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Abstract

We prove the existence of two nontrivial solutions for the variational
inequality

∫
Ω
∇u∇(v− u) ≥

∫
Ω
f(u)(v− u) for every v belonging to some

convex set, where Ω ⊂ R
2. The function f has critical exponential growth,

in the sense that it behaves like exp(α0s
2) as |s| → ∞, for some α0 > 0.

We use variational methods for lower semicontinuous functionals.

Mathematics Subject Classification: 35J60, 35J65, 35J85, 49J40, 35R35,
47J20.

Keywords: obstacle problem, exponential critical growth, Trudinger-Moser
inequality.

1 Introduction

The obstacle problem arises in many branches as for example in the elasticity
theory, in control games, minimal surfaces, constrained heating and financial
mathematics [6]. In a simple version, one is lead to minimize the functional

J (u) =

∫

Ω

|∇u|2dx
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in the set

K = {u ∈ H1(Ω) : u = h on ∂Ω and u ≥ ζ a.e. in Ω},

where Ω ⊂ R
N is an open bounded domain with smooth boundary, h is a smooth

function defined on ∂Ω and the obstacle ζ is a smooth function defined in Ω such
that ζ|∂Ω < h. This minimization problem can also be rephrased in terms of
variational inequalities similar to (1.2) below, see [9] for an account. Due to the
convexity of J and K, the problem has a unique minimum. It is also possible
to apply the maximum principle to show that the minimizer is superharmonic
and is C1,1. The boundary of the contact set where the minimizer is equal to
the obstacle ζ is called free boundary, see [6]. In the present paper we study
a problem in plane domains with an exponentially increasing function, we take
h ≡ 0 and the obstacle ζ is replaced by a function ψ with suitable conditions.

Let Ω ⊂ R
2 be an open bounded domain and

ψ ∈ C1,β(Ω), 0 < β < 1, such that ψ < 0 on ∂Ω and ψ+ 6≡ 0. (1.1)

We consider the set

Kψ := {v ∈ H1
0 (Ω) : v ≥ ψ a.e. in Ω}.

We are interested in multiplicity of positive solutions for the following obstacle
problem

∫

Ω

∇u∇(v − u) ≥
∫

Ω

f(u)(v − u), ∀ v ∈ Kψ , (1.2)

where the nonlinearity f has a suitable growth at infinity.
Problems like (1.2) in domains Ω ⊂ R

N with N ≥ 3 have been studied in [10].
There the authors considered a nonlinearity f(u) = uq−1 with 1 < q ≤ (N +
2)/(N − 2) and showed the existence of at least 2 solutions when the obstacle is
sufficiently small. Inspired by them, results involving the p-Lapacian have been
obtained in [8], where the author considers a function f(u) = λu(pN−N+p)/(N−p).
He obtained the existence of two solutions, provided λ > 0 is small enough,
such assumption translates into the fact that the obstacle is small, since in their
problem the nonlinearity is homogeneous. In this paper we deal with a problem
in dimension 2 with f having exponential growth. Our results complement
those of [8, 10], see also [5] for an account on physical motivations. One of the
difficulties we have to face in the present paper is is the convergence of certain
sequences related to the levels of the functional corresponding to problem (1.2),
see Lemma 2.1 and Proposition 3.5.

It is well known that the notion of criticality in dimension 2 is different from
that of N ≥ 3. Actually, in dimension 2 the maximal growth is related to the
so called Trudinger-Moser inequality, namely

sup
‖u‖

H1
0 (Ω)≤1

∫

Ω

exp(αu2) ≤ C(α)
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for all α ≤ 4π. Motivated by this inequality we suppose that f : [0,∞) → R

is continuous and has exponential critical growth at infinity, this meaning that
the following basic condition holds.

(f0) there exists α0 > 0 such that

lim
s→∞

f(s)

exp(αs2)
=

{
0, if α > α0,
+∞, if α < α0.

In order to obtain a positive solution we also impose a condition on the
behavior of f near the origin, namely we suppose that

(f1) f(s) = o(s) as s→ 0+.

By using a minimization argument we prove the following result.

Theorem 1.1 Suppose that f ∈ C([0,∞),R) satisfies (f0) − (f1). Then there
exists δ∗ > 0 such that the problem (1.2) has a positive weak solution in C1,β,
0 < β < 1, whenever

∫
Ω
|∇ψ+|2dx < δ∗.

