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We establish a Trudinger–Moser type inequality in a weighted Sobolev space. The inequality is applied in the
study of the elliptic equation

−div(K (x)∇u) = K (x) f (u) + h in R
2,

where K (x) = exp(|x |2/4), f has exponential critical growth and h belongs to the dual of an appropriate
function space. We prove that the problem has at least two weak solutions provided h �= 0 is small.
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1 Introduction

For N ≥ 2, let C∞
c

(
R

N
)

be the space of infinitely differentiable functions with compact support and denote by X
the closure of C∞

c

(
R

N
)

with respect to the norm

‖u‖ :=
(∫

RN

K (x)|∇u|2dx

)1/2

(1.1)

where K (x) := exp
(|x |2/4

)
. For each p ≥ 1 we also consider the weighted Lebesgue space L p

K

(
R

N
)

of all
the measurable functions u : R

N → R such that

‖u‖p :=
(∫

RN

K (x)|u|pdx

)1/p

< ∞.

It is proved by Escobedo-Kavian in [8] that X is continuously embedded in L p
K

(
R

N
)

for any 2 ≤ p ≤ 2∗ :=
2N/(N − 2). The main purpose of this paper is to consider the limit case N = 2 also known as the Trudinger–
Moser case.

We recall that if � ⊂ R
2 is a bounded domain then W 1,2

0 (�) ↪→ Lq(�) for 1 ≤ q < ∞, but W 1,2
0 (�) �↪→

L∞(�). The classical Trudinger–Moser inequality (see [15], [24]) gives an improvement to the limit case N = 2.
More precisely, for all u ∈ W 1,2

0 (�) and α > 0 there holds eαu2 ∈ L1(�) and there exists a constant C = C(�),
which depends only on measure of �, such that

sup
‖∇u‖2≤1

∫
�

eαu2
dx ≤ C(�), if α ≤ 4π. (1.2)

Moreover, 4π is the best constant, in the sense that the above supremum is infinity if α > 4π . The Trudinger–
Moser result was extended for unbounded domains by D. M. Cao [5]. Explicitly, for any u ∈ W 1,2

(
R

2
)

and
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α > 0 it holds
(
eαu2 − 1

) ∈ L1
(
R

2
)
. Moreover, if ‖∇u‖2 ≤ 1, ‖u‖2 ≤ M < ∞ and α < 4π , then there exists

C = C(M, α) such that∫
R2

(eαu2 − 1) dx ≤ C(M, α). (1.3)

Recently, B. Ruf [19] proved that the result of J. Moser [15] can be fully extended to R
2 if the Dirichlet norm

‖∇u‖2 is replaced by the full Sobolev usual norm ‖u‖1,2 (for a related result see also [3]). More precisely

sup
u∈H 1(R2) : ‖u‖1,2≤1

∫
R2

(eαu2 − 1) dx < ∞, if α ≤ 4π,

with the number 4π being again the best constant. Estimates of Trudinger–Moser type plays an important role in
geometric analysis and partial differential equations.

As we will see in Lemma 2.1, the space X is embedded into the Lebesgue spaces L p
K

(
R

2
)

for any p ∈ [2,∞).
With the aid of inequality (1.3) we prove the following version of the Trudinger–Moser inequality in the space X .

Theorem 1.1 For any u ∈ X and β > 0 we have that K (x)|u|2(eβu2 − 1
) ∈ L1

(
R

2
)
. Moreover, if ‖u‖ ≤ M

and βM2 < 4π , then there exists a constant C = C(M, β) > 0 such that∫
R2

K (x)|u|2(eβu2 − 1
)

dx ≤ C(M, β).

As a byproduct of the proof of Theorem 1.1 we can prove the next corollary. It will be useful in the applications
presented in the second part of our paper.

Corollary 1.2 If u ∈ X, β > 0, q > 0 and ‖u‖ ≤ M with βM2 < 4π , then there exists C = C(β, M, q) > 0
such that ∫

R2
K (x)|u|2+q

(
eβu2 − 1

)
dx ≤ C(β, M, q)‖u‖2+q .

When dealing with PDE involving Trudinger–Moser critical growth one of the main difficulties is to handle the
Palais-Smale sequences. For that matter, P.-L. Lions proved in [14] the following improvement of the Trudinger–
Moser inequality: let (un) be a sequence of functions in W 1,2

0 (�) with ‖∇un‖2 = 1 such that un ⇀ u �= 0 weakly

in W 1,2
0 (�). Then for any 0 < p < 4π

(
1 − ‖∇u‖2

2

)−1
we have

sup
n∈N

∫
�

epu2
n dx < ∞.

It is clear that this result gives more precise information than (1.2) when un ⇀ u weakly in W 1,2
0 (�) with u �= 0.

With the purpose to control the Palais-Smale sequences in our application we prove the following improvement
of the Trudinger–Moser inequality considering our variational setting.

Theorem 1.3 Let (vn) in X with ‖vn‖ = 1 and suppose that vn ⇀ v weakly in X with ‖v‖ < 1. Then for each

0 < p < 4π
(
1 − ‖v‖2

)−1
, up to a subsequence, it holds

sup
n∈N

∫
K (x)v2

n

(
epv2

n − 1
)

dx < ∞.

As an application of the previous results we study the following semilinear elliptic equation

−div(K (x)∇u) = K (x) f (u) + h in R
2, (P)

where f has critical exponential growth and the forcing term h belongs to the dual of X . Actually, we are able to
show that this space is so big in order to contain any Lebesgue space L p

(
R

2
)

for p ≥ 1 (see Remark 2.3).
The above equation is closely related to the study of self-similar solutions for the heat equation as quoted in

the works of Haraux-Weissler [12] and Escobedo-Kavian [8] (see also [6], [11]). In this direction, problem (P)
arises naturally when one seek for solutions of the form

ω(t, x) = t−1/( p−1)u
(
t−1/2x

)
C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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for the evolution equation

ωt − 	ω = |ω|p−1ω on (0,∞) × R
2.

More precisely, ω(t, x) satisfies the previous equation if and only if u : R
2 → R satisfies

−	u − 1

2
(x · ∇u) = λu + |u|p−1u, on R

2,

which is equivalent to the equation (P) with λ = 1/(p − 1), f (u) = λu + |u|p−1u and h = 0.
The role played by the nonhomogeneous term h in producing multiple solutions was investigated in many

works (see [1], [18]). Recently, many authors have been interested in the perturbed problem

−div(K (x)∇u) + cu = |u|p−1u + μ f in �,

involving both critical and subcritical Sobolev exponents in bounded and unbounded domains of R
N , N ≥ 3. The

case � bounded has been widely studied and the exponent p was crucial in the arguments (see [18], [21] and
references therein). If � = R

N , this problem has been studied recently by many authors and the nonhomogeneous
term h plays an important role in their analysis (see [1], [7], [13]).

