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Abstract

We deal with the existence of nonzero solution for the quasilinear Schrödinger equation

−∆u + V(x)u − ∆(u2)u = g(x, u), x ∈ RN , u ∈ H1(RN),

where V is a positive potential and the nonlinearity g(x, s) behaves like K0(x)s at the origin
and like K∞(x)|s|p, 1 ≤ p ≤ 3, at infinity. In the proofs we apply minimization methods.
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1 Introduction
In this paper we study the existence of solitary wave solutions for quasilinear Schrödinger equations
of the form

i∂tz = −∆z + W(x)z − l(x, |z|2)z − κ[∆ρ(|z|2)]ρ′(|z|2)z

where z : RN × R → C, W : RN → R is a given potential, κ is a real constant and l, ρ are real func-
tions. Equations of this type appear naturally in mathematical physics and have been accepted as
∗The three authors were partially supported by CAPES/PROCAD-NF
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models of several physical phenomena corresponding to various types of nonlinear terms ρ. They in-
clude equations in fluid mechanics, theory of Heisenberg ferromagnetism and magnons, dissipative
quantum mechanics and matter theory (see [11, 12] and references therein).

Here we focus on the case which models the time evolution of the condensate wave function
in superfluid film equation in plasma physics, see [10]. If we look for standing wave solutions
z(t, x) := exp(−iEt)u(x) with E > 0, we are lead to consider the following elliptic equation

−∆u + V(x)u − κ∆(u2)u = g(x, u), x ∈ RN , (1.1)

with V(x) := W(x) − E and g(x, s) := l(x, |s|2)s being the new nonlinear term.
We address the existence of solution for que quasilinear equation

(P)
{
−∆u + V(x)u − ∆(u2)u = g(x, u), x ∈ RN ,
u ∈ H1(RN),

where N ≥ 3 and the potential V satisfy

(V1) infx∈RN V(x) ≥ V0 > 0;

(V2) for any M > 0 there holds

meas
(
{x ∈ RN : V(x) ≤ M}

)
< +∞.

and g ∈ C(RN × R,R) satisfies the growth condition

(g1) there exist a, b ∈ Lα(RN), α > N/2, such that

|g(x, s)| ≤ a(x)|s| + b(x)|s|3, for all x ∈ RN , s ∈ R.

In our first result we are interested in the case where g(x, ·) behaves like s at the origin and like
s3 at infinity. We define G(x, s) :=

∫ s
0 g(x, τ)dτ, introduce the set

F := {w : RN → R : w+ . 0, w ∈ Lα(RN) for some α > N/2},

and consider the following asymptotic assumption at the origin and at infinity:

(G0) there exists K0 ∈ F such that

lim inf
s→0

2G(x, s)
s2 = K0(x), uniformly for a.e. x ∈ RN ;

(G∞) there exists K∞ ∈ F such that

lim sup
|s|→+∞

4G(x, s)
s4 = K∞(x), uniformly for a.e. x ∈ RN .

In order to state our results we define the space

X :=
{

u ∈ H1(RN) :
∫
RN

V(x)u2dx < ∞
}
, (1.2)
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endowed with the norm

‖u‖X :=
(∫
RN

(
|∇u|2 + V(x)u2

)
dx

)1/2

.

It is well known (see [9]) that, under the conditions (V0) − (V1), the space X is a closed subspace
of H1(RN). Moreover, the embedding X ↪→ Lq(RN) is compact for any 2 ≤ q < 2∗ := 2N(N − 2).
Hence, for any given K ∈ F , we can prove that the eigenvalue problem

−∆u + V(x)u = λK(x)u in RN , u ∈ X, (1.3)

has a first positive eigenvalue λ1(K) > 0. The same occurs with the eigenvalue problem

−∆u = µK(x)u in RN , u ∈ D1,2(RN). (1.4)

We shall denote by µ1(K) > 0 its first positive eigenvalue.
In our first result we consider the case of resonance at infinity and prove the following result:

Theorem 1.1 Suppose that V satisfies (V1) − (V2), and g satisfies (g1), (G0), (G∞) and

(g2) there exists a nonnegative function Γ ∈ L1(RN) such that

g(x, s)s − 4G(x, s) ≥ −Γ(x), for all x ∈ RN , s ∈ R.

Then problem (P) admits at least one nontrivial solution provided

λ1(K0) < 1 ≤ µ1(K∞).