In our second result we are interested in the existence of multiple positive
solutions for (1.2). Since we are intending to apply a version of the Mountain
Pass Theorem for non-differentiable functionals due to Szulkin [14], we need to
deal with the Palais-Smale sequences of the associated functional. Hence, we
suppose that f satisfies the so-called Ambrosetti-Rabinowitz condition

(f2) there exists θ > 2 such that

0 < θF (s) := θ

∫ s

0

f(t)dt ≤ sf(s), for all s > 0,

as well as

(f3) there exist p > 2 and µ = µ(p) > 0 such that

F (s) ≥ 2µ

p
sp, for all s > 0.

If we denote by Sp be the best constant for the embedding H1
0 (Ω) →֒ Lp(Ω),

that is

Sp := inf
u∈H1

0 (Ω)\{0}

∫

Ω

|∇u|2dx
(∫

Ω

|u|pdx
)2/p

, (1.3)

the main result of this paper can be stated as follows.
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Theorem 1.2 Suppose f ∈ C([0,∞),R) satisfies (f0)− (f3) with

µ2/(p−2) >
α0

π

(
2θ

θ − 2

)(
p− 2

2p

)
Sp/(p−2)
p . (1.4)

Then there exists δ∗∗ > 0 such that the problem (1.2) has two positive weak
solutions in C1,β, 0 < β < 1, whenever

∫
Ω |∇ψ+|2dx < δ∗∗.

We choose v = u+0 ∈ Kψ as a test function we conclude that u−0 ≡ 0, and
therefore u0 ≥ 0. By the conditions on ψ assumed in (1.1), specifically ψ 6≡ 0,
we obtain the C1,β regularity of u0 (see [2] and [8]). Applying the maximum
principle we conclude that u0 > 0. �

The conditions (f3) and (1.4) are technical in nature. They are related with
the critical growth of f and are important for the correct localization of the
Mountain Pass level of the functional related to the problem (1.2). Similar as-
sumptions have already appeared in [1]. A typical example of function satisfying
the conditions stated above is f(s) = As(exp(s2) − 1), with A > 0 such that
estimate (1.4) is satisfied.

There is a parallel between Theorem 1.2 and some known results concerning
the problem

−∆u = λ exp(u) in Ω, u ∈ H1
0 (Ω).

It has been proved in [7] that, if Ω is a ball, then this problem has exactly two
positive solutions provided λ ∈ (0, λ∗) for some 0 < λ∗ < ∞. We also mention
a generalization of such a result for convex simply connected domains obtained
in [12, 13].

The paper contains two more sections. In section 2 we prove Theorem 1.1
by using minimization arguments. In Section 3, after recalling some abstract
results, we prove Theorem 1.2.

2 Proof of Theorem 1.1

Throughout the paper we denote by ‖ · ‖ and ‖ · ‖r the norms in H1
0 (Ω) and

Lr(Ω), respectively. Also, we write only
∫
u instead of

∫
Ω u(x)dx.

Since we are looking for positive solutions we start by extending f to the
whole real line by setting f(s) := 0 for each s ≤ 0. We shall use variational
methods to deal with our problem. We recall the so called Trudinger-Moser
inequalities (see [15, 11]) which provide

exp(αu2) ∈ L1(Ω), ∀ α > 0, u ∈ H1
0 (Ω), (2.1)

and

sup
‖u‖≤1

∫
exp(αu2) ≤ C(α), ∀α ≤ 4π, u ∈ H1

0 (Ω), (2.2)

for some constant C(α) > 0.
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Let α0 > 0 be given by the growth condition (f0) and consider β > α0. A
straightforward calculation provides a constant C = C(β) > 0 such that

F (s) ≤ Cs exp(βs2), for all s ∈ R. (2.3)

Let γ > 1 and γ′ := γ/(γ − 1) its conjugated exponent. It follows from the
above estimate, Hölder’s inequality and (2.1) that, for each u ∈ H1

0 (Ω), there
holds

∣∣∣∣
∫
F (u)

∣∣∣∣ ≤ C

∫
|u| exp(βu2) ≤ C‖u‖γ′

(∫
exp(βγu2)

)1/γ

< +∞, (2.4)

and therefore the functional J : H1
0 (Ω) → R defined by

J(u) :=
1

2
‖u‖2 −

∫
F (u)

is well defined. Moreover, by using (2.1), (2.3) and standard calculations we
can prove that J ∈ C1(H1

0 (Ω),R).
For each δ > 0 we define

Σδ := {u ∈ H1
0 (Ω) : ‖u‖2 ≤ δ, u ∈ Kψ}

and
mδ := inf

u∈Σδ

J(u).