We are interested here in the case that the function f has the maximal growth which allows to deal with (P)
variationally. According to our abstract results, we can use here the same notion of criticality introduced in [4],
[9], namely

( f0) there exists α0 > 0 such that

lim
|s|→+∞

f (s)
eαs2 =

{
0, if α > α0,

+∞, if α < α0.

Perturbed problems involving critical exponential growth in bounded domains of R
2 have been studied by

many authors (see [16], [17], [22], [23]). When dealing with problems on the entire space the authors usually use
the inequality (1.3) (see [2], [5], [19] and references therein). Due to the presence of the weight K (x) in Equation
(P) we are not able to use the usual Sobolev spaces. As quoted in [8], the natural space to look for rapid decay
solutions is the space X and this was the main motivation for the establishment of Theorems 1.1 and 1.3.

In order to perform the minimax approach to problem (P) we also need to make some suitable assumptions
on the behavior of f . More precisely, we shall assume the following conditions:

( f1) lim
s→0

f (s)/s = 0;

( f2) there exists θ0 > 2 such that

0 ≤ θ0 F(s) := θ0

∫ s

0
f (t) dt ≤ s f (s), for all s ∈ R.

Now, we are ready to state our first existence result.

Theorem 1.4 Suppose f satisfies ( f0)–( f2). Then there exists δ1 > 0 such that, if 0 < ‖h‖X−1 < δ1, the
problem (P) has a weak solution uh ∈ X. Moreover, we have that ‖uh‖ → 0 as ‖h‖X−1 → 0.

In our next result we study the effect of the smallness of h on the existence of multiple solutions for the problem
(P). In this case we need to do some fine estimates which are related with a version of the Strauss Lemma for
radial functions (see Lemma 4.3) and therefore we work in the subspace of the radial functions of X . Actually,
we shall look for solution in Xrad , which is defined as the closure of C∞

c,rad

(
R

2
)

with respect to the norm (1.1).
Here C∞

c,rad

(
R

2
)

stands for the subspace of radial functions of C∞
c

(
R

2
)
. We will denote by X−1

rad the topological
dual space of Xrad .

Concerning the nonlinearity f we make the following additional assumptions:

( f3) for each θ > 2, there exists Rθ > 0 such that

0 ≤ θ F(s) ≤ s f (s), for all |s| ≥ Rθ .
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( f4) there exists β0 > 0 such that

lim inf
|s|→∞

f (s)s
eα0s2 ≥ β0 >

4

α0
min
r>0

1

r2
exp

(
r2

4
+ r4

256

)
.

Our multiplicity result can be stated as follows.

Theorem 1.5 Suppose f satisfies ( f0)–( f4). Then there exists δ2 > 0 such that, if 0 < ‖h‖X−1
rad

< δ2, then the
problem (P) has at least two weak solutions.

We remark that our first theorem ensures the existence of one weak solution for the model nonlinearity

f (s) = eαs2 − 1.

Concerning the second result, it is straightforward to check that

f (s) =
(
es2 − 1

)
sβ0

1 + s2
,

satisfies ( f0)–( f4) with α0 = 1 and β0 > 3.
Theorem 1.4 will be proved by a minimization argument. Actually, in this first result we can replace the

condition ( f2) by the natural superlinear assumption that F(s)/s2 → +∞ as s → +∞ (see Remark 3.2). For
the proof of Theorem 1.5 we shall use the Mountain Pass Theorem centered at the local minimum uh . The main
difficult here is the handling of the Palais-Smale sequence. Since the embedding of X in the Orlicz space L A

(
R

2
)(

with the N−function A(t) = eαt2 − 1
)

is not compact, beside the abstracts results of the first of the paper, we
shall perform some careful estimations of the critical level of the functional associated with problem (P).

Hypothesis ( f3), which has already appeared in [16], [25], is essential in order to get some convergence results.
It says that the nonlinearity f satisfies the Ambrosetti-Rabinowitz condition for any θ > 2. Although this appears
to be very restrictive, the models functions with critical exponential growth satisfies ( f3). Moreover, this condition
is implied by(

f̂3
)

there exist constants R0, M0 > 0 such that

0 < F(s) ≤ M0 f (s), for all |s| ≥ R0,

which has been used for instance in the papers [9], [10].
Concerning the correct localization of the minimax level we use the technical condition ( f4) and adapt some

calculations performed in [16] by using Green’s functions considered by Moser in [15]. It is worthwhile to mention
that our condition ( f4) is more general from the analogous one considered in [16], since here the number β0 may
be finite. Actually, a numerical computation shows that the relation between α0 and β0 in the condition ( f4) is
satisfied if, for instance, α0β0 > 9.

The paper is organized as follows. In Section 2 we present the proof of our abstract results for the space X . In
Section 3 we prove our existence result Theorem 1.4 and in the final Section 4 we prove Theorem 1.5.

Throughout the paper we write
∫

u instead of
∫

R2 u(x) dx .

2 Proof of the abstract results

In this section we present the proof of Theorems 1.1 and 1.3. To this end, we first recall that X was defined as the
closure of C∞

c

(
R

2
)

with respect to the norm

‖u‖ :=
(∫

K (x)|∇u|2
)1/2

where K (x) = exp
(|x |2/4

)
. The following result establishes the embedding of X in the weighted Lebesgue

spaces.

Lemma 2.1 The space X is compactly embedded in L p
K

(
R

2
)

for any p ∈ [2,+∞).
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P r o o f . For any given u ∈ C∞
c

(
R

2
)

we have that∫ ∣∣∇(K (x)1/2u)
∣∣2 =

∫
K (x)|∇u|2 +

∫
∇(

K (x)1/2u2
)∇(

K (x)1/2
)
.

Integrating by parts we get∫ ∣∣∇(K (x)1/2u)
∣∣2 =

∫
K (x)|∇u|2 − 1

2

∫
K (x)u2

(
	θ + 1

2
|∇θ |2

)
(2.1)

where θ(x) := |x |2/4. Since

	θ(x) + 1

2
|∇θ(x)|2 = 1 + 1

8
|x |2 ≥ 1

it follows that∫
K (x)u2 ≤ 2

∫
K (x)|∇u|2. (2.2)

By density we have the same inequality for any u ∈ X . This establishes the continuous embedding X ↪→ L2
K

(
R

2
)
.

