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Abstract. We present some sufficient conditions to obtain compact-
ness properties for the Euler-Lagrange functional of an elliptic equation.
As an application we extend some existence and multiplicity results for
superlinear problems.

1. Introduction

In this paper we consider the nonlinear elliptic equation

(1.1)

{−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊆ RN , N ≥ 3, is a bounded smooth domain and f ∈ C(Ω × R,R)
satisfies the standard subcritical growth condition

(f0) there exist a1 > 0 and p ∈ (2, 2∗) such that

|f(x, s)| ≤ a1(1 + |s|p−1), for any (x, s) ∈ Ω× R.

Under this condition the weak solutions of the problem are precisely the
critical points of the C1-functional

I(u) :=
1

2

∫

Ω
|∇u|2dx−

∫

Ω
F (x, u)dx, u ∈ H1

0 (Ω),

where F (x, s) :=
∫ s
0 f(x, τ)dτ . Hence, we can use all the machinery of the

Critical Point Theory to look for weak solutions. As it is well known, this
theory is based on the existence of a linking structure and on deformation
lemmas [1, 2, 25, 23]. In general, to be able to derive such deformation
results, it is supposed that the functional satisfies some compactness condi-
tion. We use here the Cerami condition, which reads as: the functional I
satisfies the Cerami condition at level c ∈ R ((Ce)c for short) if any sequence
(un) ⊂ H1

0 (Ω) such that I(un) → c and ‖I ′(un)‖H1

0
(Ω)′(1 + ‖un‖) → 0 has a

convergent subsequence.
Our main objective is presenting sufficient conditions to assure that the

functional satisfies the Cerami condition. More specifically, we shall consider
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the nonquadraticity condition at infinity introduced by Costa and Magalhães
[4], whose statement is

(NQ) setting H(x, s) := f(x, s)s− 2F (x, s), we have that

lim
|s|→∞

H(x, s) = +∞, uniformly for x ∈ Ω.

In the core result of this paper we show that the above condition and (f0)
are suffice to guarantee compactness for the functional I. More specifically,
we prove the following result:

Theorem 1.1. Suppose that f satisfies (f0) and (NQ). Then the functional
I satisfies the Cerami condition at any level c ∈ R.

As an application of this theorem we prove some new results for the
problem (P ) in the case that f is superlinear at infinity and at the ori-
gin. Furthermore, we give an unnified approach for any superlinear elliptic
problem using the nonquadraticiy condition. In order to better explain our
results we recall that, in their seminal work, Ambrosetti and Rabinowitz [1]
introduced the condition

(AR) there exist θ > 2 and s0 > 0 such that

0 < θF (x, s) ≤ sf(x, s), for any x ∈ Ω, |s| > s0.

A straightforward calculations shows that it provides c1 > 0 such that
F (x, s) ≥ c1|s|θ for |s| large. Thus, the problem is called superlinear in
the sense that the primitive of f lives above any parabola of the type c2s

2.
Unfortunately, there are several nonlinearities which are superlinear but do
not satisfy the above inequality. For example, if we take f(s) = |s| ln(1+|s|),
we can easily check that lims→+∞ F (s)/sθ = 0 for any θ > 2. So, it is natural
to ask if we can replace (AR) condition for a more natural one, namely

(SL) the following limit holds

lim
|s|→+∞

2F (x, s)

s2
= +∞, uniformly for x ∈ Ω.

One of the main feature of condition (AR) is that it provides the bound-
edness of Palais-Smale sequences. In the past 40 years many authors tried
to obtain solution in situations where (AR) is no longer valid. Instead, they
consider the condition (SL) with extra assumptions (see [4, 13, 20, 11, 21,
14, 12, 18, 10, 16, 15] and references therein). In the most of them, there are
some kind of monotonicity assumption on the functions F (x, s) or f(x, s)/s,
or some convexity condition on the function f(x, s)s− 2F (x, s).

Our results concerning the problem (P ) are stated below.

Theorem 1.2. Suppose that f satisfies (f0), (NQ) and (SL). Then the
problem (1.1) has at least one nonzero weak solution provided we have that

(f1) there holds

lim sup
s→0

F (x, s)

s2
= 0, uniformly for x ∈ Ω.
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If f(x, s) is odd in s then we can drop the condition (f1) and obtain infinitely
many weak solutions.