In our second result we are interested in the case that µ1(K∞) > 1. However, in this setting we
impose a slightly different growth condition. So, we define

g∞(x, s) := g(x, s) − K∞(x)s3, x ∈ RN , s ∈ R,

where K∞ ∈ F comes from (G∞) and replace the condition (g1) by the stronger one:

(g̃1) there exist r ∈ (2, 4] such that

|g∞(x, s)| ≤ ã(x)|s| + b̃(x)|s|r−1, for all x ∈ RN , s ∈ R,

where ã ∈ L(2∗)′ (RN) ∩ Lα(RN), b̃ ∈ L(2·2∗/r)′ (RN) ∩ Lα(RN) and α > N/2,

with s′ denoting the conjugated exponent of s > 1, namely the unique s′ > 1 satisfying 1/s + 1/s′ =

1.
With this new condition we can consider the nonresonant case and prove the following result:

Theorem 1.2 Suppose that V satisfies (V1)−(V2), and g satisfies (G0), (G∞) and (g̃1). If λ1(K0) < 1,
then the problem (P) admits at least one nontrivial solution provided one of the following conditions
hold

(C1) µ1(K∞) > 1 and r ∈ (2, 4);

(C2) µ1(K∞) > 1, r = 4 and ‖̃b‖L(2∗/2)′ (RN ) is sufficiently small;

(C3) K∞ ≡ 0 and r ∈ (2, 4).
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We stress that conditions (C1) or (C2) do not cover the sublinear case. For example, if G behaves
at the infinity like the function |s|p ln(1 + θ|s|), for p ∈ (2, 4) and θ ≥ 0, then the limit function K∞
vanishes. However, even in this case, we have that (C3) is verified and therefore we can obtain a
solution.

In what follows we present some comments on known results for the equation (1.1). The semi-
linear case κ = 0 has been studied extensively in recent years with a huge variety of conditions on the
potential V and the nonlinearity g (see e.g. [1, 14]). As far we know, the case κ , 0 was firstly con-
sidered in [13], where the existence of positive ground state solution was obtained via minimization
methods. By using a change of variables the authors in [12] reduced the equation to a semilinear one
and an Orlicz space framework was used to prove the existence of a positive solutions via Mountain
Pass Theorem. The same method was also used in [2], but the usual Sobolev space H1(RN) was used
as the working space. We refer the reader to [4, 15, 16, 5, 8] for more results.

Usually the authors consider the case that g(x, ·) is sublinear at the origin and superlinear at
infinity. Due to the change of variables introduced in [12] this behavior at infinity is related with the
(modified) Ambrosetti-Rabinowitz condition 0 < θG(x, s) ≤ g(x, s)s for some θ > 4, any x ∈ RN ,
s , 0. This type of condition provides the boundedness of the Palais-Smale sequences of the
associated functional. More generally, under suitable extra assumptions, it is possible to deal with
the condition lim|s|→+∞G(x, s)/s4 = +∞ (see [15, 18]).

Here we do not consider superlinear nonlinearities. Instead, we suppose that g(x, s) ∼ K0(x)s
near the origin and g(x, s) ∼ K∞(x)|s|p−1, 2 < p ≤ 4, at infinity. It appears that there are few papers
which deal with this type of nonlinearity at infinity. The first one is the paper [12] which states,
among other results, the existence of positive solution for the autonomous nonlinearity g(x, s) = s3

under different kind of hypothesis on the potential V . We have recently learned that the authors in
[17] have obtained some existence results under the condition lim|s|→+∞G(x, s)/s4 > 0 and other
mild assumptions on g. We emphasize that we allow that K∞ changes sign or even that K∞ ≡ 0.
We finally mention a recent paper of Fang and Szulkin [6] where they consider g(x, s) = q(x)s3 and
obtained the existence of infinitely many solutions under some symmetry conditions on the potential
V .

In the proofs of the main theorems we apply minimization techniques. Although this kind of idea
has already appeared in [13], we follow here a different approach. We use the change of variables
introduced in [12] to define an Orlicz space E and an associated functional J : E → R whose critical
points are weak solutions of (P). Under the setting of Theorem 1.2 we are able to prove that J is
coercive. Since we do not know if E is reflexive, we cannot assume that a minimizing sequence
weakly converges in E. So, after proving that J satisfies the Palais-Smale condition, we can use
the condition at the origin for proving that the infimum is negative and it is attained. The proof of
Theorem 1.1 follows the same lines. The additional condition (g2) is used to prove that the functional
is bounded from below. This condition is in some sense related with a nonquadraticity condition
introduced in [3] (see also [7]). We also emphasize that the compactness properties proved here use
only the conditions (g1) and (g2). Hence, many other kinds of linking situations can be considered
for the equation (P).

The paper is organized as follows: in section 2 we introduce the notation, some preliminaries
results and useful tools. In Section 3 we prove Theorem. In Section 4 we lead with the resonant case
by presenting the proof of Theorem 1.1. In the final Section 5 we obtain the compactness condition
required in all the the former sections.
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2 Variational framework
Throughout the paper we write

∫
u instead of

∫
RN u(x)dx. Moreover, for any p ≥ 1, we denote by

‖u‖p the Lp(RN)-norm of a function.
From the variational point of view, the problem (P) is formally the Euler-Lagrange equation

associated to the functional

I(u) =
1
2

∫
(1 + 2u2)|∇u|2 +

∫
V(x)u2 −

∫
G(x, u). (1.5)

Nevertheless, as quoted in [2], the term
∫

u2|∇u|2 is not well defined in H1(RN). Hence, following
the idea introduced in [12] and the variational approach of [2], we reformulate the problem (P) by
using the change of variable f : R→ R given by

f ′(t) =
1√

1 + 2 f (t)2
, t ≥ 0,

f (t) = − f (−t), t ≤ 0.

