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Abstract. We obtain existence and multiplicity of solutions for the
quasilinear Schrödinger equation

−∆u + V (x)u−∆(u2)u = g(x, u), x ∈ RN ,

where V is a positive potential and the nonlinearity g(x, t) behaves like
t at the origin, and like t3 at infinity. In the proof we apply a changing
of variables besides variational methods. The obtained solutions belong
to W 1,2(RN ).

1. Introduction

In this paper we study the existence of solitary wave solutions for quasi-
linear Schrödinger equations of the form

i∂tz = −∆z +W (x)z − l(x, |z|2)z − κ[∆ρ(|z|2)]ρ′(|z|2)z

where z : RN × R → C, W : RN → R is a given potential, κ is a real
constant and l, ρ are real functions. Equations of this type appear naturally
in mathematical physics and have been accepted as models of several phys-
ical phenomena corresponding to various types of nonlinear terms ρ. They
include equations in fluid mechanics, theory of Heisenberg ferromagnetism
and magnons, dissipative quantum mechanics and matter theory (see [15, 16]
and references therein).

We consider here the case of the superfluid film equation in plasma physics,
namely ρ(t) := t (see [11]). If we look for standing wave solutions z(t, x) :=
exp(−iEt)u(x) with E > 0, we are lead to consider the following elliptic
equation

−∆u+ V (x)u− κ∆(u2)u = g(x, u), x ∈ RN ,

with V (x) := W (x)−E and g : RN ×R→ R given by g(x, t) := l(x, |t|2)t is
the new nonlinear term. Latter on, we shall consider precisely the hypotheses
on V and g.
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The semilinear case κ = 0 has been studied extensively in recent years
with a huge variety of conditions on the potential V and the nonlinearity
g (see e.g. [2, 8, 19, 1]). To the best of our knowledge the first results
for the case κ 6= 0 are due to [18], where the existence of positive ground
state solutions were constructed as minimizers of a constrained minimization
problem. By using a change of variables the authors in [16] reduced the
equation to a semilinear one and an Orlicz space framework was used to
prove the existence of a positive solutions via Mountain Pass Theorem. The
same method was also used in [3], but the usual Sobolev space H1(RN )
framework was used as the working space. We refer the reader to [5, 20, 21,
6, 9] for more results. Usually the authors consider the case that the function
g(x, t) is sublinear at the origin and superlinear at infinity. Due to the
change of variables introduced in [16] this behavior at infinity is related with
the (modified) Ambrosetti-Rabinowitz condition 0 < θG(x, t) ≤ g(x, t)t for

some θ > 4, any x ∈ RN , t 6= 0, where G(x, t) :=
∫ t

0 g(x, τ)dτ . As it is well
know, this type of condition provides the boundedness of the Palais-Smale
sequences of the associated functional. More generally, under suitable extra
assumptions, it is possible to deal with the condition lim|t|→+∞G(x, t)/t4 =
+∞ (see [20, 24]).

Differently from the aforementioned authors we do not suppose that our
nonlinearity is superlinear. Instead, we are interested the case that g(x, t) ∼
t near the origin and g(x, t) ∼ t3 at infinity. As far we know there are few
papers which deal with this type of nonlinearity at infinity. The first one is
the work of Liu et al [16] which states, among other results, the existence of
positive solution for the autonomous nonlinearity g(x, t) = t3 under different
kind of hypothesis on the potential V . We have recently learned that Silva
and Vieira [22] have obtained some existence results under the condition

(1.1) lim
|t|→+∞

G(x, t)

t4
> 0

and other mild assumptions on g. We finally mention a recent paper of
Fang and Szulkin [7] where they consider g(x, t) = q(x)t3 and obtained
the existence of infinite solutions under some symmetry conditions on the
potential V . As far we know there are no other results concerning this
”asymptotically linear” framework.

The main goal in this paper is to consider the problem

(P )

{
−∆u+ V (x)u−∆(u2)u = g(x, u), x ∈ RN ,

u ∈ H1(RN ),

where g : RN ×R→ R and V : RN → R are continuous functions. Through-
out the paper we shall assume the following basic hypothesis on the potential
V :

(V1) inf
x∈RN

V (x) ≥ V0 > 0 ;
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(V2) for any M > 0 there holds

measure
(
{x ∈ RN : V (x) ≤M}

)
< +∞.

We are looking for solution on a suitable subspace of H1(RN ). Hence, we
impose some growth conditions on the nonlinearity g. More specifically we
shall assume that

(g1) there exist α0 > N/2 and a, b ∈ Lα0(RN ) such that

|g(x, t)| ≤ a(x)|t|+ b(x)|t|3, for all (x, t) ∈ RN × R;

(g2) there exist 0 < q1 < 2 and (2 · 2∗/q1)′ ≤ τ ≤ (4/q1)′ such that

g(x, t)t− 4G(x, t) ≥ −Γ1(x)− Γ2(x)|t|q1 , for all (x, t) ∈ RN × R,

where Γ1 ∈ L1(RN ) and Γ2 ∈ Lτ (RN ).

In the condition (g2) above we are denoting by s′ the conjugated exponent
of s > 1, namely the unique s′ > 1 satisfying 1/s+ 1/s′ = 1.