We notice that, for the existence result, we can suppose that the limit in
(SL) holds only for x ∈ Ω0, where Ω0 ⊂ Ω is a subset with positive measure
(see the proof of Theorem 1.2). So, we can deal with nonlinearities which
are locally superlinear at infinity.

In order to compare our existence result with the literature, we start
by citing again the paper of Costa and Magalhães [4], where the authors
supposed, among other conditions, that

(Fµ) there exist a2 > 0 and µ > N
2 (p − 2) such that

lim inf
|s|→∞

H(x, s)

|s|µ ≥ a2, uniformly for x ∈ Ω,

where the number p ∈ (2, 2∗) comes from (f0). Since µ > 0, we see that
(NQ) is weaker than (Fµ), and therefore our existence result extend [4,
Theorem 1]. It also extend the main theorem of a recent paper by Miyagaki
and Souto [18], where the conditions (f1) and (NQ) are replaced by

(f̂1) f(x, s) = o(s) as s→ 0, uniformly for x ∈ Ω ;
(M1) the function f(x, s)/|s| is increasing in |s| for |s| > s1.

Beyond their condition at the origin be stronger than ours, the main point
is that (M1) and (SL) together imply (NQ). Indeed, it can be proved that
(M1) implies that H(x, s) is increasing in |s| for |s| > s2. Hence, if s > s2,
we have that

(1.2)

F (x, s)

s2
− F (x, s2)

s22
=

∫ s

s2

d

dτ

{
F (x, τ)

τ2

}
dτ =

∫ s

s2

H(x, τ)

τ3
dτ

≤ H(x, s)

(
− 1

2s2
+

1

2s22

)
,

and therefore
F (x, s)

s2
≤ c3 + c4H(x, s),

for some c3, c4 > 0. It follows from (SL) that lims→+∞H(x, s) = +∞. An
analogous argument shows that the same occurs as s → −∞. In [7], Fang

and Liu have obtained one nonzero solution by assuming (f0), (SL), (f̂1)
and

(J) there exists θ ≥ 1 such thatH(x, ts) ≤ θH(x, s) for any (x, s) ∈ Ω×R

and t ∈ [0, 1].

This quasi-monotonicity condition was introduced by Jeanjean in [11]. The
same argument used in (1.2) shows that (J) together with (SL) imply (NQ),
and therefore Theorem 1.2 extends [7, Theorem 1.1].

Our existence result also complements many other works of the updated
literature. For example, in [17], Liu and Wang obtained a nonzero solution

under (f̂1), (SL) and the following version of (M1)
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(M̂1) the function H(x, s) is nondecreasing in |s| and increasing for |s|
small.

This hypothesis plays an important role in their proof, since they apply the
Nehari method. Finally, Schechter and Zou in [22] have assumed (f0), (SL)

and (f̂1). Moreover, they additionally assume that H(x, s) was convex on s
or

(SZ) there exist θ > 2, a3 ≥ 0 and s3 ≥ 0 such that

θF (x, s)− sf(x, s) ≤ a3(1 + s2), for any x ∈ Ω, |s| ≥ s3.

Since we do not require any kind of monotonicity nor convexity, our ex-
istence result extended or complement the aforementioned works. It also
complement other results on superlinear problems (see [24, 20, 21, 26, 17]
and references therein). As a matter of fact, we can consider here the nonlin-
earity f such that H(x, s) = a(x)s2(1+cos(s))+ln(1+ |s|), with a ∈ C∞(Ω)
being positive. Hence, the arguments presented in the cited papers do not
work in our setting.

Concerning the multiplicy statement of Theorem 1.2 we quote that it
complements many results on multiplicity of solutions for superlinear prob-
lems (see, for instance, [1, 27, 9] and references therein). The main novelty
here is to consider the nonquadraticity condition on the superlinear setting.
We emphasize that, in some of the aforementioned works, the proof of exis-
tence is given by showing that the (bounded) Palais-Smale sequence weakly
converges to a nonzero critical point of I. Hence, the authors can not ob-
tain multiple solutions, even if the function f is odd. Since here we prove
compactness for I, we are able to use the Symetric Mountain Pass Theorem
to obtain infinitely many solutions in this context.

In the next section we prove our main result, namely Theorem 1.1. The
result is applied in the Section 3 where we present the proof of Theorem
1.2. It is worthwhile to mention that our ideas could be used in many
different settings of linking type. So, we add a final section with some words
concerning possible extensions of the study of problem (P ).