If p > 2 and u ∈ X , we can use (2.1) and (2.2) to get∫ (∣∣∇(K (x)1/2u)
∣∣2 + K (x)u2

)
≤

∫
K (x)|∇u|2 + 1

2

∫
K (x)u2 ≤ 2‖u‖2.

Thus we conclude that K 1/2u ∈ H 1
(
R

2
)
. Hence, we can use (2.1) again to infer that∫

K (x)|∇u|2 ≥
∫ ∣∣∇(K (x)1/2u)

∣∣2 + 1

2

∫
K (x)|u|2

= ∥∥K 1/2u
∥∥2

H 1(R2) − 1

2

∫
K (x)|u|2

≥ C p

(∫
K (x)p/2|u|p

)2/p

− 1

2

∫
K (x)|u|2,

where C p > 0 is related with the embedding H 1
(
R

2
)

↪→ L p
(
R

2
)
. Since K (x) ≥ 1 and p ≥ 2 we have that

K (x)p/2 ≥ K (x). It follows from (2.2) that

C p

(∫
K (x)|u|p

)2/p

≤ C p

(∫
K (x)p/2|u|p

)2/p

≤ 2
∫

K (x)|∇u|2, (2.3)

and therefore X ↪→ L p
K

(
R

2
)
, for p ≥ 2.

It is proved in [8], Proposition 11] that the embedding X ↪→ L2
K

(
R

2
)

is compact. For the case p > 2, we
take a sequence (un) ⊂ X such that un ⇀ 0 weakly in X . Fix p̃ > p and consider τ ∈ (0, 1) such that p =
(1 − τ )2 + τp̃. Hölder’s inequality with exponents 1/(1 − τ ) and 1/τ provides∫

K (x)|un|p =
∫

K (x)(1−τ ) |un|(1−τ )2 K (x)τ |un|τ p̃

≤
(∫

K (x)|un|2
)1−τ (∫

K (x)|un| p̃

)τ

≤ c‖un‖2(1−τ )
2 .

Up to a subsequence, we have that un → 0 in L2
K

(
R

2
)
. The above expression implies that un → 0 in L p

K

(
R

2
)
. �

Remark 2.2 As a byproduct of the above calculations we see that X ↪→ H 1
(
R

2
)
. Indeed, for any u ∈ X we

infer from (2.2) that∫ (|∇u|2 + |u|2) ≤
∫

K (x)
(|∇u|2 + |u|2) ≤ 3‖u‖2.
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We also quote for future references that, in view of the second inequality (2.3), for any r ≥ 1 there exists C = C(r)
such that (∫

K (x)r |u|2r

)1/r

≤ C
∫

K (x)|∇u|2, for all u ∈ X. (2.4)

Remark 2.3 Another interesting remark is that X ↪→ L p
(
R

2
)

for any p ≥ 1. Hence, the element h of the dual
of X can belongs to any Lebesgue space. In order to verify the last embedding we notice that, since K ≥ 1, we
have L p

K

(
R

2
)

↪→ L p
(
R

2
)

for p ≥ 2. On the other hand, if u ∈ X then∫
|u| ≤

(∫
e−|x |2/4

)1/2 (∫
K (x)|u|2

)1/2

< ∞,

which shows that X ↪→ L1
(
R

2
)
. By using interpolation we conclude that X ↪→ L p(R2) also for p > 1.

We are now ready to present the proof of our abstract results.

P r o o f o f T h e o r e m 1.1. Let ri > 1, i = 1, 2, be such that 1/r1 + 1/r2 = 1. Hölder’s inequality implies
that ∫

K (x)|u|2(eβu2 − 1
) ≤

(∫
K (x)r1 |u|2r1

)1/r1
(∫

(eβu2 − 1)r2

)1/r2

. (2.5)

By applying the inequality (1 + t)r ≥ 1 + tr with t = es − 1 ≥ 0, we obtain

(es − 1)r ≤ (ers − 1), for all r ≥ 1, s ≥ 0. (2.6)

Using this inequality in (2.5) and recalling (2.4) we get∫
K (x)|u|2(eβu2 − 1

) ≤ C‖u‖2

(∫ (
eβr2u2 − 1

))1/r2

. (2.7)

By choosing r2 close to 1, in such way that α := βr2 M2 < 4π , we obtain∫ (
eβr2u2 − 1

) ≤
∫ (

eβr2 M2(u/‖u‖)2 − 1
)

=
∫ (

eαv2 − 1
)
,

with v := u/‖u‖. Since
∫ |∇v|2 ≤ ‖v‖2 = 1 we have that ‖∇v‖L2(R2) ≤ 1. Moreover, it follows from (2.2) that

‖v‖L2(R2) ≤ 2. Hence, we can invoke inequality (1.3) to obtain a positive constant C(M, β) such that∫ (
eβr2u2 − 1

) ≤ C(M, β).

The results follows from the above estimate and (2.7). �
P r o o f o f C o r o l l a r y 1.2. Let ri > 1, i = 1, 2, 3, be such that 1/r1 + 1/r2 + 1/r3 = 1 and qr2 ≥ 1.

Hölder’s inequality implies that∫
K (x)|u|2+q

(
eβu2 − 1

) ≤
(∫

K (x)r1 |u|2r1

)1/r1

‖u‖q
Lqr2 (R2)

(∫ (
eβu2 − 1

)r3

)1/r3

.

Using the embedding X ↪→ Lqr2(R2) and arguing as in the proof of Theorem 1.2 we obtain the desired result. �
P r o o f o f T h e o r e m 1.3. Given r > 1 it follows from Hölder’s inequality, (2.4) and (2.6) that∫

K (x)v2
n

(
epv2

n − 1
) ≤

(∫
K (x)r ′ |vn|2r ′

)1/r ′ (∫ (
erpv2

n − 1
))1/r

≤ C

(∫ (
erpv2

n − 1
))1/r

,

where 1/r + 1/r ′ = 1.

C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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In order to obtain an uniform estimate of the right-hand side above we recall that, if a, b, ε > 0, Young’s
inequality implies that

a2 = (a − b)2 + b2 + 2ε(a − b)
b

ε

≤ (1 + ε2)(a − b)2 +
(

1 + 1

ε2

)
b2.

Hence, we can use Young’s inequality again to get∫ (
erpv2

n − 1
) ≤

∫ (
erp(1+ε2)(vn−v)2

erp(1+1/ε2)v2 − 1

γ
− 1

γ ′

)
≤ 1

γ

∫ (
erγ p(1+ε2)(vn−v)2 − 1

)
+ 1

γ ′

∫ (
erγ ′ p(1+1/ε2)v2 − 1

)
where γ > 1 and 1/γ + 1/γ ′ = 1. The last integral above is finite and therefore it suffices to prove that

sup
n∈N

∫ (
erγ p(1+ε2)(vn−v)2 − 1

)
< ∞.