For any w ∈ Lq(RN ) we set w+(x) := max{w(x), 0}, define

F :=
{
w : RN → R : w+ 6≡ 0, w ∈ Lα(RN ) for some α > N/2

}
and consider the asymptotic assumptions near the origin and at infinity:

(G0) there exists K0 ∈ F such that

lim sup
t→0

2G(x, t)

t2
= K0(x), uniformly for a.e. x ∈ RN ;

(G∞) there exists K∞ ∈ F such that

lim inf
|t|→+∞

4G(x, t)

t4
= K∞(x), uniformly for a.e. x ∈ RN .

In order to state our main theorem we need to introduce the space

(1.2) X :=

{
u ∈ H1(RN ) :

∫
RN

V (x)u2dx <∞
}
.

It is well known (see [10]) that, under conditions (V0) − (V1), the space X
is a closed subspace of H1(RN ). Moreover, the embedding X ↪→ Lq(RN ) is
compact for any 2 ≤ q < 2∗. Hence, for any given K ∈ F , we can prove
that the eigenvalue problem

(1.3) −∆u+ V (x)u = λK(x)u in RN , u ∈ X,

has a first positive eigenvalue λ1(K) > 0.
We are able to state the main result of this paper as follows.

Theorem 1.1. Suppose V satisfies (V1)−(V2), and g satisfies (g1), (g2), (G0)
and (G∞). Then there exists η > 0 such that problem (P ) has at least one
nontrivial solution provided

λ1(K∞) < (1 + η) and λ1(K0) > 1.
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A very interesting point in the above theorem is that we can deal with
cases where there is no crossing of eigenvalues. Actually, our hypothesis on
the eigenvalues are weaker than the usual one λ1(K∞) < 1 < λ1(K0), since
the number η in Theorem 1.1 is positive. Hence, whenever λ1(K∞) < 1 + η,
we can consider all the following situations:

1 < λ1(K∞) = λ1(K0), 1 < λ1(K0) < λ1(K∞) or λ1(K∞) ≤ 1 < λ1(K0).

This occurs due to the nature of the changing of variables performed in
the equation. We also have a good expression for the number η, which is
essentially related with some kind of interaction between the potential V
and the limit function K∞ (see Lemma 3.3 for details).

Although we apply standard variational techniques, the novelty in this
paper is to consider existence of solution for (P ) under asymptotically con-
ditions at infinity and at the origin. There are some related results for the
semilinear case κ = 0 (see [13, 14, 23] and references therein), but we do
not know any work which deal with this type of problem with κ 6= 0. As it
is well known, the main difficult is to find sufficient conditions to prove the
compactness required by the classical minimax theorems. The technicality
involved by the presence of the term ∆(u2) is not trivial and we perform
some fine estimates to avoid this difficult. We believe that our compactness
result (see Proposition 4.1) can be used to consider many other kinds of
linking situations for the equation (P ).

For j ∈ N, if we denote by λj(K∞) the j-th positive eigenvalue of the
problem (1.3) with weight K = K∞, problems like (P ) are usually called
resonant at infinity if λj(K∞) = 1. We notice that we can deal here with
this case without any kind of extra assumptions like Landesman-Lazer or
nonquadraticity conditions [12, 4]. Actually, as you can see in Proposition
4.1, the conditions (g1) and (g2) are suffices to get the required compactness
properties. We also emphasize that the function K∞ can change sign, and
therefore the assumption (1.1) may be not true here.

It is worthwhile to mention that the our existence result can be improved
by an usual truncation argument. More specifically, as a by product of the
calculations performed in the proof of Theorem 1.1, we get the following
result.

Theorem 1.2. Under the same hypothesis of Theorem 1.1 the problem (P )
has at least two nontrivial solutions. One of them is positive and the another
one is negative.

Before finishing the introduction we present some typical examples of
functions g which satisfy our assumptions. We first fix K0, K∞ ∈ F and
define

g(x, t) = a0K0(x)h0(t) + a∞K∞(x)h∞(t),

where a0, a∞ are positive numbers picked in such way that a0 < λ1(K0) and
a∞ > λ1(K∞). The function h0 is continuous, odd, has compact support
and verifies limt→0 h0(t)/t = 1. If we take h∞(t) = t3 and suppose that
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K0 ∈ L1(RN ) is nonnegative, then the condition (g2) holds with Γ1 = K0

and Γ2 ≡ 0, and therefore our main results apply in this situation. There are
many other nonlinearities which can be considered when K∞ is nonnegative,
for instance we can take h∞(t) = t5/(1 + t2), h∞(t) = t3 − µt2

√
|t| or

h∞(t) = t3 − µt ln(t2) for t 6= 0, h∞(0) = 0, where µ > 0 is arbitrary.
The paper is organized as follows: In Section 1 we consider some pre-

liminaries results related to the dual principle. In Section 2 we prove the
mountain pass geometry. In Section 3 we prove Theorem 1.1 by showing
that the associated functional satisfies the Palais-Smale condition. In the fi-
nal Section 4 we briefly describe how the arguments of the previous sections
can be used to prove Theorem 1.2.