(1.6)

We present below the main properties of the function f .

Lemma 2.1 The function f satisfies the following properties:

( f1) f is uniquely determined, C∞ and invertible;

( f2) 0 < f ′(t) ≤ 1 for all t ∈ R;

( f3) | f (t)| ≤ |t| for all t ∈ R;

( f4) lim
t→0

f (t)
t

= 1;

( f5) lim
t→+∞

f (t)
√

t
= 21/4;

( f6)
f (t)
2
≤ t f ′(t) ≤ f (t) for all t ≥ 0;

( f7) | f (t)| ≤ 21/4 √|t| for all t ∈ R;

( f8) there exists κ > 0 such that

| f (t)| ≥
{
κ |t| , |t| ≤ 1,
κ |t|1/2 , |t| ≥ 1 ;

( f9) | f (t) f ′(t)| ≤ 2−1/2 for all t ∈ R;

( f10) the function f 2 is strictly convex. In particular, f 2(st) ≤ s f 2(t) for all t ∈ R, s ∈ [0, 1];

( f11) f 2(st) ≤ s2 f 2(t) for all t ∈ R, s ≥ 1;

( f12) f 2(s − t) ≤ 4( f 2(s) + f 2(t)) for all s, t ∈ R.
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Proof. We only prove ( f11) and ( f12). The other properties can be proved by using the ODE in (1.6)
and arguing as in the papers [2, 12]. For proving ( f11) we notice that, since f ′′(t) ≤ 0 in [0,+∞),
we have that f ′ is non-increasing in this interval. For any t ≥ 0 fixed we consider the function
h(s) := f (st) − s f (t) defined for s ≥ 1. We have that h′(s) = t f ′(st) − f (t) ≤ t f ′(t) − f (t) ≤ 0, by
( f6). Since h(1) = 0 we conclude that h(s) ≤ 0 for any s ≥ 1, that is f (st) ≤ s f (t) for any t ≥ 0 and
s ≥ 1. Thus

f 2(st) ≤ s2 f 2(t)

if t ≥ 0 and s ≥ 1. Since f 2 is even the item follows.
In order to establish item ( f12), we use the fact that f 2 is even and increasing in (0,+∞) together

with ( f10) and ( f11) to get

f 2(s − t) = f 2(|s − t|) ≤ f 2(|s| + |t|)

≤ f 2(2 max{|s|, |t|}) ≤ 4( f 2(s) + f 2(t)),

which concludes the proof. �

By using the solution f of (1.6) we can define the following Orlicz-Sobolev space

E :=
{

v ∈ H1(RN) :
∫

V(x) f 2(v) < ∞
}
.

As we will see later, E is a Banach space when endowed with the norm

‖v‖ := ‖∇v‖2 + |v| f , for any v ∈ E, (1.7)

where

|v| f := inf
ξ>0

1
ξ

{
1 +

∫
V(x) f 2(ξv)

}
.

We summarize in the next proposition the main properties of the space E. Hereafter, we shall denote

Q(v) :=
∫
|∇v|2 + V(x) f 2(v), v ∈ E.

Proposition 2.1 Suppose that V satisfies (V1) − (V2). Then E possesses the following properties:

1. If vn(x)→ v(x) a. e. in RN and

lim
n→+∞

∫
V(x) f 2(vn) =

∫
V(x) f 2(v),

then
lim

n→+∞
|vn − v| f = 0;

2. The following embeddings are continuous: X ↪→ E ↪→ D1,2(RN);

3. The map v→ f (v) from E to Lq(RN) is continuous for any q ∈ [2, 2 · 2∗], and it is compact for
any q ∈ [2, 2 · 2∗);

4. For any v ∈ E there holds ∥∥∥∥∥ f (v)
f ′(v)

∥∥∥∥∥ ≤ 4‖v‖;
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5. If vn ⇀ 0 weakly in D1,2(RN) and
(∫

V(x) f 2(vn)
)

is bounded then, up to a subsequence,
f (vn)→ 0 strongly in Lq(RN) for any 2 ≤ q < 2 · 2∗;

6. For any v ∈ E there holds

|v| f ≤ 2 max


∫

V(x) f 2(v),
(∫

V(x) f 2(v)
)1/2

 ;

7. For any v ∈ E there holds

|v| f ≥ min


∫

V(x) f 2(v),
(∫

V(x) f 2(v)
)1/2

 .
Proof. The three first items are proved in [4]. In order to prove the fourth we take v ∈ E and notice
that, by using (1.6) and a straightforward calculation, we get

