, up to a subsequence, tn → t0 > 0. We
claim that

lim
n→∞

∫
K(x)ϕωn(x)ω

2
n = 0. (3.2)
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Assuming the claim and taking the limit in (3.1) we obtain

0 = t20

∫
(|∇ω|2 + V∞ω2)− tp+1

0

∫
ωp+1 = I ′∞(t0ω)(t0ω).

Since ω ∈ N∞ we conclude that t0 = 1.
It remains to prove the claim. First notice that, by item 1 of Lemma 2.1,

we have that ∥ϕωn∥6 ≤ c2, for some c2 > 0. Given ε > 0 we choose ρ > 0 such
that ∥K∥L2(R3\Bρ(0)) < ε. Thus,∣∣∣∣∣
∫
R3\Bρ(0)

K(x)ϕωn(x)ω
2
ndx

∣∣∣∣∣ ≤ ∥K∥2L2(R3\Bρ(0))
∥ϕωn∥6∥ω∥26 ≤ c2∥ω∥6ε. (3.3)

On the other hand, Hölder’s inequality and a change of variables provide∣∣∣∣∣
∫
Bρ(0)

K(x)ϕωn(x)ω
2
ndx

∣∣∣∣∣ ≤ ∥K∥2∥ϕωn∥6

(∫
Bρ(xn)

ω6dx

)1/3

= on(1),

since ω ∈ L6(R3) and |xn| → ∞, as n → ∞. The above inequality and (3.3)
establishes (3.2). The proof is finished. �

The following result contains the core estimate for the proof of our main
theorem.

Proposition 3.2 If (H1)− (H3) hold, then 0 < c0 < c∞.

Proof. Let ω, ωn and tn > 0 be as in the beginning of this section. Since
tnωn ∈ N , a straightforward calculation provides

c0 ≤ I(tnωn) = I∞(tnω) +
t2n
2
An +

t4n
4
Dn +

tp+1
n

p+ 1
En

≤ c∞ +
t2n
2
An +

t4n
4
Dn +

tp+1
n

p+ 1
En,

(3.4)

where

An :=

∫
(V (x)− V∞)ω2

n, Dn :=

∫
K(x)ϕωn(x)ω

2
n

and

En :=

∫
(1− a(x))ωp+1

n .

Now we need to estimate the decay rate of each of the above terms. It follows
from the first estimate in (1.2) that

An =

∫
(V (x)− V∞)ω2

n ≤ cV

∫
e−γ|x|ω2

n = cV

∫
e−γ|x+xn|ω2.

Since |x+ xn| ≥ |xn| − |x| = n− |x|, we obtain

An ≤ cV e
−γn

∫
eγ|x|ω2 = CV e

−γn, (3.5)
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with CV > 0, where we have used in the last equality the exponential decay of
ω given in Proposition 2.3 and that γ < 2

√
V∞, which implies that

∫
e−γ|x|ω2 <

∞. In order to estimate Dn we use Hölder’s inequality, α < 2
√
V∞ and argue

as above to get

Dn =

∫
K(x)ϕωn(x)ω

2
n ≤ ∥ϕωn∥6

(∫
K(x)

6
5ω

12
5
n

)5/6

≤ c1

(∫
e−

6α
5 |x+xn|ω

12
5

)5/6

≤ CKe−αn,

(3.6)

with CK > 0. We now use the second inequality in (1.2) to estimate En as
follows

En =

∫
(1− a(x))ωp+1

n ≤ −ca

∫
e−θ|x|ωp+1

n = −ca

∫
e−θ|x+xn|ωp+1.

Since |x+ xn| ≤ n+ |x|, we obtain Ca > 0 such that

En ≤ −cae
−θn

∫
e−θ|x|ωp+1 = −Cae

−θn. (3.7)

By replacing (3.5)-(3.7) in (3.4) we obtain,

c0 ≤ c∞ + e−θn

(
t2n
2
CV e

(θ−γ)n +
t4n
4
CKe(θ−α)n − tp+1

n

p+ 1
Ca

)
= c∞ + e−θn(on(1)− Ca),

where we have used in the last equality that tn → 1 and θ < min{α, γ}. Since
Ca > 0 we can take n large enough to conclude that c0 < c∞. The proposition
is proved. �

We are now ready to obtain the ground state solution of (S).

Proof of Theorem 1.1. Let (un) ⊂ N be such that I(un) → c0. Since N is a
C1 regular manifold and is closed (see [6, Lemma 3.1]), we can use Ekeland’s
Variational Principle to obtain that

I(un) → c0 and I ′(un) → 0.

Proposition 3.2 and Corollary 2.5 imply that the sequence (un) strongly con-
verges to a function u0 ∈ W 1,2(R3) such that I(u0) = c0 > 0 and I ′(u0) = 0.
Setting u−

0 (x) := max{−u0(x), 0}, we can use 0 = I ′(u0)u0
− = −∥u−

0 ∥ to con-
clude that u0 ≥ 0 a.e. in R3. It follows from elliptic regularity and the strong
maximum principle that u > 0 in R3. The theorem is proved. �

Remark 3.3 A simple inspection of the proof of Proposition 3.2 shows that we
can drop the condition (H3) by the hypotheses (H̃3) stated in the introduction.
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Indeed, with this dual condition what happens is that term An of the proof of
the proposition becomes negative while the term En is positive. The choices of
the numbers α, γ and θ guarantee that the desired inequality also holds in this
setting.
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