2. Variational Framework

Throughout the paper we write
∫
u instead of

∫
RN u(x)dx. Moreover, for

any p ≥ 1, we denote by ‖u‖p the Lp(RN )-norm of a function.
From the standard variational point of view, the problem (P ) is formally

the Euler-Lagrange equation associated to the functional

(2.1) u 7→ 1

2

∫
(1 + 2u2)|∇u|2 +

∫
V (x)u2 −

∫
G(x, u).

Nevertheless, as quoted in [3], the above functional is not well defined in
H1(RN ), N ≥ 3. In order to overcome this difficult we follow the idea
introduced in [16] and the variational approach used in [3]. So we reformulate
the problem (P ) using the change of variable f : R→ R given by

(2.2)


f
′
(t) =

1√
1 + 2f(t)2

, t ≥ 0,

f(t) = −f(−t), t ≤ 0.

For an easy reference we list below the main properties of the function f .
They will be extensively used in the rest of the paper.

Lemma 2.1. The function f satisfies the following properties:

(f1) f is uniquely determined, C∞ and invertible;
(f2) 0 < f ′(t) ≤ 1 for all t ∈ R;
(f3) |f(t)| ≤ |t| for all t ∈ R;

(f4) lim
t→0

f(t)

t
= 1;

(f5) lim
t→+∞

f(t)√
t

= 21/4;

(f6)
f(t)

2
≤ tf ′(t) ≤ f(t) for all t ≥ 0;

(f7) |f(t)| ≤ 21/4
√
|t| for all t ∈ R;

(f8) there exists κ > 0 such that

|f(t)| ≥
{
κ |t| , |t| ≤ 1,

κ |t|1/2 , |t| ≥ 1 ;
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(f9) |f(t)f ′(t)| ≤ 2−1/2 for all t ∈ R;
(f10) the function f2 is strictly convex. In particular, f2(st) ≤ sf2(t) for

all t ∈ R, s ∈ [0, 1];
(f11) f2(st) ≤ s2f2(t) for all t ∈ R, s ≥ 1;
(f12) f2(s− t) ≤ 4(f2(s) + f2(t)) for all s, t ∈ R.

Proof. We only prove properties (f10), (f11) and (f12). The other ones can
be proved by using the ODE in (2.2) and arguing as in the papers [16, 3, 17].
A straightforward calculation shows that (f2)′′ > 0 in (0+∞), and therefore
item (f10) follows. In order to prove (f11) we notice that, since f ′′ ≤ 0 in
[0,+∞), we have that f ′ is non-increasing in this interval. For any t ≥ 0
fixed we consider the function h(s) := f(st) − sf(t) defined for s ≥ 1. We
have that h′(s) = tf ′(st)− f(t) ≤ tf ′(t)− f(t) ≤ 0, by (f6). Since h(1) = 0
we conclude that h(s) ≤ 0 for any s ≥ 1, that is f(st) ≤ sf(t) for any t ≥ 0
and s ≥ 1. Thus

f2(st) ≤ s2f2(t)

for any t ≥ 0 and s ≥ 1. Since f2 is even the proof of item (f11) follows.
To establish the item (f12), we use the fact that f2 is even and increasing
in (0,+∞) together with (f10) and (f11) to get, for all s, t ∈ R,

f2(s− t) = f2(|s− t|) ≤ f2(|s|+ |t|)

≤ f2(2 max{|s|, |t|}) ≤ 4(f2(s) + f2(t)),

and we have done. �
We now consider the following Orlicz-Sobolev space

(2.3) E :=

{
v ∈ H1(RN ) :

∫
V (x)f2(v) <∞

}
.

It can be proved (see [17, 16]) that it is a Banach space when endowed with
the norm

(2.4) ‖v‖ := ‖∇v‖2 + |v|f , for any v ∈ E,

where

|v|f := inf
ξ>0

1

ξ

{
1 +

∫
V (x)f2(ξv)

}
.

By a weak solution of (P ) we mean a function u ∈ H1(RN ) ∩ L∞loc(RN )
such that∫

[(1 + 2u2)∇u∇ϕ+ 2u|∇u|2ϕ+ V (x)uϕ] =

∫
g(x, u)ϕ,

for all ϕ ∈ C∞0 (RN ). After the change of variables u = f(v) in the map
given in (2.1), we obtain the following functional

(2.5) J(v) :=
1

2

∫ (
|∇v|2 +

∫
V (x)f2(v)

)
−
∫
G(x, f(v)),
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for any v ∈ E. Under the growth condition (g1) the functional J belongs to
C1(E,R) and its critical points are weak solutions of the problem

(2.6) −∆v + V (x)f ′(v)f(v) = g(x, f(v))f ′(v), v ∈ E.

Moreover, if v ∈ E ∩ C2(RN ) is a critical point of J then the function
u = f(v) is a classical solution of (P ) (see [3] for details). Thus, we deal in
the sequel with the modified problem described above.

The next two propositions summarizes the main properties of the space
E.