Since vn ⇀ v and ‖vn‖ = 1, we conclude that

lim
n→∞ ‖vn − v‖2 = 1 − ‖v‖2 <

4π

p
.

Thus, we can take 0 < α < 4π and choose r, γ close to 1 and ε > 0 small in such way that

rγ p
(
1 + ε2)‖vn − v‖2 < α < 4π. (2.8)

We now set un := (vn−v)
‖vn−v‖ and notice that, since

∫ |∇un|2 ≤ ‖un‖2 = 1 we have that ‖∇un‖L2(R2) ≤ 1. Moreover,
it follows from (2.2) that ‖un‖L2(R2) ≤ 2. Hence, we can invoke inequalities (1.3) and (2.8) to obtain C1 > 0,
independent of n, such that∫ (

erγ p(1+ε2)(vn−v)2 − 1
)

=
∫ (

erγ p(1+ε2)‖vn−v‖2u2
n − 1

)
≤

∫ (
eαu2

n − 1
)

≤ C1,

and the theorem is proved. �

3 Proof of Theorem 1.4

Let α > α0 be given by ( f0) and q ≥ 1. By using the critical growth of f we obtain

lim
|s|→+∞

f (s)
|s|q−1(eαs2 − 1)

= 0.

This and ( f1) imply that, for any given ε > 0, there hold

| f (s)| ≤ ε|s| + c1|s|q−1(eαs2 − 1
)
, for all s ∈ R, (3.1)

and

|F(s)| ≤ ε

2
s2 + c2|s|q

(
eαs2 − 1

)
, for all s ∈ R. (3.2)

Given u ∈ X we can use the above inequality with q = 2 to obtain∫
K (x)F(u) ≤ c3

∫
K (x)|u|2 + c4

∫
K (x)|u|2(eαu2 − 1

)
< +∞,
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where we have used Lemma 2.1 and Theorem 1.1. Hence, we can use standard calculations to conclude that the
functional

I (u) := 1

2
‖u‖2 −

∫
K (x)F(u) − 〈h, u〉, u ∈ X,

is well defined. Moreover, I ∈ C1(X, R) with derivative given by

I ′(u)ϕ =
∫

K (x)∇u · ∇ϕ −
∫

K (x) f (u)ϕ − 〈h, ϕ〉,

and therefore the critical points of I are precisely the weak solutions of the problem (P).
In order to obtain the link structure for the functional I we use the following technical result.

Lemma 3.1 Suppose f satisfies ( f0)–( f2). Then there exists δ1 > 0 such that, for each h ∈ X−1 with
0 < ‖h‖X−1 ≤ δ1, there hold

(i) there exist γh, ρh > 0 such that

I (u) ≥ γh > 0, for all u ∈ ∂ Bρh (0).

Furthermore, ρh can be chosen such that ρh → 0 as ‖h‖X−1 → 0.
(ii) there exists eh ∈ X such that

I (eh) < inf
Bρh (0)

I < 0.

P r o o f . By using (3.2) with q > 2, Corollary 1.2 and the continuous embedding X ↪→ L2
K

(
R

2
)

we obtain

I (u) ≥ 1

2
‖u‖2 − ε

2

∫
K (x)|u|2 − Cε

∫
K (x)|u|2+(q−2)(eαu2 − 1

) − 〈h, u〉

≥ 1

2
(1 − c1ε) ‖u‖2 − c2‖u‖q − ‖h‖X−1‖u‖,

whenever ‖u‖ ≤ M < (4π/α)1/2. Choosing ε = 1/(2c1) we get

I (u) ≥ ‖u‖
(

1

4
‖u‖ − c3‖u‖q−1 − ‖h‖X−1

)
.

If we define φ(t) := t/4 − c3tq−1, a straightforward calculation shows that, for any 0 < ‖h‖X−1 < maxt≥0 φ(t),
there exists 0 < ρh < (4π/α)1/2 such that

1

4
ρh − c3ρ

q−1
h = ‖h‖X−1

2
,

and therefore

I (u) ≥ ρh

2
‖h‖X−1 > 0, if ‖u‖ = ρh .

Moreover, the number ρh can be chosen in such way that ρh → 0 as ‖h‖X−1 → 0.
In order to verify (ii) we note that, from ( f2), we get

F(s) ≥ c4|s|θ0 − c5, for all s ∈ R. (3.3)

If we take a nonzero function ϕ ∈ C∞
c

(
R

2
)

and denote by A the support of ϕ, we have for t ≥ 0

I (tϕ) ≤ t2

2
‖ϕ‖2 − c4tθ0

∫
K (x)|ϕ|θ0 + c5‖K‖L1( A) + t‖h‖X−1‖ϕ‖.

Hence I (tϕ) → −∞ as t → ∞. Thus, if we set eh := tϕ for t > 0 large enough, we conclude that I (eh) <

infu∈Bρh (0) I (u).
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It remains to prove that the infimun of I on Bρh (0) is negative. For this purpose we denote by vh the unique
function of X satisfying (in the weak sense)

−div(K (x)∇vh) = h in R
2.

This function can be obtained by the Riesz Theorem. We have that 〈h, vh〉 = ‖vh‖2 > 0, whenever h �= 0. Since
f (0) = 0, it follows by continuity that there exists ηh > 0 such that

d

dt
I (tvh) = t‖vh‖2 −

∫
K (x) f (tvh)vh − 〈h, vh〉 < 0,

for all 0 < t < ηh . Hence t �→ I (tvh) is decreasing in (0, ηh). Since I (0) = 0, we must have I (tvh) < 0 for all
0 < t < ηh , and the result follows. �

Remark 3.2 It is worthwhile to mention that the above lemma remains true if we replace the Ambrosetti-
Rabinowitz condition ( f2) by the following weaker condition

(
f̂2

)
lim

s→∞
F(s)

s2
= +∞.

Indeed, notice that ( f2) was used only to show that I (tϕ) → −∞ for some ϕ ∈ X . So, we need only check that
the above condition suffices to get the same result. Given M > 0, it follows from

(
f̂2

)
that F(s) ≥ Ms2 − CM ,

for any s ≥ 0 and some CM > 0. If we take a nonzero nonnegative function ϕ ∈ C∞
c

(
R

2
)

and denote by A the
support of ϕ, we have

I (tϕ) ≤ t2

2

(
‖ϕ‖2 − 2M

∫
K (x)ϕ2

)
+ c1‖K‖L1( A) + t‖h‖X−1‖ϕ‖.