∇

(
f (v)
f ′(v)

)
=

(
1 +

2 f 2(v)
1 + 2 f 2(v)

)
∇v (1.8)

and therefore ∥∥∥∥∥∥∇
(

f (v)
f ′(v)

)∥∥∥∥∥∥
2
≤ 2‖∇v‖2. (1.9)

By ( f6), we have that 1 ≤ f (t)
t f ′(t) ≤ 2 for any t , 0, and therefore we can use ( f10) to get

f 2
(
ξ

f (t)
f ′(t)

)
= f 2

(
f (t)

t f ′(t)
ξt
)
≤

(
f (t)

t f ′(t)

)2

f 2(ξt) ≤ 4 f 2(ξt),

for any t ∈ R, ξ > 0. Thus,∣∣∣∣∣ f (v)
f ′(v)

∣∣∣∣∣
f

= inf
ξ>0

{
1
ξ

(
1 +

∫
V(x) f 2

(
ξ

f (v)
f ′(v)

))}
≤ 4|v| f .

Statement 4 follows from the above inequality and (1.9).
We now prove item 5. We may suppose that vn(x)→ 0 a.e. in RN . Since

‖ f (vn)‖2X =

∫ (
|∇vn|

2

1 + 2 f 2(vn)
+ V(x) f 2(vn)

)
≤

∫ (
|∇vn|

2 + V(x) f 2(vn)
)
,

the sequence ( f (vn)) is bounded in X. Hence, up to a subsequence, it weakly converges in X.
The compactness of embedding X ↪→ Lq(RN), for 2 ≤ q < 2∗, and the pointwise convergence
f (vn(x))→ f (0) = 0 a.e. in RN imply that the weak limit is zero. So, f (vn)→ 0 strongly in Lq(RN),
whenever 2 ≤ q < 2∗.

The Sobolev inequality and a straightforward calculation provide

‖ f (vn)‖2·2∗ = ‖ f 2(vn)‖1/22∗ ≤ c1‖∇( f 2(vn))‖1/22

= c1

(∫
4 f 2

1 + 2 f 2 |∇vn|
2
)1/4

≤ 2c1||∇vn||
1/2
2 .

(1.10)
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It follows from the interpolation inequality that f (vn)→ 0 in Lq(RN) for 2 ≤ q < 2 · 2∗.
For the proof of item 6 we argue as in [8]. By supposing that v . 0 we may consider two cases.

If
∫

V(x) f 2(v) > 1 then we set ξ0 =
(∫

V(x) f 2(v)
)−1

< 1 and use the definition of |v| f and ( f10) to
get

|v| f ≤
1
ξ0

(
1 +

∫
V(x) f 2(ξ0v)

)
≤

1
ξ0

(
1 + ξ0

∫
V(x) f 2(v)

)
= 2

∫
V(x) f 2(v).

If 0 <
∫

V(x) f 2(v) ≤ 1 we set ξ0 =
(∫

V(x) f 2(v)
)−1/2

, use ( f11) and argue as above to conclude that
|u| f ≤ 2(

∫
V(x) f 2(v))1/2. This and the above expression finish the proof of item 6. The proof of item

7 is similar and we omit it. �

By a weak solution of (P) we mean a function u ∈ H1(RN) ∩ L∞loc(RN) such that∫
[(1 + 2u2)∇u∇ϕ + 2u|∇u|2ϕ + V(x)uϕ] =

∫
g(x, u)ϕ,

for all ϕ ∈ C∞0 (RN). After the change of variables u = f (v) in the map given in (1.5), we obtain the
functional

J(v) :=
1
2

∫ (
|∇v|2 +

∫
V(x) f 2(v)

)
−

∫
G(x, f (v)), (1.11)

for any v ∈ E. Under the growth condition (g1) (or (g̃1)) the functional J belongs to C1(E,R) and its
critical points are weak solutions of the problem

−∆v + V(x) f ′(v) f (v) = g(x, f (v)) f ′(v), v ∈ E, (1.12)

Moreover, if v ∈ E ∩C2(RN) is a critical point of J then the function u = f (v) is a classical solution
of (P) (see [2] for details). Thus, we deal in the sequel with the modified problem described above.

3 The coercive case
In this section we shall prove Theorem 1.2. The main point is that, in this setting, we are able to
prove that J is coercive, as you can see in the next result.

Lemma 3.1 Suppose that g satisfies (G∞) and (g̃1). Then J is coercive on E provided one of the
conditions (C1) − (C3) stated in Theorem 1.2 holds.

Proof. Suppose first that (C1) holds, in such way that r ∈ (2, 4). For any (x, s) ∈ RN × R we set

G∞(x, s) :=
∫ s

0
g∞(x, t)dt.