Proposition 2.2. Suppose V satisfies (V1) and (V2). Then the Orlicz space
E has the following properties:

(1) If vn(x)→ v(x) a. e. in RN and

lim
n→+∞

∫
V (x)f2(vn) =

∫
V (x)f2(v),

then

lim
n→+∞

|vn − v|f = 0

(2) The embeddings E ↪→ D1,2(RN ), E ↪→ H1(RN ) and X ↪→ E are
continuous. Here, X denotes the space defined in (1.2).

(3) The map v → f(v) from E to Lq(RN ) is continuous for each q ∈
[2, 2 · 2∗], and it is compact for each q ∈ [2, 2 · 2∗).

(4) For any v ∈ E there holds∥∥∥∥ f(v)

f ′(v)

∥∥∥∥ ≤ 4‖v‖.

(5) If vn ⇀ 0 in D1,2(RN ) and
(∫
V (x)f2(vn)

)
is bounded then, up to a

subsequence, f(vn)→ 0 strongly in Lq(RN ) for any 2 ≤ q < 2 · 2∗.
(6) For any v ∈ E there holds

|v|f ≤ 2 max

{∫
V (x)f2(v),

(∫
V (x)f2(v)

)1/2
}
.

Proof. The proof of items 1, 2 and 3 can be found in [17]. In order to prove
item 4 we take v ∈ E and notice that, by using the ODE satisfied by f and
a straightforward calculation, we get

(2.7) ∇
(
f(v)

f ′(v)

)
=

(
1 +

2f2(v)

1 + 2f2(v)

)
∇v

and therefore

(2.8)

∥∥∥∥∇( f(v)

f ′(v)

)∥∥∥∥
2

≤ 2‖∇v‖2.
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By (f6), the following holds 1 ≤ f(t)/(tf ′(t)) ≤ 2, for any t 6= 0. Hence, we
can use (f11) to get

f2

(
ξ
f(t)

f ′(t)

)
= f2

(
f(t)

tf ′(t)
ξt

)
≤
(
f(t)

tf ′(t)

)2

f2(ξt) ≤ 4f2(ξt),

for any t ∈ R, ξ > 0. Thus, using the last estimates, we see that∣∣∣∣ f(v)

f ′(v)

∣∣∣∣
f

= inf
ξ>0

{
1

ξ

(
1 +

∫
V (x)f2

(
ξ
f(v)

f ′(v)

))}
≤ 4|v|f .

Statement 4 follows from the above inequality and (2.8).
We now prove item 5. We may suppose that vn(x)→ 0 a.e. in RN . Since

‖f(vn)‖2X =

∫ (
|∇vn|2

1 + 2f2(vn)
+ V (x)f2(vn)

)
≤
∫ (
|∇vn|2 + V (x)f2(vn)

)
,

the sequence (f(vn)) is bounded in X. Hence, up to a subsequence, it
weakly converges in X. The compactness of embedding X ↪→ Lq(RN ), for
2 ≤ q < 2∗, and the pointwise convergence f(vn(x)) → f(0) = 0 a.e. in
RN imply that the weak limit is zero. So, f(vn) → 0 strongly in Lq(RN ),
whenever 2 ≤ q < 2∗.

It follows from (f9) that

|∇(f2(vn))|2 = 4(f(vn)f ′(vn))2|∇vn|2 ≤ 2|∇vn|2.

Hence, we can use Sobolev inequality to get

(2.9)

‖f(vn)‖2·2∗ = ‖f2(vn)‖1/22∗ ≤ c1‖∇(f2(vn))‖1/22

≤ 21/4c1

(∫
|∇vn|2

)1/4

≤ c2 <∞.

It follows from the interpolation inequality that f(vn) → 0 in Lq(RN ) for
any 2 ≤ q < 2 · 2∗.

For the proof of item 6 we argue as in [9]. By supposing that v 6= 0
we shall consider two distinct cases. If

∫
V (x)f2(v) > 1 we set ξ0 :=(∫

V (x)f2(v)
)−1

< 1 and use the definition of |v|f and (f10) to get

|v|f ≤ 1

ξ0

(
1 +

∫
V (x)f2(ξ0v)

)
≤ 1

ξ0

(
1 + ξ0

∫
V (x)f2(v)

)
= 2

∫
V (x)f2(v).

If 0 <
∫
V (x)f2(v) ≤ 1 we set ξ0 :=

(∫
V (x)f2(v)

)−1/2
, use (f11) and argue

as above to conclude that |v|f ≤ 2(
∫
V (x)f2(v))1/2. This and the above

expression finish the proof of item 6. The proposition is proved. �



ASYMPTOTICALLY LINEAR QUASILINEAR EQUATIONS 9

3. The Mountain Pass geometry

In this section we prove that J satisfies the geometry of a version of the
Mountain Pass theorem. Before presenting it let us recall that, if V is a real
Banach space, we say that I ∈ C1(V,R) satisfies the Palais-Smale condition
at level c ∈ R, in short (PS)c, if any sequence (vn) ⊂ V such that

lim
n→+∞

I(vn) = c, lim
n→∞

‖I ′(vn)‖V ∗ = 0

has a convergent subsequence. More generally, we say that I satisfies the
Palais-Smale condition, in short (PS), when I satisfies (PS)c for any level
c ∈ R.