2. Proof of the main result

Throughout the paper we suppose that the function f satisfies (f0). For
save notation, we write only

∫
Ω g and instead of

∫
Ω g(x)dx. For any 1 ≤ t <

∞, |g|t denotes the norm in Lt(Ω).
We denote by H the Hilbert space H1

0 (Ω) endowed with the norm

‖u‖2 =

(∫
|∇u|2

)1/2

, for any u ∈ H.

As stated in the Introduction the weak solutions of (P ) are precisely the
critical points of the C1-functional

I(u) :=
1

2
‖u‖2 −

∫
F (x, u), for any u ∈ H.
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By using some carefull estimates we can prove our compactness result as
follows:

Proof of Theorem 1.1. Let (un) ⊂ H be such that

I(un) → c, ‖I ′(un)‖H′(1 + ‖un‖) → 0,

where c ∈ R. Since f has subcritical growth it suffices to prove that (un) is
bounded.

Arguing by contradiction we suppose that, along a subsequence, ‖un‖ →
+∞ as n→ +∞. For each n ∈ N, let tn ∈ [0, 1] be such that

(2.1) I(tnun) = max
t∈[0,1]

I(tun).

Setting vn := un/‖un‖ we obtain v ∈ H such that, along a subsequence,

(2.2)





vn ⇀ v weakly in H,

vn → v strongly in Lq(Ω), for any 1 ≤ q < 2∗,

vn(x) → v(x).

In what follows we prove that v 6= 0. Indeed, suppose by contradiction
that v = 0. Then it follows from (f0) and the strong convergence in (2.2)

that
∫
F (x,

√
4mvn) → 0, as n → +∞, for any fixed m > 0. Since we may

suppose that
√
4m < ‖un‖, it follows from the definition of tn in (2.1) that

(2.3) I(tnun) ≥ I

(√
4m

‖un‖
un

)
= 2m−

∫
F (x,

√
4mvn) ≥ m > 0,

for any n ≥ n0, where n0 ∈ N depends only on m.
We look for a contradiction by considering two cases:

Case 1: along a subsequence, tn < (2/‖un‖)
In this case we first use the condition (f0) and the Sobolev embeddings

to obtain c1, c2 > 0 such that∣∣∣∣
∫
H(x, tnun)

∣∣∣∣ ≤ c1tn‖un‖+ c2t
p
n‖un‖p ≤ 2c1 + c22

p = c3.

If tn > 0, it follows from I ′(tnun)(tnun) = 0 that

0 = t2n‖un‖2 −
∫
f(x, tnun)(tnun) = 2I(tnun)−

∫
H(x, tnun),

and therefore

I(tnun) =
1

2

∫
H(x, tnun) ≤

c3
2
.

The above inequality also holds if tn = 0, and therefore we obtain a contra-
diction with (2.3), since the number m > 0 in that expression is arbitrary.
Hence, the case 1 cannot occurs.

It remains to discard the

Case 2: along a subsequence, tn ≥ (2/‖un‖)
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In this setting we fix γ > 0 in such way that

(2.4) 3γ|Ω| > 4,

where |Ω| stands for the Lebesgue measure of Ω. In view of (NQ) we can
obtain s0 > 0 such that H(x, s) ≥ γ for any x ∈ Ω, |s| ≥ s0. On the other
hand, since H has a subcritical growth, we have that H(x, s) ≥ −C|s| for
any x ∈ Ω, |s| ≤ s1, where s1 > 0 is small.

We consider the nonnegative cut off function ψε : R → R given by

ψε(s) =

{
e−ε/s2 , if s 6= 0,

0, if s = 0,

with ε > 0 free for now. We mention that ψε is smooth and

lim
s→0

ψε(s) = lim
s→0

ψ
′

ε(s) = 0.

These limits, (f0) and the continuity of H provide Cγ,ε > 0 such that

H(x, s) ≥ γψε(s)− Cγ,ε|s|, for any (x, s) ∈ Ω× R.

Given 0 < s < t, we can use the above inequality and the definition of H
to get

I(tun)

t2‖un‖2
− I(sun)

s2‖un‖2
= −

∫

Ω

∫ t

s

d

dτ

(
F (x, τun)

τ2‖un‖2
)
dτ dx

= −
∫

Ω

∫ t

s

H(x, τun)

τ3‖un‖2
dτ dx

≤
∫

Ω

∫ t

s

(
Cγ,ε

‖un‖
|un|
‖un‖

τ−2 − γψε(τun)

‖un‖2
τ−3

)
dτ dx

from which it follows that

I(tun)

t2‖un‖2
≤ I(sun)

s2‖un‖2
+ Cγ,ε

|vn|1
s‖un‖

− γ

∫

Ω

∫ t

s

ψε(|τun|)
‖un‖2

τ−3dτ dx.