In the next lemma we present a sufficient condition for the solvability of the
above minimization problem.

Lemma 2.1 Let α0 > 0 be given by (f0). If 0 < δ < (4π/α0) and Σδ 6= ∅,
then the (finite) number mδ is achieved in Σδ.

Proof. Since 0 < δ < (4π/α0) we can choose β > α0 and γ > 1 in such way that
βγδ ≤ 4π. It follows from (2.4) that, for every u ∈ Σδ, there holds

∣∣∣∣
∫
F (u)

∣∣∣∣ ≤ C‖u‖γ′

(∫
exp(βγ‖u‖2(u/‖u‖)2

)1/γ

≤ C‖u‖γ′

(∫
exp(4π(u/‖u‖)2

)1/γ

≤ C1‖u‖,

where we have used, in the last inequality, the embedding H1
0 (Ω) ⊂ Lγ

′

(Ω) and
(2.2) with α = 4π. It follows that

J(u) ≥ −
∫
F (u) ≥ −C1‖u‖ ≥ −C1

√
δ,

for every u ∈ Σδ and therefore the infimum mδ is finite.
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In order to prove that mδ is achieved we take (un) ⊂ Σδ such that J(un) →
m. Taking a subsequence if necessary, we may assume that





un ⇀ u weakly in H1
0 (Ω),

un → u strongly in Ls(Ω) for s ≥ 2,

un(x) → u(x) a.e. in Ω,

|un(x)| ≤ φγ′(x) a.e. in Ω,

(2.5)

for some u ∈ H1
0 (Ω) and φγ′ ∈ Lγ

′

(Ω). Since Kψ is closed and convex it is
weakly closed, and therefore u ∈ Kψ . Moreover,

‖u‖2 ≤ lim inf
n→∞

‖un‖2 ≤ δ

from which it follows that u ∈ Σδ. Since the functional J is continuous it suffices
to prove that un → u strongly in H1

0 (Ω).
We start by assuming that

lim
n→∞

∫
F (un) =

∫
F (u). (2.6)

If this is true we can use the weak convergence of (un) to compute

1

2
‖un − u‖2 =

1

2
‖un‖2 −

1

2
‖u‖2 + on(1)

= J(un) +

∫
F (un)− J(u)−

∫
F (u)

= mδ − J(u) + on(1),

where on(1) is a quantity approaching zero as n → ∞. Since u ∈ Σδ we have
that mδ ≤ J(u). Hence

lim sup
n→∞

‖un − u‖2 = 2(m− J(u)) ≤ 0

and therefore un → u strongly in H1
0 (Ω).

It remains to prove (2.6). Given a measurable set E ⊂ Ω we can use (2.5)
and the same argument of the beginning of the proof to get

∣∣∣∣
∫

E

F (un)dx

∣∣∣∣ ≤
∫

E

|un| exp(β|un|2)dx

≤
(∫

E

|un|γ
′

dx

)1/γ′ (∫

Ω

exp(γβ‖un‖2 (un/‖un‖)2)dx
)1/γ

≤ c5

(∫

E

|φγ′ |γ′

dx

)1/γ′

.
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Given ε > 0, we can use the above inequality, φγ′ ∈ Lγ
′

(Ω) and F (u) ∈ L1(Ω)
to conclude that

max

{∣∣∣∣
∫

E

F (un)dx

∣∣∣∣ ,
∣∣∣∣
∫

E

F (u)dx

∣∣∣∣
}
< ε, (2.7)

whenever the set E has small measure, namely meas(E) < ν. On the other
hand, the pointwise convergence in (2.5) implies that F (un(x)) → F (u(x)) a.e.
in Ω. So, we can apply Egoroff’s Theorem to obtain a measurable set E ⊂ Ω
such that meas(E) < ν and F (un(x)) → F (u(x)) uniformly for x ∈ Ω \ E.
Hence,

lim
n→∞

∫

Ω\E
F (un)dx =

∫

Ω\E
F (u)dx.

Since ε > 0 is arbitrary, the convergence in (2.6) follows from the above one and
(2.7). The lemma is proved. �

We are able now to present the proof of Theorem 1.1.