Since M > 0 is arbitrary, the result follows.

We are ready to prove our existence result.

P r o o f o f T h e o r e m 1.4. Let ρh be given by Lemma 3.1. We can choose ‖h‖X−1 small in such way that
ρh < (4π/α0)1/2. Let

c0 := inf
‖u‖≤ρh

I (u) < 0.

By using the Ekeland Variational Principle we obtain a minimizing sequence (un) ⊂ Bρh (0) such that I (un) → c0

and I ′(un) → 0. Notice that

lim inf
n→∞ ‖un‖2 ≤ ρ2

h <
4π

α0
.

We claim that, along a subsequence, un → u strongly in X . If this is true it follows that I (u) = c0 < 0 and
therefore u is a (nonzero) weak solution of I .

It remains to prove the claim. Since (un) ⊂ X is bounded we may suppose that un ⇀ u weakly in X . We set
wn := un − u and notice that, since wn ⇀ 0 weakly in X , we have that

on(1) = I ′(un)wn = 〈un, un − u〉 −
∫

K (x) f (un)wn − 〈h, wn〉

= ‖un‖2 − ‖u‖2 −
∫

K (x) f (un)wn + on(1).
(3.4)

It suffices to prove that

lim
n→∞

∫
K (x) f (un)wn = 0. (3.5)

If this is true, it follows from (3.4) that ‖un‖ → ‖u‖. Hence, the weak convergence of (un) implies that un → u
strongly in X .
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We now argue along the same lines of the proof of Theorem 1.1 in order to prove (3.5). We first use (3.1) with
q = 3 to get ∣∣∣∣∫ K (x) f (un)wn

∣∣∣∣ ≤ ε

∫
K (x)|un||wn| + c1

∫
K (x)|un|2|wn|

(
eαu2

n − 1
)

≤ ε‖un‖2‖wn‖2 + c1 Dn, (3.6)

where

Dn :=
∫

K (x)|un|2|wn|
(
eαu2

n − 1
)
.

Since the embedding X ↪→ L2
K

(
R

2
)

is compact, we have that ‖wn‖2 → 0. Hence, it is enough to verify that
Dn → 0. By taking ri > 1, i = 1, 2, 3, such that 1/r1 + 1/r2 + 1/r3 = 1 and r2 > 2, we can use Hölder inequality
again to get

Dn ≤ c2

(∫
K (x)r1 |un|2r1

)1/r1

‖wn‖Lr2 (R2)

(∫ (
eαr3‖un‖2(un/‖un‖)2

))1/r3

≤ c3‖un‖2on(1)
(∫ (

eαr3‖un‖2(un/‖un‖)2
))1/r3

,

where we have used (2.4), (2.6) and the compactness of X ↪→ Lr2
(
R

2
)
. Since ‖un‖2 → γ < 4π/α0, we can

choose r3 close to 1 and α > α0 close to α0 in such way that αr3‖un‖2 ≤ γ̃ < 4π . It follows from inequality (1.3)
that the last term into the parenthesis above is bounded. Hence, Dn → 0 and the theorem is proved. �

4 Proof of Theorem 1.5

In this section we prove our multiplicity result. As quoted in the Introduction, in order to get the correct estimates,
we need now to work with radial functions. We then denote by Xrad the closure of C∞

c,rad

(
R

2
)

with respect to the
norm (1.1). A simple inspection of the proofs present in the two last sections show that all the results also hold
if we replace X by Xrad . Thus, we can use the same variational setting earlier presented with the functional I
defined only on the space Xrad . We point out that, in order to simplify the explanation, in the sequel we will write
only X to denote the subspace Xrad .

From now on we will suppose that 0 < ‖h‖X−1 < δ1, with δ1 > 0 given by Theorem 1.4. We shall denote by
uh the weak solution provided by that theorem.

The proof we are going to present is based on an indirect application of the Mountain Pass Theorem. There are
two main points: to obtain a local compactness result and making a careful estimate of the minimax level of the
functional I . We state below these two core results.

Proposition 4.1 Suppose f satisfies ( f2) and ( f3). The functional I satisfies the (PS)d condition for any

d < I (uh) + 2π

α0
,

provided 0 and uh are the only critical points of I .

Proposition 4.2 Suppose f satisfies ( f0)–( f2) and ( f4) and let δ1 > 0 and uh ∈ X be given by Theorem
1.4. Then there exists 0 < δ2 ≤ δ1 such that, for all h ∈ X−1 such that 0 < ‖h‖X−1 < δ2, there exists v ∈ X with
compact support such that

max
t≥0

I (tv) < I (uh) + 2π

α0
. (4.1)

The above propositions will be proved in the next two subsections. In what follows, we show how they can be
applied to prove our multiplicity result.

P r o o f o f T h e o r e m 1.5. We shall prove the theorem for δ2 given by the last proposition. Arguing by
contradiction, we suppose that 0 < ‖h‖X−1 < δ2 but the functional I has no critical points other than 0 and uh .
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Let v be given by Proposition 4.2 and denote by A ⊂ R
2 its support. It follows from (3.3) that, for any t > 0,

I (tv) ≤ t2

2
‖v‖2 − c4tθ0

∫
A

K (x)|v|θ0 dx − c5|A| + t‖h‖X−1‖v‖.

Since θ0 > 2 we conclude that I (tv) → −∞ as t → ∞. Hence, I (t0v) < 0 for some t0 > 0 large enough. This
and item (i) of Lemma 3.1 show that I has the Mountain Pass Geometry, and therefore we can define the minimax
level

cM := inf
γ∈�

max
t∈[0,1]

I (γ (t)),

where � := {γ ∈ C([0, 1], X) : γ (0) = 0, γ (1) = t0v}. The definition of cM and (4.1) imply that

cM ≤ max
t≥0

I (tv) < I (uh) + 2π

α0
.

By Proposition 4.1 the functional I satisfies the Palais-Smale condition at the level cM . It follows from the
Mountain Pass Theorem that I possesses a critical point uM ∈ X with I (uM) > 0. Since I (0) = 0 and I (uh) < 0
we have that uM �∈ {0, uh}, which is a contradiction, since we are supposing that the only critical points of I are
0 and uh . The theorem is proved. �

4.1 The local compactness result

We devote this subsection to the proof of Proposition 4.1. It will be done in several steps and it was inspired by
similar arguments developed in [16]. We start by establishing a variant of a well-known radial lemma of Strauss
[20].