We shall use the following version of the Mountain Pass Theorem.

Theorem 3.1. Let V be a real Banach space, I ∈ C1(V,R) and S ⊂ V a
closed subset which arcwise disconnect V in connected components V1 and
V2. Suppose further that I(0) = 0 and

(I1) 0 ∈ V1 and there exists α > 0 such that I(v) ≥ α for all v ∈ S ;
(I2) there exists e ∈ V2 such that I(e) ≤ 0.

Let

(3.1) c0 := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) ≥ α,

where Γ := {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) ∈ I−1((−∞, 0]) ∩ V2}. If I
satisfies (PS)c0 then c0 is a critical level of I.

We are intending to apply the above theorem with V being the Orlicz-
Sobolev space defined in the last section and I = J . We first verify that J
satisfies the geometric conditions (I1) and (I2) of Theorem 3.1.

For each ρ > 0 we define the set

Sρ :=

{
v ∈ E :

∫
|∇v|2 + V (x)f2(v) = ρ2

}
.

Since Q : E → R given by

(3.2) Q(v) :=

∫
|∇v|2 +

∫
V (x)f2(v),

is continuous we have that Sρ is a closed subset which disconnects the space
E.

Lemma 3.2. Suppose g satisfies (g1) and (G0) with λ1(K0) > 1. Then
there exist ρ, α > 0 such that

J(v) ≥ α, for all v ∈ Sρ.
Proof. We start by setting q := 2 · 2∗(α0 − 1)/α0, where α0 comes from
the growth condition (g1). Since α0 > N/2, a straightforward calculation
provides 4 < q < 2 · 2∗. For any given given ε > 0, it follows from (G0) and
(g1) that

G(x, t) ≤ (K0(x) + ε)

2
t2 + d(x)|t|q, for all (x, t) ∈ RN × R,
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for some function d ∈ Lα0(RN ). Arguing as in (2.9) we get, for any v ∈ E,∫
d(x)|f(v)|q ≤ ‖d‖α0‖f(v)‖q2·2∗ ≤ c1‖d‖α0‖∇v‖

q/2
2 ≤ c1‖d‖α0Q

q/4(v),

for some c1 > 0. Moreover, in view of (V1), we have that∫
f2(v) ≤ 1

V0

∫
V (x)f2(v) ≤ 1

V0
Q(v).

Item 3 of Proposition 2.2 implies that f(v) ∈ L2(RN ). Furthermore, by
(f2), we have that |∇f(v)| ∈ L2(RN ). Hence v ∈ X and the variational
characterization of λ1(K0) provides∫

K0(x)f2(v) ≤ 1

λ1(K0)

∫ (
|∇f(v)|2 + V (x)f2(v)

)
≤ Q(v)

λ1(K0)
.

The three inequalities above imply that, for any v ∈ Sρ, there holds

(3.3) J(v) ≥ 1

2

(
1− 1

λ1(K0)
− ε

V0

)
ρ2 − c1‖d‖α0ρ

q/2.

Since 2 < q/2, if we choose ε > 0 small we obtain ρ, α > 0 satisfying the
statement of the lemma. The proof is finished. �

Lemma 3.3. Suppose g satisfies (g1) and (G∞). Let ϕ ∈ X be a positive
solution of

(3.4) −∆ϕ+ V (x)ϕ = λ1(K∞)K∞(x)ϕ in RN .
If we set

(3.5) η :=

∫
V (x)ϕ2∫
K∞(x)ϕ2

> 0,

then we have that
lim

s→+∞
J(sϕ) = −∞

provided λ1(K∞) < (1 + η).

Proof. It follows from (g1), (f3) and (f7) that, for a.e. x ∈ RN , there holds

2|G(x, f(sϕ))|
s2

≤ (a(x) + b(x))ϕ2 ∈ L1(RN ), for all s ∈ R,

since (a+b) ∈ Lα0(RN ) with α0 > N/2. Hence, from Fatou’s lemma, ϕ > 0,
(G∞) and (f5) we infer that

lim inf
s→+∞

∫
2G(x, f(sϕ))

s2
≥

∫
lim inf
s→+∞

(
2
G(x, f(sϕ))

f4(sϕ)

(
f(sϕ)
√
sϕ

)4

ϕ2

)

=

∫
K∞(x)ϕ2.

On the other hand, using (f7) again, we have

lim sup
s→+∞

V (x)f2(sϕ)

s2
≤ lim

s→+∞

√
2V (x)ϕ

s
= 0,
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for a.e. x ∈ RN . Moreover, from (f3),

V (x)f2(sϕ)

s2
≤ V (x)ϕ2 ∈ L1(RN ),

and therefore the Lebesgue Theorem provides

lim
s→∞

∫
V (x)f2(sϕ)

s2
= 0.