Proof of Theorem 1.1. We fix q > 2 and consider 0 < δ < (4π/α0) to be chosen
later. Let λ1 be the first eigenvalue of (−∆, H1

0 (Ω)). Given 0 < ε < (λ1/2) and
q > 2 we can use (f1) and (2.3) to obtain c1 > 0 such that

|F (s)| ≤ ε

2
s2 + c1s

q exp(βs2), for all s ∈ R.

This inequality, Sobolev embeddings and (2.2) provide

∣∣∣∣
∫
F (u)

∣∣∣∣ ≤ ε

2
‖u‖22 + C‖u‖qqγ′

(∫
exp

(
βγ‖u‖2 (u/‖u‖)2

))1/γ

≤ ε

2λ1
‖u‖2 + c3‖u‖q

(∫
exp

(
4π (u/‖u‖)2

))1/γ

≤ 1

4
‖u‖2 + c4‖u‖q,

whenever u ∈ Σδ. Hence,

J(u) ≥ 1

4
‖u‖2 − c4‖u‖q, u ∈ Σδ,

and therefore

m̂δ := inf{J(u) : ‖u‖2 = δ} ≥ δ

(
1

4
− c4δ

(q−2)/2

)
.

Since q > 2, the term in the parenthesis above tends to 1/4 as δ → 0+. Hence,
we can choose δ < 4π/α0 small in such way that m̂δ > 0. Since J(0) = 0 and J
is continuous we can take δ∗ < δ such that

|J(u)| < m̂δ whenever ‖u‖2 < δ∗. (2.8)
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We claim that the theorem holds for this choice of δ∗. Indeed, if ‖ψ+‖2 < δ∗

then ψ+ ∈ Σδ 6= ∅. It follows from Lemma 2.1 that the infimum mδ is achieved
at some point u0 ∈ Σδ. By (2.8) we have that J(ψ+) < m̂δ and therefore we
conclude that u0 ∈ B√

δ(0).
In order to prove that u0 is a weak solution of the problem (1.2) we take

v ∈ Kψ and notice that u0 + t(v− u0) ∈ Kψ for each t ∈ [0, 1]. Since ‖u0‖ <
√
δ

there exists t0 > 0 such that u0 + t(v − u0) ∈ Σδ for each t ∈ [0, t0]. If we
consider the real function g(t) := J(u0 + t(v − u0)), we have that g(t) ≥ g(0),
for each t ∈ [0, t0]. Hence

0 ≤ lim
t→0+

g(t)− g(0)

t
= J ′(u0)(v − u0),

that is, ∫
∇u0 · ∇(v − u0) ≥

∫
f(u0)(v − u0), ∀ v ∈ Kψ .

We choose v = u+0 ∈ Kψ as a test function we conclude that u−0 ≡ 0, and
therefore u0 ≥ 0. By the conditions on ψ assumed in (1.1), specifically ψ 6≡ 0,
we obtain the C1,β regularity of u0 (see [2] and [8]). Applying the maximum
principle we conclude that u0 > 0. �

3 Proof of Theorem 1.2

From now on we shall denote by u0 the solution provided by Theorem 1.1 and
consider it as a new obstacle by defining

Ku0 := {v ∈ H1
0 (Ω) : v ≥ u0 a.e. in Ω}.

The same argument of [10, Lemma 2.3] shows that all solutions of the problem
∫

∇u∇(v − u) ≥
∫
f(u)(v − u), ∀ v ∈ Ku0 , (3.1)

are also a weak solutions of (1.2).
We follow [10, 14] by introducing the variational setting to deal with (3.1).

Firstly, we consider the functional I : H1
0 (Ω) → R ∪ {+∞} defined by

I(u) := J(u) + Φ(u), (3.2)

where

Φ(u) :=

{
0, if u ∈ Ku0 ,

+∞, otherwise.

It can be proved that each critical point u ∈ H1
0 (Ω) of the functional I satisfies

(3.1).
The functional I is not regular and it can assume the value +∞ at some

points. However, it is a C1 functional added to a convex proper lower semicon-
tinuous part. Hence, we can use the minimax theory developed by Szulkin in
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[14] for this kind of functionals. Such functionals have been also used in [3] and
[4] to study eigenvalue problems. We briefly recall the main concepts below.

Let (X, 〈·, ·〉X) be a real Hilbert space and K ⊂ X a proper closed convex
subset. Suppose that a functional I : X → R∪{+∞} if of the form I := J + η,
with J of class C1, η ≡ 1 in K and η ≡ +∞ in X \ {K}. A critical point u ∈ X
of I is a point u ∈ K such that

J ′(u)(v − u) ≥ 0, ∀ v ∈ K.