Lemma 4.3 There exists c0 > 0 such that, for all v ∈ X, there holds

|v(x)| ≤ c0|x |−1/2e− |x |2
8 ‖v‖, for all x ∈ R

2 \ {0}.
P r o o f . It suffices to prove the lemma for v ∈ C∞

c,rad

(
R

2
)
. Let r = |x | and ϕ : [0,+∞) → R be such that

ϕ(r) = v(|x |). We have that

ϕ(r)2 = −2
∫ ∞

r
ϕ(s)ϕ′(s) ds

≤ 2
∫ ∞

r
e−s2/4s−1|ϕ(s)||ϕ′(s)|es2/4s ds

≤ r−1e−r2/4
∫ ∞

r

(
ϕ(s)2 + ϕ′(s)2

)
es2/4s ds

≤ c1r−1e−r2/4
∫ (

K (x)|∇v|2 + K (x)v2
)
.

Since X ↪→ L2
K

(
R

2
)
, we get

ϕ(r)2 ≤ cr−1e−r2/4‖v‖2,

and the lemma follows. �

In order to make the proof of our results more direct and effective, we state a technical lemma.

Lemma 4.4 Suppose G ∈ C(R, R) satisfies

G(s) ≤ c1s4
(
eαs2 − 1

)
, for all s ∈ R,
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with c1, α > 0. Then there exists c > 0 such that, for any R > 1 and u ∈ X, there holds∫
BR(0)c

K (x)G(u) dx ≤ c

R
‖u‖4

(
eαc2

0‖u‖2 − 1
)
,

where c0 > 0 comes from Lemma 4.3.

P r o o f . It follows from the Monotone Convergence Theorem that∫
BR(0)c

K (x)G(u) dx ≤ c1

∫
BR(0)c

K (x)|u|4(eαu2 − 1) dx

= c1

+∞∑
j=1

α j

j!

∫
BR(0)c

K (x)|u|2 j+4 dx . (4.2)

By using Lemma 4.3 we can estimate the last integral above as follows∫
BR(0)c

K (x)|u|2 j+4 dx ≤ (c0‖u‖)2 j+4
∫

BR(0)c

e
|x |2

4 (1− j−2) |x |− j−2 dx

≤ 2π(c0‖u‖)2 j+4
∫ ∞

R
s− j−2s ds

= 2π(c0‖u‖)2 j+4 1

j R j

≤ 2π

R
(c0‖u‖)2 j+4,

where we have used that j ≥ 1 and R > 1. The above expression and (4.2) provide

∫
BR(0)c

K (x)G(u) dx ≤ 2π

R
c1(c0‖u‖)4

∞∑
j=1

(αc2
0‖u‖2) j

j!

= c

R
‖u‖4

(
eαc2

0‖u‖2 − 1
)
,

with c := 2πc1c4
0 > 0. The proof is complete. �

Lemma 4.5 Suppose f satisfies ( f2) and ( f3). If (un) ⊂ X is a (PS)c sequence of I then, up to a subsequence,
we have that

(i) un ⇀ u weakly in X with I ′(u) = 0;
(ii) limn→∞

∫
K (x)F(un) = ∫

K (x)F(u);
(iii) lim supR→∞

∫
BR(0)c K (x) f (un)un dx = 0.

P r o o f . Let (un) ⊂ X be such that I ′(un) → 0 and I (un) → c. Notice that

c + on(1)‖un‖ + on(1) = I (un) − 1

θ0
I ′(un)un

=
(

1

2
− 1

θ0

)
‖un‖2 −

(
1 − 1

θ0

)
〈h, un〉

−
∫

K (x)
(

F(un) − 1

θ0
f (un)un

)
,
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and therefore it follows from ( f2) that (un) is bounded in X . Hence, up to a subsequence, un ⇀ u weakly in X
and un(x) → u(x) a.e. in R

2. Moreover, I ′(un)un = on(1), the above expression, ( f2) and the boundedness of
(un) provide c1 > 0 such that∫

K (x) f (un)un ≤ c1,

∫
K (x)

(
1

θ0
f (un)un − F(un)

)
≤ c1. (4.3)

The first estimate above, K ≥ 1, and condition ( f2) again imply that∫
| f (un)un| =

∫
f (un)un ≤

∫
K (x) f (un)un ≤ c1.

Thus, it follows from [9, Lemma 2.1] that f (un) → f (u) in L1
loc

(
R

2
)
. Hence, given ϕ ∈ C∞

c,rad

(
R

2
)
, we have

that

I ′(un)ϕ = 〈un, ϕ〉 −
∫

K (x) f (un)ϕ − 〈h, ϕ〉.

Since ϕ has compact support
∫

K (x) f (un)ϕ → ∫
K (x) f (u)ϕ. Taking the limit in the above expression we

conclude that I ′(u)ϕ = 0. By density I ′(u) = 0.
Let M > 0 be such that ‖un‖, ‖u‖ ≤ M . Given R, ε > 0, we can use (3.2) with q = 4, Lemma 4.4 and the

embedding X ↪→ L2
K

(
R

2
)

to get∫
BR(0)c

K (x)F(un) dx ≤ ε

2

∫
K (x)|un|2 + c

R
‖un‖4

(
eαc2

0‖un‖2 − 1
)

≤ c2ε + c3

R
,

with c2, c3 > 0 depending only on M . It follows that

lim sup
R→∞

∫
BR(0)c

K (x)F(un) dx ≤ c2ε. (4.4)

Moreover, since K (x)F(u) ∈ L1
(
R

2
)
, it holds

lim sup
R→∞

∫
BR(0)c

K (x)F(u) dx = 0. (4.5)

Fixing R > 0, we claim that

lim
n→∞

∫
BR(0)

K (x)F(un) dx =
∫

BR(0)
K (x)F(u) dx . (4.6)

If this is true we can use the above convergence, (4.4) and (4.5) to get (ii).
We now use ( f3) to prove (4.6) in the following way. Consider θ > 0 such that (θ0c1)/(θ − θ0) < ε. If Rθ > 0

is given by ( f3) and An := {|un| ≥ Rθ }, we case use the second inequality in (4.3) and ( f2) to obtain

θ0c1 ≥
∫

An

K (x)( f (un)un − θ0 F(un)) dx

= (θ − θ0)
∫

An

K (x)F(un) dx +
∫

An

K (x)( f (un)un − θ F(un)) dx,

and therefore it follows from ( f3) and the choice of θ that∫
An

K (x)F(un) dx ≤ θ0c1

θ − θ0
< ε. (4.7)

Applying Egoroff’s Theorem we found a measurable set A ⊂ BR(0) such that |A| < ε and un(x) → u(x)
uniformly on (BR(0) \ A). Hence∣∣∣∣∫

BR(0)
K (x)(F(un) − F(u)) dx

∣∣∣∣ ≤
∫

A
K (x)F(un) dx

+
∫

A
K (x)F(u) dx + on(1).