Hence,

lim sup
s→+∞

2J(sϕ)

s2
= lim

s→∞

∫ (
|∇ϕ|2 + V (x)

f2(sϕ)

s2

)
− lim inf

s→+∞

∫
2
G(x, f(sϕ))

s2

≤
∫
|∇ϕ|2 −

∫
K∞(x)ϕ2

= (λ1(K∞)− 1)

∫
K∞(x)ϕ2 −

∫
V (x)ϕ2

= [λ1(K∞)− (1 + η)]

∫
K∞(x)ϕ2 < 0,

where we have used λ1(K∞) < (1 + η) in the last inequality. The above
estimate implies that J(sϕ)→ −∞ as s→ +∞. �

4. Proof of Theorem 1.1

We present now the proof of Theorem 1.1. We first notice that, by Lemma
3.2 the functional J satisfies the condition (I1) of Theorem 3.1. Lemma 3.3
shows that the condition (I2) also holds if we take e := sϕ, for s > 0
large enough, where ϕ ∈ X satisfies (3.4), η comes from (3.5) and we are
supposing that λ1(K∞) < (1+η). We need only to check that J satisfies the
Palais-Smale condition at the level c0 defined in (3.1). This is the content of
the Proposition 4.1 below. By assuming its validity for a moment we obtain
a critical point v0 ∈ E for J satisfying J(v0) = c0 > 0. Since J(0) = 0 we
conclude that v0 6= 0. The growth condition (g1), the Sobolev embedding,
standard bootstrap arguments and elliptic regularity results show that v0 ∈
C0,α
loc (RN ) and so in L∞loc(RN ) (cf. [5]). Thus, we conclude that u0 := f(v0)

is a nontrivial weak solution of the problem (P ).
We devote the rest of the paper for the proof of one compactness result

and the proof of Theorem 1.2.

Proposition 4.1. Suppose g satisfies (g1) and (g2). Then J satisfies the
(PS)c condition for any c ∈ R.

Proof. Let (vn) ⊂ E be such that

lim
n→+∞

J(vn) = c, lim
n→+∞

J ′(vn) = 0.

We first prove that (vn) is bounded in E.
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In view of item 4 of Proposition 2.2 we have that f(vn)/f ′(vn) ∈ E.
Hence, we can use (2.7) to compute

J ′(vn) · f(vn)

f ′(vn)
≤ 2

∫
|∇vn|2 +

∫
V (x)f2(vn)−

∫
g(x, f(vn))f(vn).

Hence, we can use item 4 of Proposition 2.2 again to obtain

c+ on(1)‖vn‖ ≥ J(vn)− 1

4
J ′(vn) · f(vn)

f ′(vn)

≥ 1

4

∫
V (x)f2(vn) +

1

4

∫
(g(x, f(vn))f(vn)− 4G(x, f(vn))) ,

and therefore it follows from (g2) and Hölder inequality that∫
V (x)f2(vn) ≤ 4c+ on(1)‖vn‖+

∫
(4G(x, f(vn)− g(x, f(vn))f(vn)))

≤ 4c+ on(1)‖vn‖+ ‖Γ1‖1 + ‖Γ2‖τ
(∫
|f(vn)|q1τ ′

)1/τ ′

≤ 4c+ on(1)‖vn‖+ ‖Γ1‖1 + 2q1τ
′/4‖Γ2‖τ‖vn‖q1/2q1τ ′/2

.

Since 4 ≤ q1τ
′ ≤ 2 · 2∗ we infer from the choice of τ in (g2), the embedding

E ↪→ Lq1τ
′/2(RN ) and the above expression that, for some constant c1 > 0,

we have that

(4.1)

∫
V (x)f2(vn) ≤ 4c+ on(1)‖vn‖+ ‖Γ1‖1 + c1‖Γ2‖τ‖vn‖q1/2.

Arguing by contradiction we suppose that, up to a subsequence, ‖vn‖ →
+∞ as n → +∞. We define wn := vn/‖vn‖ and notice that, since we may
suppose that ‖vn‖ ≥ 1, the above inequality, (f10) and q1 < 2 provide∫

V (x)f2(wn) =

∫
V (x)f2

(
vn
‖vn‖

)
≤ 1

‖vn‖

∫
V (x)f2(vn)→ 0.

Since (wn) is bounded in D1,2(RN ), up to a subsequence we have that wn ⇀
w weakly in D1,2(RN ) and wn(x)→ w(x) a.e. in RN . By Fatou’s lemma and
the last estimate it follows that

∫
V (x)f2(w) ≤ lim infn→∞

∫
V (x)f2(wn) =

0, and therefore w = 0. We infer from item 1 of Proposition 2.2 that

(4.2) |wn|f → 0.

We now claim that

(4.3) lim
n→+∞

1

‖vn‖2

∫
G(x, f(vn)) = 0.

If this is true we can finish the proof of the boundedness of (vn) by noticing
that∫
|∇wn|2 =

2J(vn)

‖vn‖2
− 1

‖vn‖2

∫
V (x)f2(vn) +

2

‖vn‖2

∫
G(x, f(vn))→ 0,
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where we have used J(vn)→ c, (4.1) and (4.3). This convergence and (4.2)
imply that 1 = ‖wn‖ = ‖wn‖22 + |wn|f → 0, which does not make sense.
This contradiction shows that (vn) is bounded.

In the sequel we prove (4.3). We first notice that, since vn = ‖vn‖wn, we
can use (g1), (f3) and (f7) to get

|G(x, f(vn))|
‖vn‖2

≤ a(x)

2

f2(‖vn‖wn)

‖vn‖2
+
b(x)

4

f4(‖vn‖wn)

‖vn‖2

≤ 1

2
(a(x) + b(x))w2

n.