We say that (un) ⊂ K is a Palais-Smale sequence at level d ∈ R ((PS)d for
short) for I if I(un) → d and there exists (zn) ⊂ X such that zn → 0 strongly
in X and

J ′(un)(v − un) ≥ 〈zn, v − un〉X , ∀ v ∈ K.
The functional I satisfies the (PS)d condition if each (PS)d sequence for I has
a convergent subsequence.

The following result is a generalization of the classical Mountain Pass The-
orem for this new setting (see [14]).

Theorem 3.1 Let X and I as above and u ∈ X. Suppose that

(i) there exists an open set U ⊂ X such that u ∈ U and

I(u) ≤ inf
u∈U

I(u) and I(u) < inf
u∈∂U

I(u);

(ii) there exists e 6∈ U such that I(e) ≤ I(u).

Let
Γ := {γ ∈ C([0, 1], X) : γ(0) = u, I(γ(1)) < I(u)}

and define the minimax level

c∗ := inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)). (3.3)

If there exists c0 > c∗ such that I satisfies the Palais-Smale condition at all
levels d ≤ c0, then I possesses a critical point u ∈ X ∩K such that I(u) = c∗.

We intend to apply the above theorem with X = H1
0 (Ω), K = Ku0 , I = I

and u = u0. We start with the geometric conditions.

Lemma 3.2 The functional I defined in (3.2) satisfies the geometric conditions
(i) and (ii) of Theorem 3.1

Proof. Let δ∗ > 0 be given by Theorem 1.1 and set U := B√
δ∗(0). Since

u0 ∈ U , Ku0 ⊂ Kψ , I ≡ +∞ outside Ku0 and the solution u0 was obtained by
minimization on Σδ ⊂ Kψ we have that

I(u0) ≤ inf
u∈U

I(u).

9



If I(u0) = infu∈∂U I(u) then there exists u1 ∈ Ku0 such that I(u1) = I(u0).
Since δ∗ < δ the same argument employed in the proof of Theorem 1.1 shows
that u1 ∈ Kψ is a second solution of the problem (1.2). Hence, we may suppose
that

I(u0) < inf
u∈∂U

I(u),

and therefore the condition (i) holds.
In order to verify (ii) we take φ 6≡ 0 a nonnegative function. Since u0 ≥ 0

we can use (f3) and Cauchy-Schwarz’s inequality to obtain, for every t ≥ 0,

I(u0 + tφ) = J(u0 + tφ)

≤ 1

2
‖u0‖2 +

t2

2
‖φ‖2 + t‖u0‖‖φ‖ −

2µ

p

∫
|u0 + tφ|p

≤ 1

2
‖u0‖2 +

t2

2
‖φ‖2 + t‖u0‖‖φ‖ −

2µ

p
tp
∫

|φ|p.

Since p > 2 we conclude that I(u0 + tφ) → −∞ as t → ∞. It suffices to set
e := u0 + tφ with t > 0 large enough. �

The proof of the Palais-Smale condition is more involved and it will be done
in several steps. Firstly we recall that the solution u0 of Theorem 1.1 was
obtained by minimizing the functional J in the set Σδ. By making the number
δ∗ of that theorem smaller if necessary, we may assume that

‖u0‖2 < δ ≤
(
θ − 2

2θ

)
π

α0
. (3.4)

Lemma 3.3 If f satisfies (f3) with µ > 0 as in (1.4), then the Mountain Pass
level defined in (3.3) verifies

c∗ <

(
θ − 2

2θ

)
3π

α0
.

Proof. Let ω0 ∈ H1
0 (Ω) be such that ω0 > 0 in Ω and ω0 realizes the infimum

in (1.3), that is, Sp = ‖ω0‖2‖ω0‖−2
p . For each t ≥ 0 we have that u0 + tω0 ∈

Ku0 . Hence, we can use (f3) as before to conclude that I(u0 + tω0) → −∞ as
t → +∞. Hence, if we set ω := t0ω0 with t0 > 0 large enough, we have that
I(u0 + ω) < I(u0), which implies that γ(t) := u0 + tω belongs to the class of
admissible paths Γ defined in the statement of Theorem 3.1.