Given v ∈ E, it follows from (g̃1) and Hölder’s inequality that∫
G∞(x, f (v)) ≤

1
2

∫
ã(x) f 2(v) +

1
r

∫
b̃(x)| f (v)|r

≤
1
2
‖a‖2N/(N+2)‖ f (v)‖22·2∗ +

1
4
‖b‖2·2∗/(2·2∗−r)‖ f (v)‖r2·2∗ .
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Hence, we can use the estimate in (1.10) to get∫
G∞(x, f (v)) ≤ c1‖∇v‖2 + c2‖∇v‖r/22 ≤ c3

(
Q(v)1/2 + Q(v)r/4

)
, (1.13)

for some c3 > 0. On the other hand, since f 2(v) ∈ D1,2(RN), we can use the variational inequality
for µ1(K∞) and ( f9) to obtain∫

K∞(x)
(

f 2(v)
)2
≤

4
µ1(K∞)

∫
( f (v) f ′(v))2|∇v|2 ≤

2
µ1(K∞)

Q(v). (1.14)

This inequality and (1.13) provides, for any v ∈ E,

J(v) =
1
2

Q(v) −
1
4

∫
K∞(x) f 4(v) −

∫
G∞(x, f (v))

≥
1
2

(
1 −

1
µ1(K∞)

)
Q(v) − c3(Q(v)1/2 + Q(v)r/4).

(1.15)

Now suppose that (vn) ⊂ E is such that ‖vn‖ → +∞ as n → ∞. By using item 6 of Proposition
2.1 we get

‖vn‖ ≤ ‖∇vn‖2 + 2 max


∫

V(x) f 2(vn),
(∫

V(x) f 2(vn)
)1/2

 .
Hence, along a subsequence, we have that either

lim
n→+∞

‖∇vn‖2 = +∞ or lim
n→+∞

∫
V(x) f 2(vn) = +∞.

Anyway, we conclude that Q(vn)→ ∞. Since r < 4 it follows from (1.15) that none subsequence of
(J(vn)) can be bounded, and therefore J is coercive.

If (C2) holds then r = 4 and the equation (1.13) becomes∫
G∞(x, f (v)) ≤ c1Q1/2(v) +

1
4
||̃b||(2∗/2)′Q(v).

Hence we can argue as in (1.14) − (1.15) to get

J(v) ≥
1
2

(
1 −

1
µ1(K∞)

−
1
2
||̃b||(2∗/2)′

)
Q(v) − c3Q1/2(v).

Since µ1(K∞) > 1, the term into the parenthesis above is positive if ‖̃b‖(2∗/2)′ is small, and the proof
follows as before.

Finnally, if (C3) holds, then g∞(x, s) = g(x, s). So (1.15) becomes

J(v) ≥
1
2

Q(v) − c3(Q1/2(v) + Qr/4(v))

and the result follows as in case (C1). �

In the next result we use the behavior of g near the origin to prove that J attains negative values.

Lemma 3.2 Suppose that g satisfies (g1) or (g̃1), and (G0) with λ1(K0) < 1. Then there exists v0 ∈ E
such that J(v0) < 0.
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Proof. Let ϕ1 > 0 be such that

−∆ϕ1 + V(x)ϕ1 = λ1(K0)K0(x)ϕ1 in RN . (1.16)

It follows from ( f3) that

J(sϕ1) ≤
s2

2

∫
(|∇ϕ1|

2 + V(x)ϕ2
1) −

∫
G(x, f (sϕ1)),

for any s ∈ R. By using (1.16) we get

2J(sϕ1)
s2 ≤ λ1(K0)

∫
K0(x)ϕ2

1 −

∫
2G(x, f (sϕ1))

s2 . (1.17)

The growth condition (g̃1) (or even (g1)) together with ( f3) and ( f4) show that the ratio
G(x, f (sϕ1))/s2 is uniformly bounded by an integrable function. Hence, we can use Fatou’s lemma
to obtain

lim inf
s→0+

∫
2G(x, f (sϕ1))

s2 ≥

∫
lim inf

s→0+

2G(x, f (sϕ1))
f 2(sϕ1)

(
f (sϕ1)

sϕ1

)2

ϕ2
1


=

∫
K0(x)ϕ2

1,

where we have used the continuity of f , f (0) = 0, ( f4) and (G0). Coming back to (1.17) we conclude
that

lim sup
s→0

2J(sϕ1)
s2 ≤ (λ1(K0) − 1)

∫
K0(x)ϕ2

1 < 0

and it suffices to take v0 := tϕ1, with t sufficiently small, to get J(v0) < 0. �

The proof of the Palais-Smale condition for J is quite long and technical. So, we prefer to
present it only in the final section of the paper (see Proposition 5.2). Assuming that (PS ) holds, we
can obtain a nonzero weak solutions for (P) in the coercive cases as follows:

Proof of Theorem 1.2. Since J is coercive and maps bounded sets into bounded sets, we have that

c0 := inf
v∈E

J(v) > −∞.