It follows from (f8) that

(4.4) |t| ≤ 1

κ
|f(t)|+ 1

k2
f2(t), for all t ∈ R.

Hence

(4.5)

∫
|G(x, f(vn))|
‖vn‖2

≤ c1

∫
(a(x) + b(x))(f2(wn) + f4(wn)).

On the other hand, item 5 of Proposition 2.2 implies that, up to a subse-
quence,

(4.6) f(wn)→ 0 strongly in Lq(RN ) for any 2 ≤ q < 2 · 2∗.
Recalling that b ∈ Lα0(RN ) with α0 > N/2, we can use Hölder’s inequality
to get ∫

b(x)f4(wn) ≤ ‖b‖α0‖f(wn)‖44α0/(α0−1) → 0,

where we have used (4.6) and the fact that 4 < 4α0/(α0 − 1) < 2 · 2∗. The
same argument shows that

max

{∫
a(x)f4(wn),

∫
a(x)f2(wn),

∫
b(x)f2(wn)

}
→ 0.

The proof of (4.3) follows from the above expression and (4.5). Hence, we
conclude that (vn) is bounded.

The boundedness of (vn) implies that, for some v ∈ D1,2(RN ), we have
that vn ⇀ v weakly in D1,2(RN ). Since we also have pointwise convergence
we can use (4.1) and Fatou’s lemma to get

(4.7)

∫
V (x)f2(v) ≤ lim inf

n→+∞

∫
V (x)f2(vn) <∞,

and therefore the weak limit v belongs to E. In the sequel we shall prove
that ‖vn − v‖ → 0.

We start by noticing that, since f2 is convex, the function Q defined (3.2)
is also convex. Hence,
(4.8)

Q(v)−Q(vn) ≥ Q′(vn) · (v − vn)

= 2J ′(vn) · (v − vn) + 2

∫
g(x, f(vn))f ′(vn)(v − vn).
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We claim that

(4.9) lim
n→+∞

∫
g(x, f(vn))f ′(vn)(v − vn) = 0.

Assuming the claim, recalling that J ′(vn)→ 0 and taking the limit in (4.8)
we get

lim sup
n→+∞

Q(vn) ≤ Q(v).

On the other hand, the weak converge of (vn) in D1,2(RN ) provides

(4.10)

∫
|∇v|2 ≤ lim inf

n→+∞

∫
|∇vn|2.

Hence, we infer from (4.7) that Q(v) ≤ lim infn→+∞Q(vn), and therefore

(4.11) lim
n→+∞

Q(vn) = Q(v).

Before continuing the proof we justify the convergence in (4.9). From (f12)
and (4.7) we conclude that (

∫
V (x)f2(vn−v)) is a bounded sequence. Hence,

the weak convergence (vn − v) ⇀ 0 in D1,2(RN ) and item 5 of Proposition
2.2 imply that

(4.12) f(vn − v)→ 0 strongly in Lq(RN ) for all 2 ≤ q < 2 · 2∗.
On the other hand, from (g1), (f2), (f9), we get

|g(x, f(vn))f ′(vn)| ≤ c1(a(x) + b(x))(|f(vn)|+ f2(vn)).

The above expression and inequality (4.4) provide c2 > 0 such that

(4.13) |g(x, f(vn))f ′(vn)||vn − v| ≤ c2ψ(x)hn(x)(|f(vn − v)|+ f2(vn − v)),

with ψ(x) := c1(a(x)+b(x)) ∈ Lα0(RN ) and hn(x) := |f(vn(x))|+f2(vn(x)).
If we set q := 2α0/(α0−1) we can use α0 > N/2 to conclude that 2 < q < 2∗.
Hence, the embedding E ↪→ Lq(RN ), (f3) and (f7) imply that the sequence
hn is bounded in Lq(RN ). It follows from Hölder’s inequality that∫

ψ(x)hn(x)f2(vn − v) ≤ ‖ψ‖α0‖hn‖q‖f(vn − v)‖22q → 0,

where we have used 4 < 2q < 2 · 2∗ and (4.12). Analogously,∫
ψ(x)hn(x)|f(vn − v)| → 0.

The statement (4.9) is a consequence of inequality (4.13) and the two con-
vergences above.

By using (4.11) we obtain

Q(v) = lim inf
n→+∞

Q(vn)

≥ lim inf
n→+∞

∫
|∇vn|2 + lim inf

n→+∞

∫
V (x)f2(vn)

≥
∫
|∇v|2 +

∫
V (x)f2(v) = Q(v)
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We infer from the above inequality, (4.7) and (4.10) that
(4.14)

lim inf
n→+∞

∫
|∇vn|2 =

∫
|∇v|2, lim inf

n→+∞

∫
V (x)f2(vn) =

∫
V (x)f2(v).

