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Abstract. It is established existence of weak solution for a semilinear super-

linear elliptic problems on bounded domains. The main feature of the paper
is to prove that, for superlinear problems, the nonquadraticity condition in-

troduced by Costa and Magalhães in [4] is sufficient to get the compactness

required by minimax procedures.

Dedicated to Prof. Djairo de Figueiredo on the occasion of his 80th birthday

1. Introduction

In this paper we consider the nonlinear elliptic equation

(P )

{
−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊆ RN , N ≥ 3, is a bounded smooth domain and f ∈ C(Ω × R,R) is
subcritical and superlinear in the following sense:

(f0) there exist a1 > 0 and p ∈ (2, 2∗) such that

|f(x, s)| ≤ a1(1 + |s|p−1), for any (x, s) ∈ Ω× R.
(f1) for F (x, s) :=

∫ s
0
f(x, τ)dτ , uniformly in x ∈ Ω there holds

lim
|s|→∞

F (x, s)

s2
= +∞.

The weak solutions of the problem are precisely the critical points of the C1-
functional

I(u) :=
1

2

∫
Ω

|∇u|2dx−
∫

Ω

F (x, u)dx, u ∈ H1
0 (Ω).

and therefore we can use all the machinery of the Critical Point Theory. This
theory is based on the existence of a linking structure and deformation lemmas
[1, 2, 3, 21, 20]. In general, to be able to derive such deformation results, it is
supposed that the functional satisfies some compactness condition. We use here the
well known Cerami condition, which reads as: the functional I satisfies the Cerami
condition at level c ∈ R ((Ce)c for short) if any sequence (un) ⊂ H1

0 (Ω) such that
I(un)→ c and ‖I ′(un)‖H1

0 (Ω)′(1 + ‖un‖)→ 0 has a convergent subsequence.

In order to get compactness we shall assume the following condition (see [4])
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(NQ) setting H(x, s) := f(x, s)s− 2F (x, s), we have that

lim
|s|→∞

H(x, s) = +∞, uniformly for x ∈ Ω.

The behaviour of the nonlinearity at the origin will be done by the condition

(f2) there exists K0 ∈ Lt(Ω), t > N/2, with nontrivial positive part such that

lim
s→0

2F (x, s)

s2
= K0(x), uniformly for x ∈ Ω.

As it is well known (see deFigueiredo [5]), under this condition the weighted eigen-
value problem

(LP ) −∆u = λK0(x)u, u ∈ H1
0 (Ω)

has an increasing sequence of eigenvalues (λj(K0))j∈N with λ1(K0) > 0.
We establish the existence of one weak solution by assuming a crossing condition

at the origin. Related conditions on weighted eigenvalue problems have already
appeared in the paper of deFigueiredo and Massabó [7] (see also [8]). Our main
result can be stated as follows

Theorem 1.1. Suppose that f satisfies (f0), (f1) and (NQ). If f also satisfies (f2)
with

λm(K0) < 1 < λm+1(K0),

then the problem (P ) has at least one nonzero solutions.

We emphasize that our existence result works without the well known Ambrosetti-
Rabinowitz condition [1]. It reads as: there exist θ > 2, R > 0 such that

(AR) θF (x, s) ≤ sf(x, s), x ∈ Ω, |s| ≥ R.

The main role of (AR) condition is to ensure the boundedness of the Palais-Smale
sequences for I. It is not hard to verify that it implies that F (x, s) ≥ c1|s|θ− c2 for
any x ∈ Ω, t ∈ R, in such way that F goes to infinity at least like |s|θ. We observe
that the condition (f1) ia a more natural superlinear condition. Indeed, there are
many superlinear functions which do not behave like |s|θ, θ > 2, at infinity. For
instance, we can take f(s) = λs+s log(1+ |s|), with λ > 0, and easily conclude that
it does not verify (AR), but (NQ) holds. Actually, we can verify that hypotheses
(f0) − (f2) are also satisfied with K0 ≡ 1 and λj(K0) = λj ∈ σ(−∆, H1

0 (Ω)), λ ∈
(λm, λm+1) for some fixed m ∈ N. Thus our results extends and complements
earlier results on superlinear problems.