(4.8)
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Given α > α0 it follows from ( f0) that F(s) ≤ c4eαs2
for all s ∈ R and some c4 > 0. Thus, given γ > 1, we can

use Hölder’s inequality to get∫
A

K (x)F(u) dx ≤ M1c4|A|1/γ

(∫
eαγ ′u2

)1/γ ′

≤ c5ε
1/γ , (4.9)

with 1/γ + 1/γ ′ = 1. On the other hand, using (4.7), Lebesgue Theorem and the above expression we obtain∫
A

K (x)F(un) dx ≤
∫

A∩An

K (x)F(un) dx +
∫

A∩{|un |<Rθ }
K (x)F(un) dx

≤ ε +
∫

A∩{|un |<Rθ }
K (x)F(u) dx + on(1)

≤ ε + c5ε
1/γ + on(1).

Since ε > 0 is arbitrary, the convergence in (4.6) follows from (4.8), (4.9) and the above inequality.
In order to prove (iii) it suffices to use (3.1) with q = 4 and proceed as in the proof of (4.4). �
Now we are ready to prove our compactness result.

P r o o f o f P r o p o s i t i o n 4.1. Let (un) ⊂ X be such that I ′(un) → 0 and I (un) → d < I (uh) + 2π/α0.
According to the previous lemma we have that un ⇀ u weakly in X with I ′(u) = 0 and

∫
K (x)F(un) →∫

K (x)F(u). Moreover, the weak convergence of (un) also implies that 〈h, un〉 → 〈h, u〉. We shall consider the
two possible cases.

Case 1. u = 0.
In this case, the aforementioned convergence imply that

1

2
‖un‖2 = d +

∫
K (x)F(u) + 〈h, u〉 + on(1).

Thus, recalling that u = 0 and I (uh) < 0, we get

lim
n→∞ ‖un‖2 = 2d < 2I (uh) + 4π

α0
<

4π

α0
.

Hence, we can argue as in the proof of Theorem 1.4 to conclude that, along a subsequence, un → u = 0 strongly
in X .

Case 2. u = uh .
In this setting we shall verify that

lim
n→∞

∫
K (x) f (un)un =

∫
K (x) f (u)u. (4.10)

If this is true we obtain

on(1) = I ′(un)un = ‖un‖2 −
∫

K (x) f (un)un − 〈h, un〉

= ‖un‖2 −
∫

K (x) f (u)u − 〈h, u〉 + on(1)

= ‖un‖2 − ‖u‖2 + I ′(u)u + on(1).

Since I ′(u) = 0 we conclude that ‖un‖ → ‖u‖ and the proposition follows from the weak convergence of un .
It remains to check (4.10). In view of item (iii) of the previous lemma and since

lim supR→∞
∫

BR(0)c K (x) f (u)u = 0, it suffices to prove that, for any R > 0, the following holds:

lim
n→∞

∫
BR(0)

K (x) f (un)un dx =
∫

BR(0)
K (x) f (u)u dx . (4.11)

In order to check the above convergence we first notice that, as in the first case, we have

lim
n→∞ ‖un‖2 = 2

(
d +

∫
K (x)F(u) + 〈h, u〉

)
= 2(d + d0) > 0, (4.12)
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where d0 := ∫
K (x)F(u) + 〈h, u〉. We may suppose that ‖un‖ �= 0 for all n ≥ n0, and therefore is well defined

vn := un/‖un‖. The weak convergence of un and the above expression imply that

vn ⇀ v := uh√
2(d + d0)

, weakly in X.

If α > α0 is such that d < I (uh) + 2π/α, then

1 − ‖v‖2 <
4π/α

2(d + d0)
.

Indeed, since

2d < 2I (uh) + 4π

α
and 2d0 = 2

∫
K (x)F(uh) + 2〈h, uh〉

we get

2d + 2d0 < ‖uh‖2 + 4π

α
.

Thus,

1 − ‖v‖2 = 2d + 2d0 − ‖uh‖2

2(d + d0)
<

4π/α

2(d + d0)
.

Using (4.12) we obtain p0 > 0 such that α‖un‖2 < p0 < (4π)/
(
1 − ‖v‖2

)
. We now choose q > 1 sufficiently

close to 1 in such way that

αq‖un‖2 < p0q <
4π

1 − ‖v‖2
.

From Theorem 1.3 with p = p0q we conclude that

sup
n∈N

∫
K (x)v2

n

(
eαq‖un‖2v2

n − 1
)

< sup
n∈N

∫
K (x)v2

n

(
ep0qv2

n − 1
)

< ∞. (4.13)

Up to a subsequence, we have that un → u strongly in L2(BR(0)), and therefore there exists � ∈ L1(BR(0)) such
that |un(x)|2 ≤ �(x) a.e. on BR(0). Since K ∈ L∞(BR(0)), (3.1) implies that∫

A
K (x) f (un)un dx ≤ c2

∫
A
�(x) dx + c1

∫
A

K (x)|un|2/q
(
eαu2

n − 1
)
dx, (4.14)

for any measurable subset A ⊂ BR(0). We can use Hölder’s inequality and (2.6) in the last integral above to get∫
K (x)|un|2/q

(
eαu2

n − 1
)

≤
(∫

A
K (x) dx

)1/q ′ (∫
A

K (x)u2
n

(
eαqu2

n − 1
)
dx

)1/q

≤ ‖un‖2/q‖K‖1/q ′

L1( A)

(∫
K (x)v2

n

(
eαq‖un‖2v2

n − 1
))1/q

.

By replacing this inequality in (4.14), using (4.13) and the boundedness of (un) we conclude that∫
A

K (x) f (un)un dx ≤ c2‖ψ‖L1( A) + c3‖K‖1/q ′

L1( A) .