We now set

s = sn =
1

‖un‖
<

2

‖un‖
≤ tn.

Since
∫ tn
sn
τ−3dτ = (1/2)(‖un‖2 − t2n) we have that

(2.5)

I(tnun)

t2n‖un‖2
≤ I(vn) + Cγ,ε|vn|1 −

γ|Ω|
2

(
1− 1

t2n‖un‖2
)
+ γAn

≤ Bγ +Cγ,ε|vn|1 −
∫
F (x, vn) + γAn,

with

An =

∫ tn

sn

∫

Ω

1− ψε(|τun|)
‖un‖2

τ−3dxdτ ≥ 0

and

Bγ =
1

2

(
1− 3

4
γ|Ω|

)
< 0,
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where we have used (2.4) in the last inequality.
We shall verify in a few moments that, uniformly in n ∈ N, the following

limit holds

(2.6) lim
ε→0

∫ tn

sn

∫

Ω

1− ψε(|τun|)
‖un‖2

τ−3dxdτ = 0.

If this is true, we can choose ε > 0 in such way that γAn < −Bγ/2, for all
n ∈ N. Since we are supposing that v = 0, it follows from (2.2) and (f0)
that |vn|1 = on(1) and

∫
F (x, vn) = on(1), as n→ +∞. Hence, we can take

the limit in (2.5) to obtain

lim sup
n→+∞

I(tnun)

t2n‖un‖2
≤ Bγ −

Bγ

2
=
Bγ

2
< 0,

and therefore I(tnun) < 0, for n large, contradicting (2.3) again.
We proceed now with the proof that the limit in (2.6) is uniform. We

start by considering δ > 0 and splitting the term An in two integrals
∫ tn

sn

∫

Ω

1− ψε(|τun|)
‖un‖2

τ−3dxdτ =

∫ tn

sn

∫

|τun|≥δ
(· · · ) +

∫ tn

sn

∫

|τun|<δ
(· · · ).

In order to save notation we call A+
n,δ the first integral on the right-hand

side above and A−
n,δ the second one. It suffices to show that these quantities

go to 0, uniformly in n, as ε→ 0.
Since ψε is nondecreasing we have that

A+
n,δ ≤ 1− e−ε/δ2

δ‖un‖2
∫ tn

sn

∫

|τun|≥δ
|τun|τ−3dxdτ

≤ 1− e−ε/δ2

δ‖un‖

(
1

sn
− 1

tn

)∫

Ω

|un|
‖un‖

≤
(
1− e−ε/δ2

δ

)
|vn|1,

since sn‖un‖ = 1. Recalling that (|vn|1) is uniformly bounded, we conclude
that the limit limε→0A

+
n,δ = 0 is uniform.

The calculations for A−
n,δ are more involved. We first notice that, for each

|s| ≤ δ fixed, the function ε 7→ ψε(s) is smooth. Hence, it follows from

Taylor’s Theorem that, for h(s) = s−2e−ε,s2, there holds

1− ψε(s) = εs−2e−ε/s2 + r(ε, s) = ε

(
h(s) +

r(ε, s)

ε

)
≤ ε(h(s) + 1),

since the continuous remainder term r is such that limε→0 r(ε, s)/ε = 0
uniformly in the compact set |s| ≤ δ. By applying Taylor’s Theorem again
we get, for |s| ≤ δ,

h(s) = h(0) + h′(0)s + r1(ε, s) = r1(ε, s),
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with r1(ε, s) = o(|s|) as s→ 0. Thus, we conclude that, if δ > 0 is small,

1− ψε(s) ≤ ε(1 + |s|), for any |s| ≤ δ.