Hence

Q(v) = lim sup
n→+∞

(∫
|∇vn|2 +

∫
V (x)f2(vn)

)
≥ lim sup

n→+∞

∫
|∇vn|2 + lim inf

n→+∞

∫
V (x)f2(vn)

≥ lim inf
n→+∞

(∫
|∇vn|2 +

∫
V (x)f2(vn)

)
= Q(v),

and therefore we conclude that

lim sup
n→+∞

∫
|∇vn|2 =

∫
|∇v|2.

This and (4.14) imply that ‖vn‖D1,2(RN ) → ‖v‖D1,2(RN ). So, the weak con-

vergence of (vn) imply that vn → v strongly in D1,2(RN ), that is

(4.15) lim
n→+∞

‖∇(vn − v)‖2 = 0.

Arguing as above we can also conclude that

lim sup
n→+∞

∫
V (x)f2(vn) =

∫
V (x)f2(v).

and therefore we have that
√
V (x)f(vn)→

√
V (x)f(v) strongly in L2(RN ).

Thus, up to a subsequence, we have that
√
V (x)f(vn) ≤ ϕ(x) a.e. in Rn for

some ϕ ∈ L2(RN ). Thus, we can use (f12) to obtain

V (x)f2(vn − v) ≤ 4(V (x)f2(vn) + V (x)f2(v)) ≤ 4(ϕ(x)2 + V (x)f2(v)).

Since the right-hand side above belongs to L1(RN ) it follows from the
Lebesgue Theorem that

∫
V (x)f2(vn − v)→ 0. Thus, the item 1 of Propo-

sition 2.2 implies that

lim
n→+∞

|vn − v|f = 0.

By using this equality and (4.15) we conclude that

lim
n→+∞

‖vn − v‖ = lim
n→+∞

(‖∇(vn − u)‖2 + |vn − v|f ) = 0

and the proposition is proved. �

5. Proof of Theorem 1.2

In order to obtain a positive solution we define g+ : RN × RN → R by
setting

g+(x, t) :=

{
g(x, t), if t ≥ 0,

0, if t < 0,
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and consider the new functional

J+(v) :=
1

2

∫
(|∇u|2 + V (x)f2(u))−

∫
G+(x, f(v)), v ∈ E,

where G+(x, t) :=
∫ t

0 g+(x, τ)dτ is a primitive of g+.
For any v ∈ E we have that

∫
G+(x, f(v)) =

∫
G(x, f(v+)) and therefore

the same conclusion of Lemma 3.2 holds for J+. Moreover, since the function
ϕ in Lemma 3.3 is positive, it is easy to check that the lemma also holds for
the functional J+. In the sequel we focus on the proof of the Palais-Smale
condition.

Let (vn) ⊂ E be a (PS)c sequence for J+. We set v−n (x) := min{vn(x), 0}
and claim that ‖v−n ‖ → 0 as n → +∞. Indeed, if this is not true, there
exists β > 0 such that, up to a subsequence, ‖v−n ‖ ≥ β > 0. It follows from
item 4 of Proposition 2.2, f(0) = 0, f ′(0) = 1 and the definition of g+ that

on(1)‖v−n ‖ ≥ J ′+(vn) · f(v−n )

f ′(v−n )

=

∫ (
1 +

2f2(v−n )

1 + 2f2(v−n )

)
|∇v−n |2 +

∫
V (x)f(vn)f ′(vn)

f(v−n )

f ′(v−n )

≥
∫
|∇v−n |2 + V (x)f2(v−n ).

Since ‖v−n ‖ ≥ β > 0, it is well defined wn := v−n
‖v−n ‖

. The above inequalities

provide

max

{∫
|∇wn|2,

∫
V (x)

f2(v−n )

‖v−n ‖
,

∫
V (x)

f2(v−n )

‖v−n ‖2

}
→ 0,

as n→ +∞. Hence, we infer from (f10) and (f11) that∫
V (x)f2(wn) =

∫
V (x)f2

(
v−n
‖v−n ‖

)
≤
(

1

‖v−n ‖
+

1

‖v−n ‖2

)∫
V (x)f2(v−n )→ 0.

It follows from item 6 of Proposition 2.2 that |wn|f → 0 as n → +∞.
Thus, 1 = ‖wn‖ = ‖∇wn‖2 + |wn|f → 0, which does not make sense. Since
v−n → 0 as n → +∞, replacing (vn) by (v+

n ) if necessary, we may suppose
that vn ≥ 0. Thus, we can argue along the same lines of Proposition 4.1
to conclude that (vn) has a convergent subsequence, that is, the truncated
functional J+ satisfies the Palais-Smale condition.

As in the proof of Theorem 1.1 we obtain a nonzero critical point v0 for
J+. Since J ′+(v0)v−0 = 0 we can argue as above to conclude that v−0 ≡ 0, and

therefore v0 ≥ 0 a.e. in RN . Elliptic regularity theory and the maximum
principle imply that v0 > 0 in RN .
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The existence of a negative solution can be proved in the same way just
considering g− : RN × RN → R given by

g−(x, t) =

{
0, if t > 0,

g(x, t), if t ≤ 0

We omit the details.
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[5] J.M. doÓ and U.B. Severo, Quasilinear Schrödinger equations involving concave and
convex nonlinearities, Commun. Pure Appl. Anal. 8 (2009), 621-644.
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