Since �, K ∈ L1(BR(0)) and the set A ⊂ BR(0) is arbitrary, we conclude that the first integral above is uniformly
small provided the measure of A is small. Hence, the set {K (x) f (un)un} is uniformly integrable. This fact
and a standard application of Egoroff’s Theorem imply that K (x) f (un)un → K (x) f (u)u in L1(BR(0)). The
convergence in (4.11) is proved. �
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4.2 Minimax estimate

In this subsection we prove Proposition 4.2. As in the last subsection we divide the proof in several steps. Firstly
we consider a little modification in the sequence of scaled truncated Green’s functions considered by Moser (see
[15]). More specifically, we define

M̃n(x) := (2π)−1/2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K (r/n)−1/2(log n)1/2, if |x | ≤ r/n,

K (x)−1/2
log

(
r
|x |

)
(log n)1/2

, if r/n ≤ |x | < r,

0, if |x | ≥ r,

with r > 0 fixed. Notice that M̃n ∈ H 1
(
R

2
)

and supp
(
M̃n

) = Br (0). Moreover, the following holds:

Lemma 4.6 There exists D = D(r) > 0 and a sequence (dn) ⊂ R, which also depends on r, such that∥∥M̃n

∥∥2 = 1 + D

log n
− dn,

with limn→∞ dn log n = 0. In particular,

lim
n→∞

∥∥M̃n

∥∥2 = 1. (4.15)

P r o o f . We set

An := Br (0) \ Br/n(0)

and notice that ∇ M̃n is zero outside the set An and

∇ M̃n(x) = −e−|x |2/8(2π log n)−1/2

(
x

|x |2 + x

4
log(r/|x |)

)
, x ∈ An.

Hence, we can compute∫
K (x)

∣∣∇ M̃n

∣∣2 = 1

2π log n

∫
An

(
1

|x |2 + |x |2
16

log2 (r/|x |) + 1

2
log (r/|x |)

)
dx

= 1

log n

∫ r

r/n

(
1

s
+ s3

16
log2(r/s) + 1

2
s log(r/s)

)
ds

= 1

log n

(
log n + r2

8
+ r4

512
− �r,n,1 − �r,n,2

)
with

�r,n,1 := r2

8

(
2 log n

n2
+ 1

n2

)
, �r,n,2 := r4

512

(
8 log2 n

n4
+ 4 log n

n4
+ 1

n4

)
.

It suffices now to set

D := r2

8
+ r4

512
, dn := (log n)−1(�r,n,1 + �r,n,2) (4.16)

to get the conclusions of the lemma. �

For the next result we normalize the Green function and consider the function Mn defined by

Mn := M̃n

‖M̃n‖
.

Notice that ‖Mn‖ = 1. Moreover, we have the following:
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Lemma 4.7 Suppose that ( f2), ( f3) and ( f4) hold. Then there exists n ∈ N such that

max
t≥0

{
t2

2
−

∫
K (x)F(t Mn)

}
<

2π

α0
. (4.17)

P r o o f . Since Mn has compact support we can argue as in the proof of Lemma 3.1 to conclude that the
function

gn(t) := t2

2
−

∫
K (x)F(t Mn), t ≥ 0,

goes to −∞ as t → +∞. Hence, it attains its global maximum at a point tn > 0 such that g′
n(tn) = 0, that is,

t2
n =

∫
Br (0)

K (x)tn Mn f (tn Mn) dx . (4.18)

Suppose, by contradiction, that the lemma is false. Then, for any n ∈ N there holds

t2
n

2
−

∫
K (x)F(tn Mn) ≥ 2π

α0

and therefore

t2
n ≥ 4π

α0
, for all n ∈ N. (4.19)

We claim that (tn) ⊂ R is bounded. Indeed, let β0 > 0 be given by ( f4) and 0 < ε < β0. The condition ( f4)
provides R = R(ε) > 0 such that

s f (s) ≥ (β0 − ε) exp
(
α0s2), for all |s| ≥ R. (4.20)

The definition of Mn , (4.19) and
∥∥M̃n

∥∥ → 1 imply that, for any large values of n, there holds

tn Mn(x) ≥ e−r2/8

√
2 log n

α0
≥ R, for all x ∈ Br/n(0).

It follows from (4.18), (4.20), the above expression, K ≥ 1 and the definition of Mn that

t2
n ≥

∫
Br/n(0)

K (x)tn Mn f (tn Mn) dx

≥ (β0 − ε)
∫

Br/n(0)
exp

(
α0(tn Mn)2

)
dx

= (β0 − ε)
∫

Br/n(0)
exp

(
α0t2

n

log n

2π

e−r2/(4n2)

‖M̃n‖2

)
dx .

This, (4.15), the equation 1/n2 = exp(−2 log n) and a straightforward calculation provide

t2
n ≥ (β0 − ε)πr2 exp

(
2

(
e−r2/(4n2)

‖M̃n‖2

α0

4π
t2
n − 1

)
log n

)
. (4.21)

Since exp(x) ≥ x we can invoke Lemma 4.6 and the above expression to conclude that (tn) is bounded.

By going to a subsequence, we may use (4.19) to conclude that t2
n → γ ≥ 4π/α0. Since e−r2/(4n2)

∥∥M̃n

∥∥−2 → 1,
we can take the limit in (4.21) to conclude that γ > 4π/α0 cannot occur. Hence

lim
n→∞ t2

n = 4π

α0
. (4.22)

By using (4.19) and (4.21) again we get

t2
n ≥ (β0 − ε)πr2 exp

(
−2∥∥M̃n

∥∥2

(∥∥M̃n

∥∥2 − e−r2/(4n2)) log n

)
. (4.23)
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It follows from Lemma 4.6 and L’Hopital rule that(∥∥M̃n‖2 − e−r2/(4n2)) log n = (
1 − e−r2/(4n2)) log n + D − dn log n = D + on(1).

Hence, recalling that
∥∥M̃n

∥∥2 → 1, we can take the limit in (4.23) and use (4.22) to obtain

4π

α0
≥ (β0 − ε)πr2e−2D.

Letting ε → 0 and using the expression of D = D(r) given in (4.16) we conclude that

α0β0 ≤ 4

r2
exp

(
r2

4
+ r4

256

)
.

Since r > 0 is arbitrary, the above expression contradicts ( f4) and the lemma is proved. �
We are ready to finish the paper by presenting the

P r o o f o f P r o p o s i t i o n 4.2. Let n ∈ N be given by the above lemma and set v := Mn . Since 〈h, v〉 ≤
‖h‖X−1 we can use (4.17) to obtain 0 < δ2 < δ1 such that maxt≥0 I (tv) < 2π/(α0), whenever 0 < ‖h‖X−1 < δ2.
In view of the first item of Lemma 3.1 we have that uh → 0 as ρ0 → 0 and ρ → 0 as ‖h‖X−1 → 0. Thus, taking
δ2 smaller if necessary, we may suppose that I (uh) is so close to zero in such way that

max
t≥0

I (tv) < I (uh) + 2π

α0
.

The proposition is proved. �
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