The above inequality and the definition of A−
n,δ provide

A−
n,δ =

∫ tn

sn

∫

|τun|<δ

1− ψε(|τun|)
‖un‖2

τ−3dxdτ

≤ ε

∫ tn

sn

∫

Ω

τ−3

‖un‖2
dxdτ + ε

∫ tn

sn

∫

Ω

|un|
‖un‖2

τ−2dxdτ

= ε
|Ω|
2

(
1− 1

t2n‖un‖2
)
+

ε

‖un‖

(
1− 1

tn‖un‖

)∫

Ω
|vn|dx

≤ ε

( |Ω|
2

+ |vn|1
)
,

since we may assume that ‖un‖ > 1. This implies that, uniformly in n,
there holds limε→0A

−
n,δ = 0. This finishes the proof that the weak limit v is

nonzero.
After proving that v 6= 0 we can prove the theorem in the following way:

the set Ω̃ := {x ∈ Ω : v(x) 6= 0} has positive measure. Moreover, since

‖un‖ → +∞, we have that |un(x)| → +∞ a.e. in Ω̃. Thus, the continuity
of H, Fatou’s Lemma and (NQ) provide

2c = lim
n→+∞

(2I(un)− I ′(un)un)

≥ meas(Ω \ Ω̃) ·min
Ω×R

H +

∫

Ω̃
lim inf
n→+∞

H(x, un) = +∞,

which is a contradiction. Hence, we have that (un) is bounded and the
theorem is proved. �

3. Proof of Theorem 1.2

In this section we prove our results concerning problem (P ). For the
multiplicty part we need the following version of the Symmetric Moutain
Pass Theorem [19, Theorem 9.12] (see [2, Theorem 1.3] for the proof that
the deformation lemma used in [19] also holds with the Cerami condition).

Theorem 3.1. Let X be an infinite dimensional Banach space and let I ∈
C1(X,R) be even, satisfy (Ce)c for any c ∈ R, and I(0) = 0. If X = V ⊕W ,
where V is finite dimensional, and I satisfies

(I1) there exist α, ρ > 0 such that

I(u) ≥ α, for any u ∈ ∂Bρ(0) ∩W ;

(I2) for any finite dimensional subspace X̂ ⊂ X there exists R = R(X̂)
such that

I(u) ≤ 0, for any u ∈ X̂ \BR(0),
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then I possesses an unbounded sequence of critical values.

We are now ready to obtaining the solutions for (P ).

Proof of Theorem 1.2. The conditions (f0), (f1) and standard arguments
imply that

∫
F (x, u) = o(‖u‖2) as ‖u‖ → 0. Hence, there exists α, ρ > 0

such that I(u) ≥ α whenever u ∈ ∂Bρ(0) ⊂ H. Suppose that the limit
in (SL) holds for x ∈ Ω0 ⊂ Ω of positive measure. If we take a positive
function φ ∈ H1

0 (Ω0) we can use (SL) to conclude that I(tφ) → −∞ as
t→ +∞. Since I satisfies the Cerami condition it follows from the Moutain
Pass Theorem that I has a nonzero critical point.

For proving the multiplicity part we shall apply Theorem 3.1 with X = H
and I = I. Since f is odd in the second variable, I is even. Recalling
that I(0) = 0 and I satifies the Cerami condition it remains to check the
geometric conditions (I1) and (I2).

Let X̂ ⊂ H be a finite dimensional subspace. Since all the norms in X̂

are equivalent there exists c1 > 0 such that ‖u‖2 ≤ c1
∫
u2 for any u ∈ X̂.

Given M > (2/c1), it follows from (SL) that F (x, s) ≥ Ms2 − c2 for any
x ∈ Ω and s ∈ R. Hence,

I(u) ≤ 1

2

(
1− 2M

c2

)
‖u‖2 + c1|Ω|,

and we conclude that I(u) → −∞ as ‖u‖ → +∞, u ∈ X̂ . This establishes
(I2).

In order to verify (I1) we set, for each k ∈ N,

Vk := span{ϕ1, . . . , ϕk}, Wk = V ⊥
k ,

where (ϕk)k∈N are the eigenfunctions of (−∆,H1
0 (Ω)). Integrating the in-

equality in (f0) we get

I(u) ≥ 1

2
‖u‖2 − c3|u|pp − c4,

for some c3, c4 > 0. Since 2 < p < 2∗, the interpolation inequality |u|p ≤
|u|θ2|u|1−θ

2∗ , for some θ ∈ (0, 1), provides

I(u) ≥ 1

2
‖u‖2 − c3|u|pθ2 |u|p(1−θ)

2∗ − c4 ≥
1

2
‖u‖2 − c5|u|pθ2 ‖u‖p(1−θ) − c4,

where c5 > 0 and we have used the embedding H →֒ L2∗(Ω).
The above inequality holds for any u ∈ H. If we take u ∈Wk, we can use

the variational inequality ‖u‖2 ≥ λk+1|u|22 to obtain

I(u) ≥ 1

2
‖u‖2 − c5

λ
pθ/2
k+1

‖u‖pθ‖u‖p(1−θ) − c4 =

(
1

2
− c5

λ
pθ/2
k+1

‖u‖p−2

)
‖u‖2 − c4.