The Ekeland Variational Principle provides a sequence (vn) ⊂ E such that J(vn) → c0 and J′(vn) →
0. By coercivity of J it follows that (vn) is a bounded sequence. The Palais-Smale condition guar-
antees that, along a subsequence, vn → v strongly in E. Thus J′(v) = 0 and, by the last lemma,
J(v) = c0 < 0, that is, v . 0 is the desired solution of the problem (1.12). �

Remark 3.1 We notice that the above proof could be considerable shortened if you could prove that
the space E is reflexive. Actually, it follows from item (3) of Proposition 2.1 that

∫
G(x, f (vn)) →∫

G(x, f (v)) whenever vn ⇀ v weakly in E, and therefore J is lower semicontinuous on E. The point
is that, since we do not know if E is reflexive, we cannot guarantee that a bounded sequence in E
has a weakly convergent subsequence. Hence, the proof of the Palais-Smale condition seems to be
necessary to get the result.
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4 Resonance at the first eigenvalue
In this section we consider the (more delicate) situation when the resonance phenomenon occurs at
the first positive eigenvalue. In this setting, we do not know if J is coercive. However, we are able
to apply minimization procedure, as we can see from the next result.

Lemma 4.1 Suppose g satisfies (g2) and (G∞) with µ1(K∞) ≥ 1. Then the functional J is bounded
from below.

Proof. In the proof of this lemma we argue along the same lines of [3]. We first claim that

L(x, s) := G(x, s) −
K∞(x)s4

4
≤

Γ(x)
4
,

for any x ∈ RN , s ∈ R. Assuming the claim we can prove the lemma in the following way: given
v ∈ E, we can use (1.14) and the above claim to get

J(v) =
1
2

Q(v) −
1
4

∫
K∞(x) f 4(v) −

∫ (
G(x, f (v)) −

1
4

K∞(x) f 4(v)
)

≥
1
2

(
1 −

1
µ1(K∞)

)
Q(v) −

1
4
‖Γ‖1 ≥ −

1
4
‖Γ‖1,

where we have used µ1(K∞) ≥ 1 in the last inequality.
It remains to prove the claim. Notice that, by (g2), there holds

d
dτ

(
L(x, τ)
τ4

)
=

g(x, τ)τ − 4G(x, τ)
τ5 ≥ −

Γ(x)
τ5 , τ > 0,

Integrating the above expression over [s, t] ⊂ (0,+∞) we get

L(x, t)
t4 ≥

L(x, s)
s4 +

Γ(x)
4

(
1
t4 −

1
s4

)
. (1.18)

In view of (G∞) we have that

lim sup
t→+∞

L(x, t)
t4 = lim sup

t→∞

1
4

(
4G(x, t)

t4 − K∞(x)
)

= 0.

Thus, taking the limsup as t → +∞ in (1.18), we conclude that L(x, s) ≤ Γ(x)/4, for any x ∈ RN , s ≥
0. The proof for s < 0 is analogous. �

As in the previous section, we have that J satisfies the Palais-Smale condition (see Proposition
5.1 in the next section). We are now ready to prove our result for the resonant case.

Proof of Theorem 1.1. It follows from Lemmas 3.2 and 4.1 that

−∞ < c0 := inf
v∈E

J(v) < 0.

We can now apply the Ekeland Variational Principle and use the same argument of the proof of
Theorem 1.2 to obtain a nonzero solution. �
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5 The Palais-Smale condition
We devote the rest of the paper to proving that, under the hypotheses of any of our main theorems,
the functional J : E → R satisfies the Palais-Smale condition. This is crucial in our arguments due
to the compactness required in variational methods. We start proving the boundedness of the (PS )
sequences in E.

Lemma 5.1 Suppose that g satisfies (g1) and (g2). Then any (PS )c sequence of J is bounded.

Proof. Let (vn) ⊂ E be such that

lim
n→+∞

J(vn) = c, lim
n→+∞

J′(vn) = 0.

In view of item 4 of Proposition 2.1 we have that f (vn)/ f ′(vn) ∈ E. Hence, we can use (1.8) to
compute

J′(vn) ·
f (vn)
f ′(vn)

≤ 2
∫
|∇vn|

2 +

∫
V(x) f 2(vn) −

∫
g(x, f (vn)) f (vn).

By using item 4 of Proposition 2.1 again we get

c + on(1)‖vn‖ ≥ J(vn) −
1
4

J′(vn) ·
f (vn)
f ′(vn)

≥
1
4

∫
V(x) f 2(vn) +

1
4

∫
(g(x, f (vn)) f (vn) − 4G(x, f (vn))) ,

and therefore it follows from (g2) that∫
V(x) f 2(vn) ≤ 4c + ‖Γ‖1 + on(1)‖vn‖. (1.19)

Arguing by contradiction we suppose that, up to a subsequence, ‖vn‖ → +∞ as n → +∞. We
define wn := vn/‖vn‖ and notice that, since we may suppose that ‖vn‖ ≥ 1, the above inequality and
( f10) provide ∫

V(x) f 2(wn) =

∫
V(x) f 2

(
vn

‖vn‖

)
≤

1
‖vn‖

∫
V(x) f 2(vn)→ 0.