As it will be clear from the proofs the ideas presented here can be used to handle
with other settings of conditions on f . We could consider the case λ1(K0) > 1 as
an application of the classical Mountain Pass theorem. If K0 ≡ 0, the same ideas of
the proof provides a weak solution. Also we can deal with the existence of multiple
solutions under some symmetry assumptions (see [9] for instance). The main point
here is to guarantee compactness. We show that the condition (NQ), introduced
by Costa-Magalhães [4], is a powerful tool. More precisely, we prove that (f0) and
(NQ) are sufficient to prove that the functional I satisfies the Cerami condition,
this being the main novelty of this work.

Semilinear superlinear elliptic problems have been considered during the past
forty years, see [4, 6, 11, 13, 12, 21, 14]. In all these works some condition on
the nonlinearity ensure some kind of compactness condition. For example, in [6] de
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Figueiredo et al. considered superlinear elliptic problems such as (P ) which satisfies
the following conditions

(FLN1) there exist θ ∈ (0, 2∗) such that

lim sup
|s|→∞

f(x, s)s− θF (x, s)

s2f(s)2/N
≤ 0, uniformly for x ∈ Ω.

(FLN2) for each x ∈ Ω, the function s 7→ f(x, s)/s2∗−1 is nonincreasing.

They proved that problem (P ) admits at least one positive solution using topological
methods. Posteriorly, Jeanjean [10] considered the problem (P ) requiring convexity
in s for the function H(x, s) defined in (NQ). We also mention the papers [18, 19]
and references therein for similar results. Superlinear elliptic problems have been
also studied under monotonicity conditions for the function s 7→ f(x, s)/s, for
|s| ≥ R (see [15]). In other works [13, 11] monotonicity was imposed on H(x, ·) (see
also [16, 17, 18]).

Here we do not assume any kind of monotonicity or convexity on the nonlinear
therm f nor in the function H defined in (NQ). Hence, our result complement
and/or extended the aforementioned works.

The paper hast just one more section, where we present the variational setting
of the problem and prove Theorem 1.1. Throughout the paper we suppose that
the function f satisfies (f0). For save notation, we write only

∫
Ω
g and instead of∫

Ω
g(x)dx. For any 1 ≤ t <∞, |g|t denotes the norm in Lt(Ω).

2. Proof of the main theorem

We denote by H the Hilbert space H1
0 (Ω) endowed with the norm

‖u‖2 =

(∫
|∇u|2

)1/2

, for any u ∈ H.

By the Sobolev theorem we know that, for any 2 ≤ σ ≤ 2∗ fixed, the embedding
H ↪→ Lσ(Ω) is continuous and therefore we can find Sσ > 0 such that

(2.1)

∫
|u|σ ≤ Sσ‖u‖σ.

If σ < 2∗, the Rellich-Kondrachov theorem implies that the above embedding is
also compact.

As quoted in the introduction, the linear problem (LP ) has a sequence of eigen-
values (λj(K0))j∈N with λ1(K0) > 0. If we denote by ϕj the eigenfunction associ-
ated with λj(K0), we set

V := span{ϕ1, . . . , ϕm}, W := V ⊥.

and write H as being H = V ⊕W . The following variational inequalities hold

(2.2) ‖u‖2 ≤ λm(K0)

∫
K0(x)u2, ∀ u ∈ V,

and

(2.3) ‖u‖2 ≥ λm+1(K0)

∫
K0(x)u2, ∀ u ∈W.

As a consequence of our assumption at the origin we have the following
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Lemma 2.1. Suppose that f satifies (f0) and (f2) with λm(A0) < 1 < λm+1(A0).
Then I has a local link at the origin, i.e.,

(i) there exists ρ1 > 0 such that I(z) ≤ 0, for all z ∈ V ∩Bρ1(0),
(ii) there exists ρ2 > 0 such that I(z) > 0, for all nonzero z ∈W ∩Bρ2(0).