It follows from Young’s inequality, (f3) and u0 ≥ 0, that

I(γ(t)) ≤ 1

2
‖u0‖2 + t‖u0‖‖ω‖+

t2

2
‖ω‖2 −

∫
F (u0 + tω)

≤ ‖u0‖2 + t2‖ω‖2 − tp
2µ

p

∫
|ω|p

and therefore we can use the definition of c∗ given in (3.3) to get

c∗ ≤ max
t∈[0,1]

I(γ(t)) ≤ δ + 2max
t≥0

{
t2

2
‖ω‖2 − µ

p
tp
∫

|ω|p
}
. (3.5)
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Since p > 2 and ω also realizes the infimum in (1.3), a simple calculation and
the choice of µ in (1.4) provide

max
t≥0

{
t2

2
‖ω‖2 − tp

µ

p

∫
|ω|p

}
=

1

µ2/(p−2)

(
p− 2

2p

)
S
p/(p−2)
p

≤
(
θ − 2

2θ

)
π

α0
.

The above inequality, (3.5) and (3.4) imply the desired result. �

Lemma 3.4 If (un) ⊂ Ku0 is a (PS)d sequence then

lim sup
n→∞

‖un‖2 ≤
(

2θ

θ − 2

)
d. (3.6)

In particular, (un) is bounded in H1
0 (Ω).

Proof. Let (un) be a (PS)d sequence for I. Then I(un) → d and there exists
(zn) ∈ H1

0 (Ω) such that zn → 0 and

〈un, v − un〉 −
∫
f(un)(v − un) ≥ 〈zn, (v − un)〉, ∀ v ∈ Ku0 . (3.7)

Since un ≥ u0 ≥ 0 and un ∈ Ku0 , we can put v = 2un ∈ Ku0 in the above
expression to get

−
∫
f(un)un ≥ 〈zn, un〉 − ‖un‖2.

This estimate and (f2) imply that

d+ on(1) = I(un) =
1

2
‖un‖2 −

1

θ

∫
f(un)un −

∫ (
F (un)−

1

θ
f(un)un

)

≥
(
1

2
− 1

θ

)
‖un‖2 +

1

θ
〈zn, un〉.

Since zn → 0 the result follows. �

Proposition 3.5 The functional I satisfies the (PS)d condition for each

d ≤ c∗ +

(
θ − 2

2θ

)
π

α0
. (3.8)

Proof. Let (un) be a (PS)d sequence for I. By the previous lemma there exists
u ∈ H1

0 (Ω) verifying




un ⇀ u weakly in H1
0 (Ω),

un → u strongly in Ls(Ω) for s ≥ 2,

un(x) → u(x) a.e. in Ω.
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We claim that

lim
n→∞

∫
f(un)(un − u) = 0. (3.9)

If this is true we can prove the proposition as follows. Take v = u in (3.7) to
obtain

‖un‖2 ≤ 〈un, u〉+
∫
f(un)(un − u) + 〈zn, un − u〉.

Since zn → 0, we can use the above inequality, the weak convergence of (un)
and (3.9) to get

lim sup
n→∞

‖un‖2 ≤ ‖u‖2.

The inequality ‖u‖2 ≤ lim infn→∞ ‖un‖2 is a consequence of the weak conver-
gence of (un). We conclude that un → u strongly in H1

0 (Ω) and the proposition
is proved.

It remains to prove (3.9). First notice that, by (3.6), (3.8) and Lemma 3.3
we obtain

lim sup
n→∞

‖un‖2 ≤
(

2θ

θ − 2

)(
c∗ +

(
θ − 2

2θ

)
π

α0

)
<

4π

α0
.

Thus, we can choose β > α0 and γ > 1 sufficiently close to α0 and 1, respectively,
in such way that βγ‖un‖2 ≤ 4π, for each n ∈ N. The growth condition (f0)
provides C > 0 such that

f(s) ≤ C exp(βs2), for all s ∈ R.

It follows from Hölder’s inequality and (2.2) that

∣∣∣∣
∫
f(un)(un − u)

∣∣∣∣ ≤ C‖un − u‖γ′

(∫
exp

(
βγ‖un‖2 (un/‖un‖)2

))1/γ

≤ c1‖un − u‖γ′.

The strong convergence un → u in Lγ
′

(Ω) implies that (3.9) holds and finishes
the proof. �

Proof of Theorem 1.2. In view of Lemma 3.2 and the preceding proposition, we
can apply Theorem 3.1 with X = H1

0 (Ω), K = Ku0 , I = I and u = u0, to obtain
a (positive) critical point u 6= u0. �
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