Since (wn) is bounded in D1,2, up to a subsequence we have that wn ⇀ w weakly in D1,2(RN) and
wn(x) → w(x) a.e. in RN . By Fatou’s lemma

∫
V(x) f 2(w) ≤ lim infn→∞

∫
V(x) f 2(wn) = 0, and

therefore w = 0. It follows from item 1 of Proposition 2.1 that

|wn| f → 0. (1.20)

We now claim that
lim

n→+∞

1
‖vn‖

2

∫
G(x, f (vn)) = 0. (1.21)

If this is true we can finish the proof by noticing that∫
|∇wn|

2 = −
J(vn)
‖vn‖

2 −
1
‖vn‖

2

∫
V(x) f 2(vn) +

1
‖vn‖

2

∫
G(x, f (vn))→ 0,

where we have used J(vn) → c, (1.19) and (1.21). This convergence and (1.20) implies that 1 =

‖wn‖ = ‖∇wn‖
2
2 + |wn| f → 0, which does not make sense. This contradiction shows that (vn) is

bounded.
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In the sequel we prove (1.21). We first notice that, since vn = ‖vn‖wn, we can use (g1), ( f3) and
( f7) to get

|G(x, f (vn))|
‖vn‖

2 ≤
a(x)

2
f 2(‖vn‖wn)
‖vn‖

2 +
b(x)

4
f 4(‖vn‖wn)
‖vn‖

2

≤
1
2

(a(x) + b(x)) w2
n.

It follows from ( f8) that

|t| ≤
1
κ
| f (t)| +

1
κ2 f 2(t), for any t ∈ R. (1.22)

Hence ∫
|G(x, f (vn))|
‖vn‖

2 ≤ c1

∫
(a(x) + b(x))( f 2(wn) + f 4(wn)). (1.23)

On the other hand, item 5 of Proposition 2.1 implies that, up to a subsequence,

f (wn)→ 0 strongly in Lq(RN) for any 2 ≤ q < 2 · 2∗. (1.24)

Recalling that b ∈ Lα(RN) with α > N/2, we can use Hölder’s inequality to get∫
b(x) f 4(wn) ≤ ‖b‖α‖ f (wn)‖44α/(α−1) → 0,

where we have used (1.24) and the fact that 4 < 4α/(α − 1) < 2 · 2∗. The same argument shows that

max
{∫

a(x) f 4(wn),
∫

a(x) f 2(wn),
∫

b(x) f 2(wn)
}
→ 0.

The lemma follows from the above convergences and (1.23). �

We are ready to prove that J satisfies the well known Palais-Smale condition.

Proposition 5.1 Suppose that g satisfies (g1) and (g2). Then the functional J satisfies the (PS )c

condition for any c ∈ R.

Proof. Let (vn) ⊂ E be a (PS)-sequence. It follows from the last lemma that (vn) is bounded in
E. Hence, for some v ∈ D1,2(RN), we have that vn ⇀ v weakly in D1,2(RN). Since we also have
pointwise convergence we can use (1.19) and Fatou’s lemma to get∫

V(x) f 2(v) ≤ lim inf
n→+∞

∫
V(x) f 2(vn) < ∞. (1.25)

This and item 7 of Proposition 2.1 imply that v ∈ E. In the sequel we shall prove that ‖vn − v‖ → 0.
We start by noticing that, since f 2 is convex, the function Q : E → R given by

Q(v) :=
∫
|∇v|2 +

∫
V(x) f 2(v),

is also convex. Hence,

Q(v) − Q(vn) ≥ Q′(vn) · (v − vn)

= 2J′(vn) · (v − vn) + 2
∫

g(x, f (vn)) f ′(vn)(v − vn)
(1.26)
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We claim that
lim

n→+∞

∫
g(x, f (vn)) f ′(vn)(v − vn) = 0. (1.27)

Assuming the claim, recalling that J′(vn)→ 0 and taking the limit in (1.26) we get

lim sup
n→+∞

Q(vn) ≤ Q(v).