Proof. Given ε > 0, we can use (f0) and (f2) to obtain Aε > 0 such that

(2.4)
1

2
K0(x)s2 − ε

2
|s|2 −Aε|s|p ≤ F (x, s) ≤ 1

2
K0(x)s2 +

ε

2
|s|2 +Aε|s|p,

for any (x, s) ∈ Ω × R. By taking ε > 0 sufficiently small we can use (2.4), (2.2),
(2.1) and λm(A0) < 1 to obtain

I(u) ≤ 1

2
‖u‖2 − 1

2

∫
K(x)u2 +

ε

2

∫
|u|2 +Aε

∫
|u|p

≤ 1

2

(
1− 1

λm(A0)
+ εS2

)
‖u‖2 +AεSp‖u‖p

≤
(κ

2
+AεSp‖u‖p−2

)
‖u‖2

for some κ < 0 and for all u ∈ V . Hence the condition (i) holds for ρ1 :=

(−κ/2AεSp)1/(p−2)
> 0.

In order to verify (ii), we choose ε > 0 small and use (2.4), (2.3), (2.1) and
λm+1(A0) > 1, to get

I(u) ≥ 1

2

(
1− 1

λm+1(A0)
− εS2

)
‖u‖2 −AεSp‖u‖p

≥
(µ

2
+AεSp‖z‖p−2

)
‖u‖2,

for some µ > 0 and for all u ∈ W . As before, we can check that (ii) holds for

ρ2 := (µ/2AεSp)
1/(p−2)

> 0. The lemma is proved. �

We are now ready to prove our main theorem.

Proof of Theorem 1.1. According to the last lemma the functional I has a local
linking ar the origin. For any given k ∈ N, let Hk ⊂ H be a k-dimensional subspace.
Since all the norms inHk are equivalent, there exists c1 > 0 such that ‖u‖2 ≤ c1

∫
u2

for any u ∈ Hk. Given M > (2/c1), it follows from (f1) that F (x, s) ≥ Ms2 − c2
for any x ∈ Ω and s ∈ R. Hence,

I(u) ≤ 1

2

(
1− 2M

c2

)
‖u‖2 + c1|Ω|,

and we conclude that I(u) → −∞ as ‖u‖ → +∞, u ∈ Hk. Moreover, by (f0), we
can easily see that I maps bounded sets into bounded sets.

The above consideration shows that the functional I satisfy all the geometric
condition of the Local Linking Theorem proved by Li and Willem in [12, Theorem
2]. Hence, if we can prove that I satisfies the Cerami condition, this last theorem
provides a nonzero critical point for I. Here we mention that Theorem 2 in [12] is
stated for a Palais-Smale type condition. However, as it is well know (see [3]), the
deformation lemma used in [12] also holds for the Cerami condition.
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It remains to check that I satisfies the Cerami condition. Let (un) ⊂ H be such
that

I(un)→ c, ‖I ′(un)‖H′(1 + ‖un‖)→ 0,

where c ∈ R. Since f has subcritical growth it suffices to prove that (un) is bounded.
Arguing by contradiction we suppose that, along a subsequence, ‖un‖ → +∞ as

n→ +∞. For each n ∈ N, let tn ∈ [0, 1] be such that

(2.5) I(tnun) = max
t∈[0,1]

I(tun).

Setting vn := un/‖un‖ we obtain v ∈ H such that, along a subsequence,

(2.6)


vn ⇀ v weakly in H,

vn → v strongly in Lq(Ω), for any 1 ≤ q < 2∗,

vn(x)→ v(x).