We now set ρ = 2
√
c4 + 1 and choose k ∈ N in such way that

(3.1)
c5

λ
pθ/2
k+1

ρp−2 ≤ 1

4
.
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This is always possible, since λk → +∞. It follows that, for any u ∈
∂Bρ(0) ∩Wk, there holds

I(u) ≥
(
1

2
− 1

4

)
ρ2 − c4 =

1

4
(2
√
c4 + 1)2 − c4 = 1.

Therefore (I1) is satisfied with α = 1, ρ = 2
√
c4 + 1 and the decomposition

of H being H = Vk ⊕ Wk. The multiplicity result follows from Theorem
3.1. �

4. Further remarks

In this final section we present many variants which could be considered.
For example, concerning the condition at the origin, we could suppose that

lim
s→0

2F (x, s)

s2
= K0(x), uniformly for x ∈ Ω,

whereK0 ∈ Lt(Ω) for some t > N/2 and the positive part of K0 is nontrivial.
In this case the linear problem

−∆u = λK0(x)u, u ∈ H1
0 (Ω).

has a sequence of eigenvalues (λj(K0))j∈N with λ1(K0) > 0. A simple inspec-
tion of the proof of Theorem 1.2 shows that it remains true if we suppose that
λ1(K0) > 1 instead of condition (f1). Indeed, we can deal with nonresonance
at the origin in the following sense: suppose that λm(K0) < 1 < λm+1(K0)
for some m ≥ 1. In this case we can apply the Local Linking Theorem
given by Li and Willem [13], together with our compactness result, to ob-
tain a nonzero solution. So, it is possible to generalize the main theorems
contained in [12, 6, 14]

We could also treat the asymptotically linear case, by replacing (SL) by
the following condition:

lim
|s|→+∞

2F (x, s)

s2
= K∞(x), uniformly for x ∈ Ω,

whereK∞ ∈ Lt(Ω) for some t > N/2 and the positive part of K∞ is nontriv-
ial. If λm(K∞) = 1 for some m ≥ 1, we could use the Saddle Point Theorem
to extend the existence result of [4, Theorem 2] (see also [8] for related re-
sults). This means that, under the nonquadraticity condition, we give here
an unified approach for nonlinear elliptic problems that are superlinear or
asymptotically linear at infinity. Actually, our Theorem 1.1 presents another
proof of [4, Lemma 1.2] but with weaker conditions. Hence, we could also
consider the double resonant case:

(DR) there exists j ≥ 1 such that

λj ≤ lim inf
|t|→∞

f(x, t)

t
≤ lim sup

|t|→∞

f(x, t)

t
≤ λj+1
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where λj is the sequence of eigenvalues on (−∆,H1
0 (Ω)). In this case it is

allowed the resonant phenomena in two consecutive eigenvalues. The main
point here is to obtain compactness for the associated functional. But now,
this is a consequence of condition (NQ). Thus, we can obtain a nontrivial
solution under the assumption

λm < lim
s→0

f(x, s)

s
< λm+1

for somem ≥ 1, as a consequence of the Local Linking Theorem (see [3, 5, 8]
for more details on double resonant problems).

Finally, under the hypothesis of Theorem 1.2, it is possible to argue as
in [1] to obtain two solutions, one positive and other negative. Indeed, to
obtain the first one we define

f+(x, s) :=

{
f(x, s), if s ≥ 0,
0, if s < 0,

and consider the functional

I+(u) :=
1

2
‖u‖2 −

∫
F+(x, u), u ∈ H1

0 (Ω),

where F+(x, s) :=
∫ s
0 f

+(x, τ)dτ . We have that F+ is superlinear at infinity
and nonquadratic at infinity in one direction. More precisely,

lim
s→∞

(sf+(x, s)− 2F+(x, s)) = +∞, uniformly in x ∈ Ω,

and we can argue as in the proof of Theorem 1.2 to obtain a positive solution.
The negative solution can be obtained with the analogous truncation f−.
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