On the other hand, the weak converge of (vn) inD1,2(RN) provides∫
|∇v|2 ≤ lim inf

n→+∞

∫
|∇vn|

2. (1.28)

Hence, we infer from (1.25) that Q(v) ≤ lim infn→+∞ Q(vn), and therefore

lim
n→+∞

Q(vn) = Q(v). (1.29)

Before continuing the proof we justify the convergence in (1.27). From ( f12) and (1.19) we
conclude that (

∫
V(x) f 2(vn − v)) is a bounded sequence. Hence, the weak convergence (vn − v) ⇀ 0

inD1,2(RN) and item 5 of Proposition 2.1 imply that

f (vn − v)→ 0 strongly in Lq(RN) for all 2 ≤ q < 2 · 2∗. (1.30)

On the other hand, from (g1), ( f2), ( f9), ( f3), ( f7) and (1.22), we get

|g(x, f (vn)) f ′(vn)| ≤ a(x)| f (vn)| + 2−1/2b(x) f 2(vn)

≤ c1(a(x) + b(x))(| f (vn)| + f 2(vn)),

where c1 := max{κ−1, κ−2}. The above expression and inequality (1.22) again provide c2 > 0 such
that

|g(x, f (vn)) f ′(vn)||vn − v| ≤ ψ(x)hn(x)(| f (vn − v)| + f 2(vn − v)), (1.31)

with ψ(x) := c1(a(x) + b(x)) ∈ Lα(RN) and hn(x) := | f (vn(x))| + f 2(vn(x)). If we set q = 2α/(α − 1)
we can use α > N/2 to conclude that 2 < q < 2∗. Hence, the embedding E ↪→ Lq(RN), ( f3) and ( f7)
imply that the sequence hn is bounded in Lq(RN). It follows from Hölder’s inequality that∫

ψ(x)hn(x) f 2(vn − v) ≤ ‖ψ‖α‖hn‖q‖ f (vn − v)‖22q → 0,

where we have used 4 < 2q < 2 · 2∗ and (1.30). Analogously,∫
ψ(x)hn(x)| f (vn − v)| → 0.

The statement (1.27) is a consequence of inequality (1.31) and the two convergences above.
By using (1.29) we obtain

Q(v) = lim inf
n→+∞

Q(vn)

≥ lim inf
n→+∞

∫
|∇vn|

2 + lim inf
n→+∞

∫
V(x) f 2(vn)

≥

∫
|∇u|2 +

∫
V(x) f 2(v) = Q(v).
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We infer from the above inequality, (1.25) and (1.28) that

lim inf
n→+∞

∫
|∇vn|

2 =

∫
|∇v|2, lim inf

n→+∞

∫
V(x) f 2(vn) =

∫
V(x) f 2(v). (1.32)

Hence

Q(v) = lim sup
n→+∞

(∫
|∇vn|

2 +

∫
V(x) f 2(vn)

)
≥ lim sup

n→+∞

∫
|∇vn|

2 + lim inf
n→+∞

∫
V(x) f 2(vn)

≥ lim inf
n→+∞

(∫
|∇vn|

2 +

∫
V(x) f 2(vn)

)
= Q(v),

and therefore we conclude that

lim sup
n→+∞

∫
|∇vn|

2 =

∫
|∇v|2.

This and (1.32) imply that ‖vn‖D1,2(RN ) → ‖v‖D1,2(RN ). So, the weak convergence of (vn) imply that
vn → v strongly inD1,2(RN), that is

lim
n→+∞

‖∇(vn − v)‖2 = 0. (1.33)

Arguing as above we can also conclude that

lim sup
n→+∞

∫
V(x) f 2(vn) =

∫
V(x) f 2(v).

and therefore we have that
√

V(x) f 2(vn) →
√

V(x) f 2(v) strongly in L2(RN). Thus, up to a subse-
quence, we have that

√
V(x) f 2(vn) ≤ ϕ(x) a.e. in Rn for some ϕ ∈ L2(RN). Thus, we can use ( f12) to

obtain
V(x) f 2(vn − v) ≤ 4(V(x) f 2(vn) + V(x) f 2(v)) ≤ 4(ϕ(x)2 + V(x) f 2(v)).

Since the right-hand side above belongs to L1(RN) it follows from the Lebesgue Theorem that∫
V(x) f 2(vn − v)→ 0. Thus, item 1 of Proposition 2.1 implies that

lim
n→+∞

|vn − v| f = 0.

By using this equality and (1.33) we conclude that

lim
n→+∞

‖vn − v‖ = lim
n→+∞

(‖∇(vn − v)‖2 + |vn − v| f ) = 0

and the proposition is now proved. �

Now we shall consider the Palais-Smale condition under (g̃1) instead of (g1) − (g2).

Proposition 5.2 Under the hypotheses of Theorem 1.2 the functional J satisfies the (PS )c condition
for any c ∈ R.

Proof. As proved in Lemma 3.1 the functional J is coercive on E. Hence, any Palais-Smale sequence
is bounded. It now suffices to notice that, in the proof of Proposition 5.1, we have used the condition
(g2) only to prove the boundedness of the PS-sequence. Since the condition (g̃1) implies (g1), we
can argue along the same lines of the proof of Proposition 5.1 to get the desired result. We omit the
details. �
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