In what follows we prove that v 6= 0. Indeed, suppose by contradiction that v = 0.
Then it follows from (f0) and the strong convergence in (2.6) that

∫
F (x,

√
4mvn)→

0, as n→ +∞, for any fixed m > 0. Since we may suppose that
√

4m < ‖un‖, the
definition of tn in (2.5) provides

(2.7) I(tnun) ≥ I

(√
4m

‖un‖
un

)
= 2m−

∫
F (x,

√
4mvn) ≥ m > 0,

for any n ≥ n0, where n0 ∈ N depends only on m.
We look for a contradiction by considering two cases:

Case 1: along a subsequence, tn < (2/‖un‖)

In this case we use condition (f0) and the Sobolev embeddings to obtain c1, c2 >
0 such that ∣∣∣∣∫ H(x, tnun)

∣∣∣∣ ≤ c1tn‖un‖+ c2t
p
n‖un‖p ≤ 2c1 + c22p = c3.

If tn > 0, it follows from I ′(tnun)(tnun) = 0 that

0 = t2n‖un‖2 −
∫
f(x, tnun)(tnun) = 2I(tnun)−

∫
H(x, tnun),

and therefore

I(tnun) =
1

2

∫
H(x, tnun) ≤ c3

2
.

The above inequality also holds if tn = 0, and therefore we obtain a contradiction
with (2.7), since the number m > 0 in that expression is arbitrary. Hence, the case
1 cannot occurs.

It remains to discard the

Case 2: along a subsequence, tn ≥ (2/‖un‖)

We fix γ > 0 in such way that

(2.8) 3γ|Ω| > 4,

where |Ω| stands for the Lebesgue measure of Ω. In view of (NQ) we can obtain
s0 > 0 such that H(x, s) ≥ γ for any x ∈ Ω, |s| ≥ s0. On the other hand, since
H has a subcritical growth, we have that H(x, s) ≥ −C|s| for any x ∈ Ω, |s| ≤ s1,
where s1 > 0 is small.
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We consider the nonnegative cut off function ψε : R→ R given by

ψε(s) =

{
e−ε/s

2

, if s 6= 0,

0, if s = 0,

with ε > 0 free for now. We mention that ψε is smooth and

lim
s→0

ψε(s) = lim
s→0

ψ
′

ε(s) = 0.

These limits, (f0) and the continuity of H provide Cγ,ε > 0 such that

H(x, s) ≥ γψε(s)− Cγ,ε|s|, for any (x, s) ∈ Ω× R.

Given 0 < s < t, we can use the above inequality and the definition of H to get

I(tun)

t2‖un‖2
− I(sun)

s2‖un‖2
= −

∫
Ω

∫ t

s

d

dτ

(
F (x, τun)

τ2‖un‖2

)
dτ dx

= −
∫

Ω

∫ t

s

H(x, τun)

τ3‖un‖2
dτ dx

≤
∫

Ω

∫ t

s

(
Cγ,ε
‖un‖

|un|
‖un‖

τ−2 − γψε(τun)

‖un‖2
τ−3

)
dτ dx

from which it follows that

I(tun)

t2‖un‖2
≤ I(sun)

s2‖un‖2
+ Cγ,ε

|vn|1
s‖un‖

− γ
∫

Ω

∫ t

s

ψε(|τun|)
‖un‖2

τ−3dτ dx.

We now set

s = sn =
1

‖un‖
<

2

‖un‖
≤ tn.

Since
∫ tn
sn
τ−3dτ = (1/2)(‖un‖2 − t−2

n ) we have that

(2.9)

I(tnun)

t2n‖un‖2
≤ I(vn) + Cγ,ε|vn|1 −

γ|Ω|
2

(
1− 1

t2n‖un‖2

)
+ γAn

≤ Bγ + Cγ,ε|vn|1 −
∫
F (x, vn) + γAn,

with

An =

∫ tn

sn

∫
Ω

1− ψε(|τun|)
‖un‖2

τ−3dxdτ ≥ 0

and

Bγ =
1

2

(
1− 3

4
γ|Ω|

)
< 0,

where we have used (2.8) in the last inequality.
We shall verify in a few moments that, uniformly in n ∈ N, the following limit

holds

(2.10) lim
ε→0

∫ tn

sn

∫
Ω

1− ψε(|τun|)
‖un‖2

τ−3dxdτ = 0.

If this is true, we can choose ε > 0 in such way that γAn < −Bγ/2, for all n ∈ N.
Since we are supposing that v = 0, it follows from (2.6) and (f0) that |vn|1 = on(1)
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and
∫
F (x, vn) = on(1), as n → +∞. Hence, we can take the limit in (2.9) to

obtain

lim sup
n→+∞

I(tnun)

t2n‖un‖2
≤ Bγ −

Bγ
2

=
Bγ
2
< 0,

and therefore I(tnun) < 0, for n large, contradicting (2.7) again.
We proceed now with the proof that the limit in (2.10) is uniform. We start by

considering δ > 0 and splitting the term An in two integrals∫ tn

sn

∫
Ω

1− ψε(|τun|)
‖un‖2

τ−3dxdτ =

∫ tn

sn

∫
|τun|≥δ

(· · · ) +

∫ tn

sn

∫
|τun|<δ

(· · · ).

In order to save notation we call A+
n,δ the first integral on the right-hand side above

and A−n,δ the second one. It suffices to show that these quantities go to 0, uniformly
in n, as ε→ 0.

Since ψε is nondecreasing we have that

A+
n,δ ≤ 1− e−ε/δ2

δ‖un‖2

∫ tn

sn

∫
|τun|≥δ

|τun|τ−3dx dτ

≤ 1− e−ε/δ2

δ‖un‖

(
1

sn
− 1

tn

)∫
Ω

|un|
‖un‖

≤

(
1− e−ε/δ2

δ

)
|vn|1,

since sn‖un‖ = 1. Recalling that (|vn|1) is uniformly bounded, we conclude that
the limit limε→0A

+
n,δ = 0 is uniform.

The calculations for A−n,δ are more involved. We first notice that, for each |s| ≤ δ
fixed, the function ε 7→ ψε(s) is smooth. Hence, it follows from Taylor’s Theorem

that, for h(s) = s−2e−ε/s
2

, there holds

1− ψε(s) = εs−2e−ε/s
2

+ r(ε, s) = ε

(
h(s) +

r(ε, s)

ε

)
≤ ε(h(s) + 1),

since the continuous remainder term r is such that limε→0 r(ε, s)/ε = 0 uniformly
in the compact set |s| ≤ δ. By applying Taylor’s Theorem again we get, for |s| ≤ δ,

h(s) = h(0) + h′(0)s+ r1(ε, s) = r1(ε, s),

with r1(ε, s) = o(|s|) as s → 0 uniformly in ε ∈ (0, 1]. Thus, we conclude that, if
δ > 0 is small,

1− ψε(s) ≤ ε(1 + |s|), for any |s| ≤ δ.
The above inequality and the definition of A−n,δ provide

A−n,δ =

∫ tn

sn

∫
|τun|<δ

1− ψε(|τun|)
‖un‖2

τ−3dxdτ

≤ ε

∫ tn

sn

∫
Ω

τ−3

‖un‖2
dxdτ + ε

∫ tn

sn

∫
Ω

|un|
‖un‖2

τ−2dxdτ

= ε
|Ω|
2

(
1− 1

t2n‖un‖2

)
+

ε

‖un‖

(
1− 1

tn‖un‖

)∫
Ω

|vn|dx

≤ ε

(
|Ω|
2

+ |vn|1
)
,
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since we may assume that ‖un‖ > 1. This implies that, uniformly in n, there holds
limε→0A

−
n,δ = 0. This finishes the proof that the weak limit v is nonzero.

After proving that v 6= 0 we can prove the theorem in the following way: the set

Ω̃ := {x ∈ Ω : v(x) 6= 0} has positive measure. Moreover, since ‖un‖ → +∞, we

have that |un(x)| → +∞ a.e. in Ω̃. Thus, the continuity of H, Fatou’s Lemma and
(NQ) provide

2c = lim
n→+∞

(2I(un)− I ′(un)un)

≥ meas(Ω \ Ω̃) ·min
Ω×R

H +

∫
Ω̃

lim inf
n→+∞

H(x, un) = +∞,

which is a contradiction. Hence, we have that (un) is bounded and the theorem is
proved. �
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